
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 379142, 4 pages
doi:10.1155/2009/379142

Research Article
Generalized Lazarevic’s Inequality and
Its Applications—Part II

Ling Zhu

Department of Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China

Correspondence should be addressed to Ling Zhu, zhuling0571@163.com

Received 21 July 2009; Accepted 30 November 2009

Recommended by Andrea Laforgia

A generalized Lazarevic’s inequality is established. The applications of this generalized Lazarevic’s
inequality give some new lower bounds for logarithmic mean.

Copyright q 2009 Ling Zhu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Lazarević [1] (or see Mitrinović [2]) gives us the following result.

Theorem 1.1. Let x /= 0. Then

(
sinhx

x

)q

> coshx (1.1)

holds if and only if q ≥ 3.

Recently, the author of this paper gives a new proof of the inequality (1.1) in [3] and
extends the inequality (1.1) to the following result in [4].

Theorem 1.2. Let p > 0, and x ∈ (0,+∞). Then

(
sinhx

x

)q

>
sinhx

x
+
p

2

(
coshx − sinhx

x

)
=

2 − p

2
sinhx

x
+
p

2
coshx (1.2)

holds if and only if q ≥ p + 1.
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Moreover, the inequality (1.1) can be extended as follows.

Theorem 1.3. Let p > 1 or p ≤ 8/15, and x ∈ (0,+∞). Then

(
sinhx

x

)q

> p +
(
1 − p

)
coshx (1.3)

holds if and only if q ≥ 3(1 − p).

2. Three Lemmas

Lemma 2.1 (see [5–8]). Let f, g : [a, b] → R be two continuous functions which are differentiable
on (a, b). Further, let g ′ /= 0 on (a, b). If f ′/g ′ is increasing (or decreasing) on (a, b), then the functions
(f(x) − f(b))/(g(x) − g(b)) and (f(x) − f(a))/(g(x) − g(a)) are also increasing (or decreasing)
on (a, b).

Lemma 2.2 (see [9–11]). Let an and bn (n = 0, 1, 2, . . .) be real numbers, and let the power series
A(x) =

∑∞
n=0 anx

n and B(x) =
∑∞

n=0 bnx
n be convergent for |x| < R. If bn > 0 for n = 0, 1, 2, . . . ,

and if an/bn is strictly increasing (or decreasing) for n = 0, 1, 2, . . . , then the function A(x)/B(x) is
strictly increasing (or decreasing) on (0, R).

Lemma 2.3. Let p < 1 and x > 0. Then the function [p + (1 − p) coshx]1/(1−p) strictly increases as
p increases.

3. A Concise Proof of Theorem 1.3

Let F(x) = log[p + (1 − p) coshx]/ log(sinhx/x) = f1(x)/g1(x), where f1(x) = log[p + (1 −
p) coshx], and g1(x) = log(sinhx/x). Then

f ′
1(x)

g ′
1(x)

=
(
1 − p

)f2(x)
g2(x)

, (3.1)

where f2(x) = x2 sinhx, and g2(x) = (x coshx − sinhx)[p + (1 − p) coshx].
We compute

f ′
2(x)

g ′
2(x)

=
sinhx + 2x coshx

x
[
p +

(
1 − p

)
coshx

]
+
(
1 − p

)
(x coshx − sinhx)

=
A(x)
B(x)

, (3.2)

where

A(x) = sinhx + 2x coshx = 3x +
∞∑
n=1

anx
2n+1,

B(x) = x
[
p +

(
1 − p

)
coshx

]
+
(
1 − p

)
(x coshx − sinhx) = x +

∞∑
n=1

bnx
2n+1,

(3.3)

and an = (4n + 3)/(2n + 1)!, bn = (1 − p)((4n + 1)/(2n + 1)!).
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We obtain results in two cases.
(a) Let p ≤ 8/15, then p < 1 and bn > 0. Let cn = an/bn for n = 0, 1, 2, . . . , we have that

c0 = 3 ≥ 7/(5(1−p)) = c1 and cn = (1/(1−p))((4n+3)/(4n+1)) = (1/(1−p))(2+(1/(4n+1)))
is decreasing for n = 1, 2, . . . ; so cn is decreasing for n = 0, 1, . . . and A(x)/B(x) is decreasing
on (0,+∞) by Lemma 2.2. Hence f ′

2(x)/g
′
2(x) = A(x)/B(x) is decreasing on (0,+∞) and

f ′
1(x)/g

′
1(x) = (1 − p)(f2(x)/g2(x)) = (1 − p)((f2(x) − f2(0))/(g2(x) − g2(0))) is decreasing on

(0,+∞) by Lemma 2.1. ThusQ(x) = (f1(x)−f1(0+))/(g1(x)−g1(0+)) is decreasing on (0,+∞)
by Lemma 2.1.

(b) Let p > 1, then p > 8/15. Let dn = 1/cn for n = 0, 1, 2, . . . , we have that d0 =
1/3 > 7/(5(1 − p)) = d1 and dn = (1 − p)(1 − 2/(4n + 1)) is decreasing for n = 1, 2, . . . ; so dn

is decreasing for n = 0, 1, . . . and B(x)/A(x) is decreasing on (0,+∞) by Lemma 2.2. Hence
f ′
2(x)/g

′
2(x) = A(x)/B(x) is increasing on (0,+∞) and f ′

1(x)/g
′
1(x) = (1 − p)(f2(x)/g2(x)) =

(1 − p)((f2(x) − f2(0))/(g2(x) − g2(0))) is decreasing on (0,+∞) by Lemma 2.1. Thus Q(x) =
(f1(x) − f1(0+))/(g1(x) − g1(0+)) is decreasing on (0,+∞) by Lemma 2.1.

Since

lim
x→ 0+

Q(x) = lim
x→ 0+

f1(x)
g1(x)

= lim
x→ 0+

f ′
1(x)

g ′
1(x)

= lim
x→ 0+

(
1 − p

)f2(x)
g2(x)

= lim
x→ 0+

(
1 − p

)f ′
2(x)

g ′
2(x)

= lim
x→ 0+

(
1 − p

)A(x)
B(x)

=
(
1 − p

)a0

b0
= 3

(
1 − p

)
,

(3.4)

the proof of Theorem 1.3 is complete.

4. Some New Lower Bounds for Logarithmic Mean

Assuming that x and y are two different positive numbers, let A(x, y), G(x, y), and L(x, y)
be the arithmetic, geometric, and logarithmic means, respectively. It is well known that (see
[2, 12–16])

G < L < A. (4.1)

Ostle and Terwilliger [17] (or see Leach and Sholander [18], Zhu [16]) gave bounds for
L(x, y) in terms of G(x, y) and A(x, y) as follows:

L > A1/3G2/3. (4.2)

Without loss of generality, let 0 < x < y and t = (1/2) log(y/x), then t > 0. Replacing x
with t in (1.3), we obtain the following new results for three classical means.

Theorem 4.1. Let p > 1 or p ≤ 8/15, and x and y be two positive numbers such that x /=y. Then

L >

[
p +

(
1 − p

)A
G

]1/3(1−p)
G (4.3)

holds if and only if q ≥ 3(1 − p).
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Now letting p in inequality (4.3) be 8/15, 1/2, 1/3, and 0, respectively, by Theorem 4.1
and Lemma 2.3 we have the following inequalities:

L >

(
8G + 7A

15

)5/7

G2/7 >

(
G +A

2

)2/3

G1/3 >

(
G + 2A

3

)1/2

G1/2 > A1/3G2/3. (4.4)
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