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1. Introduction

With the rapid growth of demands on wireless multimedia
applications and wireless data services, it is expected that
broadband wireless access (BWA) networks should be able to
support high-speed, high-quality, realtime, and nonrealtime
applications, such as video, image, voice, text, and data.
Quality of Service (QoS) provisioning for heterogeneous
traffic with diverse properties is a necessity in emerging
BWA networks. Packet scheduling algorithms, which are in
charge of the bandwidth allocation and multiplexing at the
packet level, play key roles for resource sharing and QoS
provisioning in BWA networks.

Different from traditional wired scheduling problems,
packet scheduling in BWA networks will encounter two
major difficulties: the high variability of wireless channel
conditions and the unknown model of packet arrival process.
The capacity of wireless channel usually suffers either moder-
ate or drastic fluctuations due to the signal attenuation, inter-
user interference, fading and user mobility, and so forth. As

a result, the channel conditions of users may vary with time
and location asynchronously at random, leading to the so-
called time-dependent error and location-dependent error [1].
In BWA networks, the process of packet arrivals is generally
complicated and hard to accurately model in advance, since
the packet arrivals are induced by the aggregation of multiple
classes of traffic with different properties, such as constant
and variable rates, and continuous and burst modes.

Besides the difficulties, packet scheduling algorithms for
wireless multimedia networks are required to concurrently
achieve three performance objectives: QoS differentiation
and guarantee, wireless bandwidth utilization maximization,
and fairness provisioning. Firstly, the transmission of het-
erogeneous classes of traffic with diverse QoS requirements
naturally demands the scheduler to provide differential
services. Secondly, the scheduler should be able to arrange
the packet transmissions reasonably so that the precious
wireless bandwidth can be utilized in an efficient way.
Thirdly, the scheduler should also make sure that every traffic
flow gets its fair share of the system resources. These three
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objectives, in most practical situations, are tightly coupled
and complementary with each other. A good scheduling
algorithm should provide satisfying performance tradeoff
among them.

These special difficulties and performance objectives
make the scheduling problem in BWA networks considerably
challenging. The packet scheduler of a BWA network should
operate across different sessions (i.e., connections or traffic
flows) to guarantee that all sessions receive services with
qualities according to the contract established when sessions
are setup. At the beginning of each round of scheduling, the
scheduler should decide one of the sessions for transmission.
In order to make the right decision at each round of
scheduling and hence accumulatively achieve the optimal
long-term performance, the scheduler should be capable
to predict the possible rewards (or costs) induced by
different scheduling actions. However, the high variability of
wireless channel conditions and the unknown characteristics
of traffic flows make this long-term prediction difficult.
Meanwhile, the multiple performance objectives introduce a
set of interactional factors that should be considered together
for prediction.

In this paper, we observe that the problem of packet
scheduling in BWA networks could be described as a
semi-Markov Decision Process (SMDP). There are two
major advantages to solve the scheduling problem by the
methodology of SMDP. Firstly, by modelling the scheduling
problem as an SMDP, the entire scheduling process is
divided into a series of stages. Decisions are made stage by
stage. In other words, the original complicated problem is
divided into multiple relatively simple subproblems, which
are much more tractable than the original one. Secondly,
there exist various of advanced mathematical techniques
to solve the formulated SMDP problems, especially the
learning-based approach. With the aid of learning-based
approach, the scheduler has underlying ability to capture the
main characteristics of the system and accurately predict the
long-term rewards (or costs), even though there is no full
knowledge of the system model.

The remainder of this paper is organized as follows. A
brief introduction of existing packet scheduling algorithms
is given in Section 2. The SMDP formulation is presented
in Section 3. After introducing the system model, we cast
the packet scheduling problem into the framework of
SMDP. The construction of cost function is explained in
details. Section 4 discusses the solution of the formulated
SMDP problem. The methodology of reinforcement learning
[2] is employed. A feature-based linear approximating
architecture is adopted to approach the optimal average
cost. The Temporal Difference (TD) technique [2] is used
to continuously regulate the tunable parameter variables.
Section 5 reports the results of simulation experiments,
where the proposed algorithm is compared with two existing
algorithms. Conclusion is presented in Section 6.

2. Related Work

In literature, the problem of packet scheduling is extensively
studied in both wired and wireless environments. We broadly

categorize the algorithms into three classes and present a
brief introduction of them. For comprehensive overview of
existing scheduling algorithms, readers are referred to [3].

2.1. Algorithms in Wired Environment. Algorithms of First-
Come-First-Served (FCFS) and Round Robin (RR) are first
developed for wired networks. Their original versions and
improved versions (e.g., Weighted Round Robin and Deficit
Round Robin [4]) are underlying schemes for wireless
networks. Another well-known algorithm is Generalized
Processor Sharing (GPS) [5], which is ideal and unimple-
mentable in packet-based networks. Many other scheduling
algorithms try to approximate GPS as far as possible. The
merit of these wired scheduling algorithms is their simplicity
and ease of implementation. But if directly used in BWA
networks, these algorithms cannot achieve high bandwidth
utilization and promise fairness guarantee.

2.2. Algorithms in Wireless Environment with GE-Model. The
classical two-state Gilbert-Eilliot (GE) model [6, 7] is firstly
used to model the wireless link variation. The channel
is simply described to be either in “good” or in “bad”
state in this model. A survey of this class of scheduling
algorithms can be found in [1]. Work in [8] devised Idealized
Weight Fair Queuing (IWFQ) algorithm. In [9], Channel-
condition Independent Fair Queueing (CIF-Q) algorithm
was put forward. Both algorithms of IWFQ and CIF-Q
need to simulate a virtual error-free fair queueing system
and try to schedule packets in the same order as the ideal
reference system does. IWFQ and CIF-Q differ in the way
they compensate the lagging flows. Wong et al. [10] presented
Token Bank Fair Queueing (TBFQ) algorithm, which uses
token pools and token bank to keep track of the service
status of each flow and dynamically regulate the priorities
of the flows to occupy the channel resource. All these three
algorithms achieve good performance tradeoff among the
three performance issues aforementioned. But they only
work under the GE channel model, which is too coarse to
characterize the practical variability of the wireless channel
conditions.

2.3. Algorithms in Wireless Environment with Multistate
Model. Some researchers considered variable-rate transmis-
sion in scheduling algorithms [11-15]. The Modified Largest
Weighted Delay First (M-LWDEF) algorithm [11] schedules
packets according to a simple but effective constructed
metric. The scheme was proved analytically to be throughput
optimal. But it does not explicitly guarantee any fairness. The
algorithm of Jalali et al. [12] was proposed to satisfy the so-
called proportional fairness; the algorithm of Liu et al. [13]
tried to maximize the long-term average total throughput for
a given time fraction; the algorithm of Borst and Whiting
[14] was made to be Pareto-optimal. The algorithm of
Park et al. [15] selects user for transmission based on the
cumulative distribution function (CDF) of the user rates.
Besides the above three classes of scheduling algorithms,
researchers also consider standard-compatible schemes
recently. In [16], a scheduling algorithm which is practical
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and compatible to the IEEE 802.16 standard is proposed.
It provides QoS support in terms of bandwidth and delay
bounds for all types of traffic classes as defined by the
standard.

By summarizing the above-mentioned scheduling algo-
rithms, we notice that most of the algorithms are designed
based on heuristic methods. Either introducing the vir-
tual/ideal service models as reference systems [8, 9] or
defining some key metrics as criteria [11-14], many existing
algorithms are built on the observation, judgement, intu-
ition, and experience of the designers. Although heuristic
algorithms have the merit of simplicity, their underlying
drawbacks are twofold. Firstly, heuristic algorithms are
generally proposed with respect to some given special outside
conditions, which means that they are less of adaptivity.
When the practical conditions do not match the provided
ones, it is hard for heuristic algorithms to maintain their
scheduling performance. Secondly, designing a heuristic
scheduling algorithm is easy when the problem is relatively
simple but could be rather tough when the scheduling envi-
ronments and objectives become complicated. For packet
scheduling problem in BWA networks, the scheduler is
required to consider three main objectives simultaneously
and, meanwhile, combat highly variable channels and
unknown traffic models. Such a complicated scheduling
problem is far out of the ability of a heuristic algorithm to
handle.

To overcome the disadvantages of heuristic algorithms,
we propose in this paper a learning-based algorithm for the
packet scheduling problem in BWA networks. The proposed
algorithm has in-built capacity of studying from outside
environment and adapting system parameters according to
the performance requirements. This attractive feature makes
the proposed algorithm appropriate for the scheduling
problem in BWA networks. More specifically, when this
learning-based algorithm is applied in BWA networks, we
only need to translate the scheduling objectives to the
system reward (or cost) and then connect the scheduling
problem with the ingredients of the solution framework.
Little attention should be paid on the details of the entire
scheduling process such as how to dynamically adapt
the scheduler for the optimal performance. Because the
scheduler has potential ability of self-training, it could
automatically tuning itself towards an optimal system reward
(or cost) according to the actual environment. Actually, the
works in [13, 14] have realized that fixed and unadaptable
scheduling schemes are incapable in complicated scheduling
problem. Undetermined constants are integrated into the
key metrics at the system initialization phase so that
the scheduler could adjust its strategy at some extent.
Nonetheless, the learning abilities of these algorithms are
very limited, and they should still be looked on as heuristic
algorithms.

3. Semi-Markov Decision Process Formulation

In this section, we cast the packet scheduling problem into
the framework of Semi-Markov Decision Process (SMDP).

As the base of our discussion, the wireless network model and
channel model are firstly introduced. After that, we connect
the packet scheduling problem with the ingredients of
SMDP. The construction of cost function is comprehensively
discussed.

3.1. System Model

3.1.1. Wireless Network Model. 'We consider a general shared-
channel infrastructure-based BWA network, in which mobile
hosts are served by a base station. The communication
between a mobile host and the base station may contain more
than one session (or traffic flow). Centralized scheduling
of packet transmission is performed at the base station. A
general scheduler model is described in Figure 1, where the
usage of channel condition monitoring mechanism like LSM
[17] is assumed. The method to implement LSM in actual
systems can be found in [14]. In presence of LSM, the base
station is supposed to have full knowledge of the channel
conditions of all sessions.

3.1.2. Wireless Channel Model. The conditions of wireless
links between the base station and each of the mobile
hosts are independent of each other. We use the multistate
Markov channel model (i.e., FSMC in [18, 19]) to describe
the variation of the wireless channel condition. As shown
in Figure 2, state transition only occurs between adjacent
states. Since FSMC is derived by partitioning the received
signal-to-noise ratio (SNR) into multiple intervals, there is a
maximum feasible rate in each state with respect to the actual
requirement of average Bit-Error Rate (BER).

3.2. SMDDP Ingredients. In a general shared-channel wireless
network, the scheduler should make scheduling decisions
based on the knowledge of the system state, including the
queueing delay of all packets, the channel conditions of
all sessions, and the practical service rates of all sessions.
Suppose that there are M sessions in the system, and each
session has a queueing buffer that can store K packets at
the most. (Without loss of generalization, we assume that all
queues can store same number of packets. A more practical
assumption may be that the buffer length of the mth session
is K, in packets.) At time ¢, the queueing delay of the kth
packet in the mth session is denoted by 7,k (¢). For the mth
session, let R, () denote the maximum available channel rate
at time t, r,,,(t) the practical average service rate at time ¢, and
m the nominal service rate (negotiated when the session is
setup). We now connect the packet scheduling problem with
the main ingredients of the Semi-Markov Decision Process
(SMDP) as follows.

3.2.1. Stage. The scheduling process is naturally divided into
a series of stages by events wg,w,w>,..., which represent
packet arrivals and departures (we say that a packet “departs”
if its service completes). Stages are indexed by integers
i = 1,2,.... Let t; denote the time that event w; happens.
The time duration of the ith stage is represented by
At =t —ti_1.
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F1GURE 2: Multistate Markov channel model.

3.2.2. State. A state x consists of the queueing status of the
whole scheduling system, including the current queueing
delay of all packets, the wireless link conditions of all sessions,
and the actual service rates of all sessions. In particular, the
state at the beginning of stage i is defined by (for ease of
presentation, we also call x; the state of stage i in this paper)

%= (Th o Rt | m e (1,2,.., ML,k € {1,2,...,K}),
(1)

where T;%k = Tui(tic1), RG, = Ru(ti1), and i, = rp(tioy).
For the computation of the actual service rate r’,, we improve
the approach provided in [12]. We define a time window
T,, which is sufficiently long. If session m is assigned for
transmission, the actual service rate of session m at the end of
the ith stage is updated by rit! = (1—-At;/T,,)ri,+(At:/ Ty )R, ;
otherwise, rif! = (1 — At;/T,)r},. The set of all possible
states is called state space, denoted by X, which is a multiple
dimension space with huge size.

3.2.3. Decision. At stage i, with the occurrence of event wj,
the scheduler should make a decision u; according to the
state x;. The decision is defined by the session number of
the next transmission, that is, u; = m, m € {1,2,...,M}.
The decision space is denoted by U = {1,2,..., M}. At stage
i, if event w; is packet departure, since the wireless channel
is idle, the decision subset U(x;) contains all sessions that
can transmit. (A session that “can transmit” is a session with
nonempty queue and nonzero channel rate.) If event w; is
packet arrival, in the case that the channel is busy (being used
for transmission), U(x;) is a singleton; in the case that the
channel is idle (as no session can transmit, e.g., an empty
system), the decision subset U(x;) contains all sessions that
can transmit.

3.2.4. Policy. Policy n (po> 1> t2,...) is a sequence of
decision functions, where decision function y; : X — U is
a mapping from state space X to the decision space U. A
policy is said to be stationary if for all i, y; = y, which means

that the decision function does not change with stages. The
space of stationary policy is denoted by IT;. We only consider
stationary policies as candidate policies in this paper, and
without confusion, we simply use y as the denotation of
stationary policy. Note that, under policy y, the decision at
stage i is represented by u; = p(x;).

3.2.5. Cost Function. As mentioned above, the definition of
system cost of scheduling problem in BWA networks should
take into account three objectives: (i) wireless bandwidth
utilization maximization, (ii) QoS differentiation and guar-
antee, and (iii) fairness provisioning. Since cost function has
major influence to the scheduler’s performance, we place the
construction of cost function in a single subsection which
will be presented shortly. In the ith stage, the cost with state
x; and decision u; is represented by g(x;, #;). Under policy g,
the average cost of the system is provided by

N
.1

v(p) = A}lfnoogizzlg(xi,ﬂ(xi)), (2)

where N is the total number of stages. The target of the

SMDP problem is to find the optimal policy which leads to

the minimum average cost. A policy y* is said to be optimal
if

(3)

for arbitrary other policy p. Usually, the average cost under

the optimal policy is called optimal average cost, denoted by

v*,

v(u*) < v(p)

3.2.6. Bellman Equation. Generally, the optimal policy y* of
the SMDP problem could be obtained by solving the Bellman
optimality equation. In the average cost SMDP problem,
Bellman optimality equation takes the following form [20]:

v¥E{At | x} + h*(x) = E{ m[}%l)[g(x,u) +h* (y)]},

(4)
h*(x) = 0.
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Here, E{-} stands for expectation; Af represents the duration
of current stage; U(x) denotes the decision set at current
time; y is the state at next stage. The value v* is the optimal
average cost, and h*(-) is called the optimal differential cost,
which has the following interpretation: when we operate the
system under an optimal policy, then h* (x) — h*(x") equals
to the expectation of the difference of the total cost (over the
infinite horizon) for a system with initial state x, compared
with a system with initial state x". State X is a recurrent state
with zero differential cost (e.g., the state in which all queues
are empty).

Once the optimal differential cost function h*(-) is
available, the optimal scheduling policy can be obtained by

ur(x) = argulggé)[g(x,u) +h*(y)]. (5)

As shown in (5), the optimal policy is composed by a series
of optimal decisions at all stages, which maximizes the value
of the righthand side of (5).

The desire for the exact solution of h*(-) in (4) is
unrealistic because of the huge size of state space and
the overwhelming computational requirement. Hence, we
employ the methodology of Reinforcement Learning (RL)
[2] to produce a near optimal solution. The central idea is to
approach h*(-) by a parameterized approximating function

h(-,0). Online learning is carried out to continuously

regulate the parameter vector 8 and make %(-, 6) more and
more close to h*(-). The details of the RL solution are
presented in the next section. Before that, we explain the
construction of cost function in a separated subsection.

3.3. Construction of Cost Function. The definition of cost
function directly determines the performance of the schedul-
ing algorithm. In our problem, we restrict the cost function
of interest to have the following important properties.

(i) Simplicity. A simple form of cost function can
significantly reduce the computation complexity of the
whole scheduling algorithm.

(i) Effectiveness. Since the wireless packet scheduler is
expected to concurrently address performance issues of QoS,
bandwidth utility and fairness, the definition of cost function
should take into account all these three aspects.

(iii) Scalability. In different practical services and appli-
cations, the requirements on every single performance
objective may be quite different. Therefore, the structure of
the cost function may have some tunable coefficients which
allow the network supervisor to regulate according to actual
situations.

Our discussion of the cost function starts from a draining
problem, where given a number of packets in the system, and
assuming no more packet arrivals, the scheduler should try
to arrange the order of packet transmissions so that the total
cost is minimized. Draining problem is indeed a simplified
version of the original scheduling problem. By assuming that
there is no new packet arrival, draining problem is much
more analyzable than the original scheduling problem. Here,
we consider a draining problem with the following setup.
There are M sessions in the system. The initial queue length

of session m is K, in packets, m € {1,2,...,M}. At the
beginning, the queueing delay of all the packets is supposed
to be zero. We separately define three different forms of
cost function below. Each definition actually involves one
performance objective.

3.3.1. Bandwidth Utilization. The first definition of cost
function relates to the performance issue of bandwidth
utilization. At the ith stage, let

M
g ) = D Th i Liu—my» (6)

m=1

where 77, is the head-of-line (HOL) delay of session m at
the beginning of the ith stage; 1, is the indicator function,
satisfying that 14 = 1 when A is true, and 14, = 0 when A is
false. By this definition, the total cost is equal to sum of the
delay of all packets. To minimize the total cost, the scheduler
will always assign the session with the highest channel rate
to transmit. Obviously, this scheduling policy will result in
bandwidth utilization maximization.

3.3.2. QoS Differentiation. The second definition of cost
function involves the performance issue of QoS differentia-
tion. At the ith stage, let

M
g(xi: ui) = Z WmTzn,ll{u;:m}a (7)

m=1

where W, is the weight with session m. The existence of
weights makes the scheduling rule different from the one
under definition (6). To be concrete, consider two sessions
my and m, with weights W, and W,,, respectively, and
Wiy, > Wy,. Suppose at a certain stage that R,;, = Rp,,
and both are the highest channel rates of all sessions. The
scheduler will choose to assign m; for transmission first,
because for a same period of waiting time, the cost of m;
is larger than m,. We can see that different weights give the
session different priority levels. Following the definition of
cost in (7), the scheduler can achieve QoS differentiation.

3.3.3. Fairness. The performance issue of fairness is inte-
grated into the third definition of cost function. At the ith
stage, let

M A
genu) = X T Ly (®)
m=1"m
where 7, and r!, are, respectively, the nominal and actual
average service rate of session m. Under this definition,
the scheduler is insensitive to the bandwidth utilization or
QoS differentiation. What concerns the scheduler is whether
every traffic gets its ordered service. The following theorem
explains how the scheduler provides fair services for multiple
traffic.

Theorem 1. Considering a scheduling system with cost func-
tion of (8) and working under the Fluid limit model [21], if
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all sessions have the same channel rate R, the proportion of
service that session m receives from the scheduler is given by

~ M A~ . . .
€m = NTm/ 2j—1\/Tj» where the sum of service proportion is

SM o€ =1.
Proof. See the appendix. O

Theorem 1 indicates that under the definition of (8),
each traffic flow will get its fair share of service being
proportional to the square root of its nominal service rate.
A more general form of cost function that relates to fairness
issue is provided by extending the definition of (8) as follows:

M ;} n
I L T

m=1 m

It is easy to prove that the service proportion of session

m under the definition of (9) has the form as €, =
~n/(n+1) M ~n/(n+1)
Tm /> =17

Although none of the above three cost functions can
simultaneously relate to all the three performance issues,
they lead us to construct an appropriate one. Actually, by
simply combining the definitions given by (6), (7), and (8),
we obtain the cost function as follows:

M
g(xbui) = Z WmFm(rm)Tin,ll{uli:m}) (10)

m=1

where W,,’s are constants called the priority factors, and F,’s
are called the fairness factors, defined by

Fpu(rm) = (@)7%, me{l,2,...,M}. (11)

T'm

Here n,, = 1 is a constant associated with session m
that relates to fairness. The specific values of W,’s and
ny’s are left to be determined according to the practical
situations by the network supervisor. Regarding the form
of the cost function in (10), it is worth to mention that
a cost function of similar form is introduced in [11].
The authors assembled the factors of HOL delay, channel
rate, and constant weight in a multiplication manner to
produce an effective cost function. It is easy to see that
the form of cost function definition by (10) has three
important properties as mentioned at the beginning of this
subsection. Firstly, it is simple and easy to compute in each
stage. Secondly, as a combination of (6), (7), and (8), it
effectively takes into account the three performance issues:
bandwidth utilization, QoS guarantee, and fairness. Thirdly,
the scalable coefficients W,,’s and n,,’s provide flexibility for
the network supervisor to regulate the scheduler according
to the practical requirements.

4. Reinforcement Learning Solution

4.1. Function Approximation Architecture. A common ap-
proximation architecture of RL is shown in Figure 3. The
architecture consists of two components: the feature extrac-
tor and the function approximator. The feature extractor is

State x Feature f(x)

Function
approximator

Feature
extractor

FIGURE 3: Architecture of RL system.

used to produce a feature vector f(x), which is capable of
capturing the most important aspects of state x. Features
are usually handcraft, based on human intelligence or
experience. Our choice of the feature vector will be presented
shortly.

The function approximation architectures could be
broadly categorized into two classes: the nonlinear and
the linear structures. One typical nonlinear architecture is
the multilayer perceptron or feedforward neural network
with a single hidden layer (see, e.g., [22]). Under this

architecture, the output approximating function h(-,0) is
the nonlinear combination of input feature vector f(x)
with internal tunable weight vector 6. This architecture is
powerful because it can approximate arbitrary functions
of h*(-). The drawback, however, is that the dependence
on 6 is nonlinear, and tuning can be time-consuming and
unreliable.

Alternatively, a linear feature-based approximation archi-
tecture [22] is much simpler and easier to implement, in
which the output approximating function h(-,0) is the linear
combination of the input feature f(x), given by

h(x,0) = 67 f(x), (12)

where the superscript T represents transpose. In this paper,
we choose linear approximation architecture in the RL
framework.

Since the linear combination of feature vector should
approximate the optimal differential average cost, the defi-
nition of feature vector explicitly relates to the definition of
cost function. As (10) has shown, the cost at each stage is
determined by the weighted queueing delay of the packet
being assigned to transmit. Thus, the components of the
feature vector should be defined with respect to all packets
in the system, each component corresponding to one packet.
Let I,, denote the packet size of session m. At stage i, the
remaining waiting time for the kth packet in session m could
be estimated by kl,,,/ri,, where i, is the current actual service
rate of session m. Thus, the feature component with respect
to the kth packet of session m is defined by

fm,k = WpFp (T’;n) (T;n,k + i{m) (13)
m

Here, the item 7}, +kl,,/r}, could be viewed as the estimation
of the queueing delay for the kth packet in session m. Note
that if 7/, provides an accurate prediction of the service rate
of session m, (13) coincides well with (10) and the loss of
optimality of the linear architecture could be sufficiently
small. Extending (12) yields

M Ky

h(x,0) = > > gk (14)

m=1k=1
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where K,, is the number of packet in session m; 6% is
the parameter variable associated with feature £X. The total

number of tunable parameters in h(-,0) is equal to MK.

4.2. Online Parameter Tuning. After establishing the approx-
imating architecture, we employ the technique of Temporal-
Difference (TD) learning [2] to perform online parameter
tuning. The algorithm starts with an arbitrary initial param-
eter vector 0y and improves the approximation as more and
more state transitions are observed. At each stage, a greedy
decision is made based on current x and 0. Specifically, the
decision should be made by

* _ ; (5
u* = argulgl}&)g(x, u) +h(y,0), (15)

where J is the estimation of state at the next stage. The
computation of ¥ is trivial if we simply assume that no packet
arrives during the current stage. More concretely, let K,
denote the number of packets in session m. At the beginning
of a stage, given the state

x = (Tmpo Rt | m € {1,2,...,M}, k € {1,2,...,K}),
(16)

if no more packet arrives before the current transmission
completes, then the state at the end of current stage (i.e., the
beginning of next stage) is estimated by

¥ = (T Ry | m € {1,2,..,M}, k € {1,2,...,K}),
(17)

where for m # u, 7, = Tk + /R, k = 1,..., Kp; for m =
U Tpyp = Tkt T /Ry k=1, Ky,

In the process of parameter tuning, the update of
parameter vector 6 and scalar V is carried out stage by stage,
according to

0; =01 + VidiVOz(xi—lyei—l),
o N (18)
Vi = Vo1 + il g(xic1, uis1) — Vi1 AL,

where y; and #; are small step size parameters, and d; is called
temporal difference. Generally, y; and #; should satisty the
following conditions:

)

dyi=ow, D<o,
i—0

i=0

[e¢] (o)
dAi=c, i<
i=0 i=0

(19)

In (18), the temporal difference d; is found as

di = [g(xi—1,uim1)] — [%71&‘;‘ + z(xi; 0i-1) — %(xifl,em)]
(20)

Compute the cost at last stage g;
update the actual service rate {r, }

!

Update parameters 6 and v,
according to x,g, v, h(-, 0);

obtain new v and h(-, 6)

Event w is a departure?

Use greedy algorithm
to get decision u, based on
the new v and h(-, 0)

!

Schedule session u for
transmission

All queues are
empty?

F1GURE 4: Flow Chart of RLS.

Note that we use the linear approximation structure as (12),
which leads to Vg%(x,@) = f(x) in (18). We can see
the benefit of using the linear feature-based approximation
architecture which significantly reduced the complexity
of gradient computation in (18). Figure4 presents the
flow chart of the proposed Reinforcement Learning-based
Scheduling (RLS) algorithm, which summarizes the main
operations of the algorithm.

5. Performance Evaluation

In this section, we evaluate the performance of RLS by
network simulation. Two simulation experiments are carried
out. The first experiment is to investigate the convergence
performance of the parameter tuning procedure. The second
one is to compare the performance of RLS with two existing
packet scheduling algorithms: CSDP-WRR [17] and CIF-Q
[9].

5.1. Simulation Setup. We consider three classes of traffic
for typical BWA networks, including audio, video, and data
traffic flows. As listed in Table 1, there are five sessions. All
traffic flows are generated based on the models presented
in [23]. Note that the traffic models are especially proposed
for one of the BWA standards IEEE 802.16. In Table 1, the
link conditions of audio, video, and data-1 are supposed to
be stably full-rate, while link conditions of data-2 and data-
3 are assumed to suffer drastic variation. More specifically,
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TaBLE 1: Properties of the 5 sessions in the simulation.

Session number (i) 1 2 3 4 5
Traffic type Audio Video Data-1 Data-2 Data-3
Source model IDP 2IRP 41PP 4IPP 4IPP
Packet size 66 B 188 B 192B 192B 192B
Mean rate 22.4 kbps 0.19 Mbps 0.8 Mbps 0.8 Mbps 0.8 Mbps
Peak rate 64 kbps 0.4 Mbps 1.8 Mbps 1.8 Mbps 1.8 Mbps
Link variation None None None Pattern-1 Pattern-2

TaBLE 2: Channel state transition probabilities and steady-state probabilities (i € {2, 3,4,5}).

Parameter JUN! Dii-1 Diji+1 Pe6 IT = (71, 71, 702, T4, 75, TT6)
Error-free 1 — — (1,0,0,0,0,0)

Error pattern-1 0.92 0.40 0.40 0.50 (0.52,0.10,0.10,0.10,0.10,0.08)
Error pattern-2 0.70 0.30 0.30 0.70 (0.17,0.17,0.17,0.17,0.17,0.15)

link variability of data-2 and data-3 sessions is characterized
by a six-state Markov channel model [18, 19]. Transmission
rates of link states s; ~ s¢ are, respectively, 100, 80, 60,
40, 20, 0 percents of the full channel rate (2 Mbps). The
steady-state probability vector for error pattern-1 is I} =
(0.52,0.10,0.10,0.10,0.10,0.08), while the one for pattern-
2 is II, = (0.17,0.17,0.17,0.17,0.17,0.15). The channel
state transition probabilities of the data sessions are listed in
Table 2.

Generally, audio and video traffic has higher priority
than data traffic, due to the requirement of realtime trans-
mission. Thus, we set the priority factors of the audio and
video traffic flows as 1, that is, W, = 1, and the priority
factors of data traffic flows as 1072, that is, W3 45 = 1072
In the aspect of providing fair service, data traffic is usually
more sensitive than audio and video traffic. This is because
data traffic flows, such as FTP and e-mail, are generally
served in the mode of best effort (BE). There is no guarantee
how much service the system has to provide for these traffic
flows. Without consideration of fair service, multiple data
traffic flows in a same system may receive fairly different
amounts of service, due to the different wireless channel
conditions. Hence, we set larger fairness factors for the data
traffic flows. The fairness factors of audio and video traffic
are set as 1, that is, ny15; = 1, and the fairness factors of data
traffic are set as 3, that is, n3 45, = 3.

5.2. Convergence of Parameter Tuning. The first experiment
investigates the convergence of RLS in the procedure of
parameter tuning. Since the optimal average cost is the most
important metric of the system performance, the variation of
v reflects the convergence of the learning algorithm. We run
the simulation and record the value of . The step size of the
learning algorithm should be set before the simulation. As
mentioned in Section 4, the setting of step size parameters
y; and #; should satisty the conditions of (19). One efficient
way to determine these parameters is to set the value of
step size roughly inversely proportional to the stage number
(or running time) [22]. Let yfﬂ’k represent the step size with

Approximate optimal average cost v*

0 100 200 300 400 500 600 700 800

Simulation time (s)

FiGURE 5: Curve of ¥ under large step size parameters.

respect to feature component &, at stage i. We set

1
— ifme {1,2}, ke {l,2,...,K},
Treyi0 TmeE b2 ket s
))m,k: 10
— if , 4,51, 1,2,...,K
1+ 6/10 if me {3,4,5}, ke { }

(21)

and the step size with the approximate optimal average cost
V at stage i:

0.3

= 10 (22)

After running for 800 seconds, we record the variation of ¥
and plot as curve in Figure 5.

It is observed that RLS converges very fast in the
procedure of parameter tuning. The approximate optimal
average cost v has reached a relatively stable value after
100 seconds. Although v keeps varying as time goes by, the
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FiGure 6: Curve of ¥ under small step size parameters.

fluctuation is still in an acceptable range. It is clear that the
learning algorithm has converged. For comparison, we also
choose another group of step size parameters. We set

0.1 )
| Treae et kel LK,
ym,k= 1

Trio fme 345 ke 2, K,
(23)
0.1
1T 610° 24
= /10 (24)

where we can see that the step size parameters yin’k s in (23)
are 1/10 of the ones in (21), and parameters #;’s in (24)
are 1/3 of the ones in (22). The second group of step size
parameters is much smaller than the first group. The resulted
curve of ¥ under the second group of step size parameters is
plotted in Figure 6.

We observe in Figure 6 that RLS converges at a smaller
speed than in the situation of Figure 5. It takes about 300
seconds for the scheduler to regulate the parameters and
reach a stable approximate optimal average cost v. But the
variation of the value of V in Figure 6 is much more moderate
than that in Figure 5. These results indicate that the smaller
the step size parameters, the slower the convergence speed,
but the stabler the system performance. The selection of
step size parameters y,,,’s and 7/’s depends on the actual
network conditions. The scheduler should not only provide
a sufficiently stable performance but also be fast reactive to
follow the variability of outside environment.

5.3. Scheduling Performance. In the second experiment, we
examine the performance of RLS in the aspects of bandwidth
utilization, QoS guarantee, and fairness. We compare RLS
with two existing scheduling algorithms CSDP-WRR [17]
and CIF-Q [9]. CSDP-WRR is a combination of CSDP
mechanism and Weighted Round Robin (WRR) scheduling
algorithm, which has been demonstrated to be simple,
robust, and effective [17]. The major feature of CIF-Q lies

Audio
1
Video
]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Average delay (ms)

(a) Average delay of realtime sessions

Audio
Video

0 0.005 0.01 0.015 0.02 0.025

Maximum delay (s)

[ RLS
3 CIF-Q
EEE CSDP-WRR

(b) Maximum delay of realtime sessions

F1GURE 7: Comparison on delay of realtime sessions.

in the fairness it provides. CIF-Q integrates the well-known
CIF-property, which takes into account both long-term
and short-term fairness [9]. The simulation lasts for 1200
seconds. During the simulation time, channel errors occur
only in the first 400 seconds. The remaining error-free time
is to demonstrate the long-term fairness property of RLS.
In the simulation, we keep track the delay, throughput, and
service amount of the traffic flows. The results are reported
in Figures 7, 8, and 9.

We know from Figures 7(a) and 7(b) that both the
average and maximum delays of audio and video sessions
in RLS are clearly smaller than in either of the other two
algorithms. In other words, RLS is able to provide better QoS
guarantee for realtime traffic flows. It should be noticed that
the satisfying QoS guarantee for audio and video sessions in
RLS is not obtained by sacrificing the throughput of the other
sessions. This is validated by Figure 8.

Figure 8 consists of three subfigures. Figures 8(a) and
8(b), respectively, report the throughput of data traffic
flows in the first 400 seconds and the entire 1200 seconds.
Figure 8(c) reports the total throughput of all the three
data traffic flows. In Figure 8(a), compared to the other
two algorithms, RLS significantly improves the throughput
of data-1 and data-2, except that the throughput of data-
3 in CIF-Q is a little more than that in RLS. But we know
from Figure 8(c) that the total throughput of the three data
traffic flows in RLS is much more than that in the other two
algorithms. More specifically, in the first 400 seconds, the
total throughput of data traffic is 1.62 Mbps, which is 37%
higher than that in CSDP-WRR (1.19 Mbps) and 33% higher
than that in CIF-Q (1.22 Mbps). In the entire 1200 seconds
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Figure 8: Comparison on throughput of nonrealtime sessions.

of simulation, the overall throughput of data traffic in RLS
is 1.77 Mbps, which is 13% higher than that in CSDP-WRR
(1.57 Mbps) and 9% higher than that in CIF-Q (1.63 Mbps).
Results of Figure 8 indicate that RLS has a considerable
improvement in bandwidth utilization.

To demonstrate the short-term and long-term fairness
properties of RLS, we record the service received by the data
sessions over the whole simulation time in Figure 9. It is
observed that the curves diverge moderately in the error-
prone period and then converge gradually in the error-free
period. We give interpretation as follows. To promise short-
term fairness, RLS does not force the leading sessions to give
up all their leads but just makes them degrade gracefully. So
data-1 session receives relatively more service in the first 400
seconds. However, when the system becomes error-free, the
lagging sessions will gradually get back their lags, and finally
all data sessions obtain same throughput. This observation
validates that RLS offers both short-term and long-term
fairness guarantee in the sense that it provides short-term
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F1GURE 10: Curve of ¥ in the second experiment.

fairness for error-free sessions and long-term fairness for
error-prone sessions. This exactly coincides with the spirit of
CIF properties introduced in [9].

Finally, we plot in Figure 10 the curve of approximate
optimal average cost ¥ in the second experiment. Note that
we use the group of small step size parameters defined by (23)
and (24). As we set in the simulation, the network conditions
are different in the first 400 seconds and the last 800 seconds
(the channel models of data-2 and data-3 change at the
400th second). It is observed in Figure 10 that RLS, however,
could still guarantee the convergence through online learning
under the actual network conditions. Benefiting from its in-
built learning ability, RLS could work adaptively according to
the outside environment.
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6. Conclusion

In this paper, we address the problem of packet scheduling in
BWA networks. We cast the problem into the framework of
semi-Markov Decision Process and solve it by the method of
reinforcement learning. The proposed scheduling algorithm
RLS simultaneously considers three performance issues in
BWA networks: (i) QoS differentiation and guarantee, (ii)
bandwidth utilization, and (iii) fair service. Being different
from traditional scheduling algorithms, RLS is learning-
based. It has the potential to learn from outside environment
and adaptively regulate its scheduling policy. Simulation
experiments are carried out to evaluate the performance of
RLS. The numeric results indicate that RLS outperforms
two existing scheduling algorithms in the sense that it
provides better QoS for realtime traffic flows and meanwhile
significantly improves the throughput of nonrealtime ones.
Moreover, RLS achieves both long-term and short-term
fairness.

Appendix

Proof of Theorem 1

Suppose that the total bandwidth of the system is y. Let
€n denote the proportion of bandwidth allocated by the
scheduler to session m under the Fluid limit, that is, R,, =
€mY. The scheduling problem could be formulated as a linear
programming:

) M 7w
min >
€€t =1€mY A 1)
M (A.
s.t. > €m=1.
m=1

By introducing a positive Lagrangian multiplier A, (A.1) can
be rewritten as the following unconstrained optimization
problem:

M A~ M
. T'm
min L(€1,€,...,€0) = — = €n—11.
Py ( 1, €2, ) M) mZ:1€m (mz_“l m )

(A.2)

For session m with nonzero service proportion €,, we let

OL(€1,€2,...,€Em)/0€y = 0 and get
€m = ;T*; (A.3)

By substituting (A.3) into the constraint ZI,\,L €m = 1, we
have

—2
(X1 Vm)
Y
The proportion of service for session m is finally given by
A
m = M —.
D]

1= (A.4)

(A.5)
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