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A multiple-input multiple-output (MIMO) wireless channel formed by antenna arrays at the transmitter and at the receiver offers
high capacity and significant diversity. Linear precoding may be used, along with spatial multiplexing (SM) or space-time block
coding (STBC), to realize these gains with low-complexity receivers. In the absence of perfect channel knowledge at the transmitter,
the precoding matrices may be quantized at the receiver and informed to the transmitter using a feedback channel, constituting
a limited feedback system. This can possibly lead to a performance degradation, both in terms of diversity and array gain, due
to the mismatch between the quantized precoder and the downlink channel. In this paper, it is proven that if the feedback per
channel realization is greater than a threshold, then there is no loss of diversity due to quantization. The threshold is completely
determined by the number of transmit antennas and the number of transmitted symbol streams. This result applies to both SM
and STBC with unitary precoding and confirms some conjectures made about antenna subset selection with linear receivers. A
closed form characterization of the loss in SNR (transmit array gain) due to precoder quantization is presented that applies to a
precoded orthogonal STBC system and generalizes earlier results for single-stream beamforming.
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1. INTRODUCTION

Linear precoding uses channel state information (CSI) at the
transmitter to provide high data rates and improved diversity
with low complexity receivers in multiple-input multiple-
output (MIMO) wireless channels [1, 2]. The main idea of
linear precoding is to customize the array of transmit signals
by premultiplication with a spatial precoding matrix [3–8].
While precoding can be performed based on instantaneous
CSI [9–19] or statistical CSI [20–23], the benefits are more
in the instantaneous case assuming the CSI is accurate at the
transmitter. Unfortunately, the system performance in terms
of diversity and signal-to-noise ratio (SNR) depends cru-
cially on the accuracy of CSI at the transmitter. In a limited
feedback system, precoder information is quantized at the re-
ceiver and sent to the transmitter via a feedback channel [9–
17]. In such a system quantization errors significantly impact
the system performance and this motivates the present inves-
tigation.

Prior work

In this paper, we consider an important special case of pre-
coding called unitary precoding that forms the basis of a lim-
ited feedback system. In this case, the precoder matrix has
orthonormal columns, which incurs a small loss versus the
nonunitary case especially in dense scattering environments
(unitary precoding allocates power uniformly to all the se-
lected eigenmodes and can be thought of as a generalization
to antenna subset selection [24–27]) [28]. There have been
several efforts at characterizing the diversity performance
(measured in terms of the gain asymptotic slope of the av-
erage probability of error in Rayleigh fading channels versus
SISO systems) of different limited feedback MIMO systems.
The diversity of orthogonal space-time block coding with
transmit antenna subset selection is analyzed in [27]. Spatial
multiplexing systems with receive antenna selection with a
capacity metric were considered in [29] and shown to achieve
full diversity. In the case of a spatial multiplexing system
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Figure 1: A quantized precoded MIMO system.

employing transmit antenna selection, conjectures on diver-
sity order based on experimental evidence were presented in
[30]. These conjectures were subsequently proved and gener-
alized in [31]. In the special case of single-stream beamform-
ing, the diversity order with limited feedback precoding was
studied in [32] and a necessary and sufficient condition on
the feedback rate for preserving full diversity is presented. A
sufficient condition on the feedback rate for preserving diver-
sity was derived for precoded orthogonal space-time block
coding systems in [11, 33]. In the more complicated cases of
limited feedback precoding in spatial multiplexing systems,
experimental results were presented in [33, 34].

In summary, the diversity order for a quantized precoded
spatial multiplexing system with linear receivers or a space-
time block coding system (including nonorthogonal) is not
characterized. This paper fills this gap by introducing an
analysis approach based on matrix algebra and utilizing re-
sults from differential geometry. A sufficient condition on
the number of feedback bits required per channel realization
is derived that will guarantee full-CSI diversity for general
limited feedback MIMO systems, which includes both spa-
tial multiplexing as well as space-time block coding systems.
The results for transmit antenna subset selection fall out as a
special case.

An important implication of unitary precoding is the
transmit array gain which is also affected due to precoder
quantization. An analytical characterization of the loss in ar-
ray gain due to quantization for single-stream beamforming
in MISO systems was presented in [9, 16, 35] and the results
for MIMO systems were presented by Mondal and Heath
[36]. Analogous results, however, are not available for mul-
tistream transmission schemes. This paper takes a step for-
ward by providing a closed-form characterization of the loss
in array gain (or SNR of the received symbol) in the case of
a precoded orthogonal space-time block coded system. This
result simplifies to the beamforming scenario [9, 16, 35, 36]
and naturally holds for antenna subset selection.

Detailed discussion of contributions

A pictorial description of a limited feedback system as con-
sidered in this paper is provided in Figure 1. A fixed, pre-
determined set of unitary precoding matrices is known to
the transmitter and to the receiver. The receiver, for ev-
ery instance of estimated downlink channel information,
selects an element of the set and sends the index of the
selected precoder to the transmitter using B bits of feed-

back. This precoder element is subsequently used by the
transmitter for precoding. For analytic tractability we con-
sider an uncorrelated Rayleigh flat-fading MIMO channel
and we let Mt, Mr , and Ms denote the number of trans-
mit antennas, receive antennas, and symbol streams trans-
mitted, respectively. The uncorrelated Rayleigh channel is
commonly used in rate distortion analysis for limited feed-
back systems [9, 12, 16, 35], including correlation along the
lines of recent work is an interesting topic for future re-
search [32]. Because discussions of diversity and array gain
depend on transmitter and receiver structure, in this pa-
per we consider explicitly two classes of systems—quantized
precoded spatial-multiplexing (QPSM) and quantized pre-
coded full-rank space-time block coding (QPSTBC) sys-
tems. A subclass of QPSTBC systems is due to orthogonal
STBCs and is termed as QPOSTBC systems. The diversity
analysis applies to both QPSM and QPSTBC systems, while
the SNR result only applies to QPOSTBC systems. The de-
tailed contributions of this paper may be summarized as
follows.

(i) Diversity analysis: the diversity result applies to QP-
STBC systems and to QPSM systems with zero-forcing
(ZF) or minimum-mean-squared-error (MMSE) re-
ceivers. Leveraging a mathematical result due to Clark
and Shekhtman [37] it is deduced that almost all
(meaning with probability 1) sets of quantized precod-
ing matrices, chosen at random, will guarantee no loss
in diversity due to quantization if 2B ≥Ms(Mt−Ms) +
1. This is remarkable in the light of the fact that an-
tenna subset selection known to preserve diversity in

certain cases implies a feedback of log2(
Mt

Ms
) bits which

is an upper bound to log2(Ms(Mt −Ms) + 1). This also
means that for sufficiently large feedback, the design
of the set of quantized precoders is irrelevant from the
point of view of diversity.

(ii) SNR analysis: for a QPOSTBC system, the loss in SNR
due to quantization reduces as ∼2−B/Ms(Mt−Ms) with
increasing feedback bits B. Thus, most of the chan-
nel gain is obtained at low values of feedback rate
(bits per channel realization) and increasing feedback
further leads to insignificant gains. Our characteriza-
tion also shows that increasing Mr provides robustness
to quantization error. Single-stream beamforming or
maximum-ratio transmission and combining (MRT-
MRC) results of [36] fall out as a special case of this
result.
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Figure 2: Discrete-time quantized precoded MIMO spatial multiplexing system.

This paper is organized as follows. The system model is
described and the assumptions are mentioned in Section 2.
The diversity of such systems and the effective channel gain
are analyzed in Sections 3 and 4, respectively, before the re-
sults are summarized in Section 5.

Notation. Matrices are in bold capitals, vectors are in bold
lower case. We use H to denote conjugate transpose, ‖·‖F
to denote the Frobenius norm, ‖·‖2 to denote matrix 2-
norm, [A]i j to denote the (i, j)th element of the matrix A,

−1 to denote matrix inverse,
d= to denote equality in dis-

tribution, I to denote the identity matrix and, E{·} to de-
note expectation. We also denote the trace of A by tr(A), the
rank of A by rank(A), a diagonal matrix with λ1, λ2, . . . , λn
as its diagonal entries starting with the top left element
by diag(λ1, λ2, . . . , λn). λmin(A) denotes the minimum eigen-
value of the matrix A. π ⊕ ω denotes the direct sum of the
subspaces π and ω of the space χ meaning χ = π + ω and
π ∩ ω = {0}. CN (0,N0) denote a complex normal distri-
bution with zero mean and N0 variance with i.i.d. real and
imaginary parts.

2. SYSTEMOVERVIEW

In this section, a precoded spatial multiplexing system and
a precoded space-time block coding system, both with pre-
coder quantization and feedback, are described. Then a brief
motivation is provided for unitary precoding assuming per-
fect CSI at the transmitter. Subsequently limited feedback
precoding is introduced and formulated as a quantization
problem. Finally the main assumptions of the paper are sum-
marized.

2.1. Quantized precoded spatial multiplexing
system (QPSM)

As shown in Figure 2, in a spatial multiplexing system a sin-
gle data stream is modulated before being demultiplexed
into ms symbol streams. This produces a symbol vector s of
length ms for a symbol period. We assume that E{ssH} = I.
The symbol vector s is spread over Mt antennas by mul-
tiplying it with an Mt × Ms precoding matrix F, where
Ms = ms. This process of linear precoding produces an
Mt length vector Fs that is transmitted using Mt antennas.
Then the discrete-time equivalent signal model for one sym-

bol period at baseband with perfect synchronization can be
written as

y =
√

Es
Ms

HFs + n, (1)

where y is the received signal vector at the Mr received an-
tennas, Es is the energy for one symbol period, H is a ma-
trix with complex entries that represents the channel transfer
function, and n represents an additive white Gaussian noise
(AWGN) vector. For a QPSM system we assume Mt > Ms,
Mr ≥ Ms. In this paper we only concentrate on ZF and
MMSE receivers that enable low-complexity implementa-
tion.

We also consider a fixed predetermined set of precod-
ing matrices F = {F1,F2, . . . ,FN} that is known to both the
transmitter and the receiver. Depending on the channel real-
ization H, the receiver selects an element of F and informs
the transmitter of the selection through a feedback link. Note
that �log2N� bits are sufficient to identify a precoding matrix
in F .

2.2. Quantized precoded STBC system (QPSTBC)

The second class of systems under consideration uses pre-
coding along with space-time block coding as illustrated in
Figure 3. At the transmitter, after the bit stream is modu-
lated using a constellation of symbols, a block of ms symbols
s1, s2, . . . , sms is mapped to construct a space-time code ma-
trix C. The code matrix C is of dimension Ms × T and this
code is premultiplied by an Mt ×Ms precoding matrix F, re-
sulting in a matrix FC. Thus FC spreads over Mt antennas
and T symbol periods. The channel matrix H is assumed to
be constant for the T symbol periods and changes randomly
in the next symbol period. The discrete-time baseband signal
model for T symbol periods may be written as

Y =
√

Es
Ms

HFC + N, (2)

where Y is the received signal at the Mr receive antennas over
T symbol periods, Es is the energy over one symbol period,
and N is the AWGN at the receiver for T symbol periods.
We assume Mt > Ms, but there is no restriction on Mr . As
before, we consider a set of precoding matrices F known to
both the transmitter and the receiver. The receiver chooses an
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Figure 3: Discrete-time MIMO system with quantized precoded STBC.

element of F depending on H and sends this information to
the transmitter using a feedback link. As mentioned before,
we restrict ourselves to full-rank STBCs for which,

λmin

(
Ei jEHi j

)
> 0 ∀i /= j, (3)

where Ei j = Ci − C j is the codeword difference matrix be-
tween the ith and the jth block code. Full-rank STBCs en-
compass a wide variety of codes differing in rate and com-
plexity, including orthogonal STBCs [38, 39], STBCs from
division algebras [40], space-time group codes [41], and qua-
siorthogonal STBCs modified using rotation [42] or power-
allocation [43]. A special class of QPSTBC systems is charac-
terized by the property

CCH =
{ms∑
i=1

∣∣si∣∣2
}
I, (4)

where C is a space-time code matrix. This implies that C is an
orthogonal STBC [38, 39] and such systems form a subclass
termed as QPOSTBC systems. In our analysis, an ML receiver
is assumed for all QPSTBC systems.

Precoding for the special case of Ms = 1 represents beam-
forming where a single symbol is spread over Mt antennas by
the beamforming vector. The ML receiver, in this case, be-
comes a maximum-ratio combiner (MRC).

2.3. Limited feedback unitary precoding

In the following sections, it will be of interest to define a
perfect-CSI precoding matrix (or a precoding matrix with
infinite feedback bits) as

F∞ = U, (5)

where HHH = UΣUH denote the SVD of HHH, Σ =
diag(λ1, λ2, . . . , λMt ), λ1 ≥ λ2 ≥ · · · ≥ λMt ≥ 0 are the or-
dered eigenvalues of HHH and U denotes the Mt ×Ms sub-
matrix of U with columns corresponding to λ1, λ2, . . . , λMs .
Thus FH∞F∞ = I such that F∞ is tall and unitary. (The term
unitary is used in a generic sense to represent matrices with
the property AHA = I where A can be either tall or square.)

At the receiver, corresponding to a channel realization
H, a precoding matrix is chosen from the set F . This selec-
tion may be described by a map Q such that Q(F∞) ∈ F ,
where F∞ is obtained from H using (5). The map Q may also
be visualized as a quantization process applied to the set of

all perfect-CSI precoding matrices. Then borrowing vector
quantization terminology, the map Q is a quantization func-
tion, F∞ is the source random matrix, F is a codebook, ele-
ments of F are codewords (or quantization levels), and the
cardinality of F is the number of quantization levels or the
quantization rate. This justifies the “Q” in QPSM and QP-
STBC systems. The quantization function Q is also referred
to as the precoder selection criterion in the literature and we
will use these terms interchangeably in this paper. It may be
noted that assuming a feedback of �log2N� per channel re-
alization H, the precoding matrix F in (1) and (2) becomes
an element of F chosen by a precoder selection criterion de-
scribed by F = Q(F∞).

Antenna subset selection at the transmitter may be con-
sidered as a special case of quantized precoding [24–27]. In
this case, the elements of F are submatrices of the Mt ×
Mt identity matrix. In particular, every combination of Ms

columns of the identity matrix forms an element of F and

thus card(F ) =
(
Mt

Ms

)
.

2.4. Assumptions

The assumptions in this paper are summarized as follows.
The elements of F are unitary implying FHi Fi = I for i =
1, 2, . . . ,N . The channel is uncorrelated Rayleigh fading and
the elements of H are distributed as i.i.d. CN (0, 1). The i.i.d.
assumption is typically used for the analysis of limited feed-
back systems [9, 12, 27, 31] mainly due to the tractable nature
of the eigenvalues and eigenvectors in this case. The elements
of n,N represents AWGN, are distributed as i.i.d. CN (0,N0).
The feedback link is assumed to be error-free and having
zero-delay, and we assume perfect channel knowledge at the
receiver.

3. SUFFICIENT CONDITION FOR NODIVERSITY LOSS

A concern for QPSM and QPSTBC systems is whether the
diversity order is reduced due to quantization. The objective
of this section is to provide a sufficient condition that will
guarantee no loss in diversity due to precoder quantization
for such systems.

As evidenced by simulation results it turns out (this will
be proved in the following) that the diversity order of QPSM
and QPSTBC systems does not change if, corresponding to
a given channel realization H, the precoding matrix F is
substituted by FQ, where Q is an arbitrary unitary matrix.
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This motivates the representation of the precoding matrix F
as a point on the complex Grassmann manifold which is in-
troduced in the next subsection. In the following we outline
a strategy for the proof and introduce the projection 2-norm
distance and the chordal distance as analysis tools. In the
course of the analysis, a special class of codebooks called cov-
ering codebooks is defined that satisfies a certain condition on
its covering radius (measured in terms of projection 2-norm
distance). It is proven that a covering codebook can guaran-
tee full-CSI diversity for both QPSM and QPSTBC systems
in Corollaries 1 and 2, respectively. These form the main re-
sults in this section of the paper. Finally, a connection be-
tween the covering radius characterization and the covering-
by-complements problem [37] is discovered that allows us to
identify the class of covering codebooks that can be employed
in real systems, thereby preserving full diversity.

3.1. The complex grassmannmanifold

First we provide an intuitive understanding of the com-
plex Grassmann manifold similar to [44]. The complex
Grassmann manifold denoted by Gn,p is the set of all p-
dimensional linear subspaces of Cn. An element in Gn,p is a
linear subspace and may be represented by an arbitrary basis
spanning the subspace. Given any n -by-p tall unitary matrix
(n > p), the subspace spanned by its columns forms an ele-
ment inGn,p. Corresponding to a given precoding matrix F of
dimensions Mt×Ms, we can associate an element ω ∈ GMt ,Ms

such that ω is the column space of F. We can explicitly write
this relation as ω(F) ∈ GMt ,Ms . Also since a rotation of the
basis does not change its span, ω(FQ) is the same element in
GMt ,Ms for all Ms-by-Ms unitary matrices Q. This models the
fact that the precoding matrices F and FQ provide the same
diversity irrespective of any Q.

3.2. Proof strategy

This subsection provides an intuitive sketch of the proof
ideas and not a rigorous treatment. In order to implement
a limited feedback system, a precoder selection criterion Q
needs to be in place. The choice of Q depends on the per-
formance metric (e.g., SNR, capacity) and system parame-
ters like the receiver type. The precoder selection criteria as-
sumed in this paper for different systems are denoted by Q∗

and mentioned in (14), (16), (17) and they target bit-error
rate as the system performance metric.

To prove the diversity results, as a mathematical tool, we
define another precoder selection criterion as

QP
(
F∞
) = arg min

Fk∈F
dP
(
F∞,Fk

)
, (6)

where dP(·, ·) is the projection 2-norm distance and is de-
fined as [44]

dP
(
F1,F2

) = ∥∥F1FH1 − F2FH2
∥∥

2, (7)

where F1 and F2 are two arbitrary precoding matrices of the
same dimensions. Observe that dP(F1,F2) = dP(F1Q1,F2Q2)
for arbitrary unitary matrices Q1, Q2, and thus intuitively

dP(·, ·) can be used to measure the distance between ω(F1)
and ω(F2) on GMt ,Ms . It turns out that the dP(·, ·) is a distance
measure in GMt ,Ms . The proofs leading up to the diversity re-
sults follow in two steps: (i) first, we assume that QP is used as
the precoder selection criterion and prove that the diversity
result is true for such a system; (ii) second, if Q∗ as defined
in (14), (16), (17) is used instead of QP , the diversity perfor-
mance of the system is identical or better, thus the result is
true for systems using Q∗. Note that in a real system, a pre-
coder will be chosen based on Q∗ and we prove our results
for such a system. The introduction of QP is a mathematical
tool and is not intended to be used in a real system.

Analogously for the SNR results, we introduce another
precoder selection criterion expressed as

QC
(
F∞
) = arg min

Fk∈F
dC
(
F∞,Fk

)
, (8)

where dC(·, ·) is the chordal distance [44]

dC
(
F1,F2

) = ∥∥F1FH1 − F2FH2
∥∥
F , (9)

where F1 and F2 are two arbitrary precoding matrices of the
same dimensions. dC(·, ·) is also a distance metric in GMt ,Ms .
The proofs for the SNR results in Section 4 follow the follow-
ing steps: (i) if QC is used as the precoder selection criterion,
then the SNR result is true; (ii) if Q∗ as defined in (18) is used
instead of QC , the SNR performance of the system is identi-
cal for sufficiently large number of bits of feedback. Again it
is worth mentioning that QC is introduced to aid analysis and
is not intended to be used in a real system. (The introduction
of dP(·, ·) and dC(·, ·) simplifies the proofs for diversity and
SNR respectively but we were unable to discover any funda-
mental reason behind this. It is mentioned in passing that
the distance measures dP(·, ·) and dC(·, ·) coincide in GMt ,1,
dP(·, ·) ≤ dC(·, ·) and dP(·, ·) ≈ dC(·, ·) when either is close
to zero.)

3.3. Covering codebook

The notion of a covering codebook is another mathemati-
cal aid. Covering codebooks define a subset of all possible
codebooks and we show later that a covering codebook along
with a precoder selection criterion Q∗ is sufficient to guaran-
tee full-CSI diversity. Note that, in a real system, a codebook
may be designed according to various criteria [33, 34]; but
according to a result in [37], it is deduced that any codebook,
with a certain cardinality or higher but chosen at random, is
a covering codebook with probability 1. In the following we
show that a covering radius characterization of a codebook
is equivalent to a covering-by-complements by the codebook
in a complex Grassmann manifold.

Theorem 1. The following are equivalent.

(i) The covering radius δ of F = {F1,F2, . . . ,FN} in
terms of the projection 2-norm distance is strictly less
than unity. This is expressed as

δ = sup
F

min
Fk

dP
(
F,Fk

)
< 1, (10)

where Fk ∈ F and F ∈ GMt ,Ms .
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(ii) The complements of the elements of F provide a cov-
ering for GMt ,Mt−Ms . This may be written as c(F1) ∪
c(F2) ∪ · · · ∪ c(FN ) = GMt ,Mt−Ms , where c(Fk) is
the complement of Fk defined as c(Fk) = {π : π ∈
GMt ,Mt−Ms ,π ⊕ ω(Fk) = CMt}.

Proof. See Appendix A.

Now let us define a codebook F with a covering radius
strictly less than unity (that satisfies (10)) as a covering code-
book. Since dP(F,Fk) takes values in [0, 1], it is intuitive that
a codebook, chosen at random, will be a covering codebook
with probability 1. This is proved in the work by Clark and
Shekhtman [37]. They have studied the problem of covering-
by-complements for vector spaces over algebraically closed
fields. Since C is algebraically closed, it follows from [37]
that the least cardinality of F to be a covering codebook is
Ms(Mt − Ms) + 1. It also follows from [37] that almost all
(in probability sense) codebooks of cardinality larger than
Ms(Mt −Ms) + 1 are covering codebooks.

3.4. Diversity of QPSMwith linear receivers

The diversity of a QPSM or a QPSTBC system is the slope
of the symbol-error-rate curve for asymptotically large SNRs
defined as a limit expressed by

d = − lim
Es/N0→∞

logPe
logEs/N0

, (11)

where Pe is the probability of symbol error. Here we consider
a QPSM system and focus on a ZF receiver. A ZF receive filter
given by

G(ZF) = [FHHHHF
]−1

FHHH (12)

is applied to the received signal vector y in (1) and the re-
sulting Ms data streams (corresponding to Gy) are indepen-
dently detected. The postprocessing SNR for the ith data
stream after receiving ZF filtering is given by [30]

SNR(ZF)
i (F) = Es

MsN0
[
FHHHHF

]−1
ii

. (13)

In the following we assume that the precoder selection crite-
rion Q∗ maximizes the minimum postprocessing substream
SNR. The following result summarizes the diversity charac-
teristics of such a QPSM-ZF system.

Corollary 1. Assume a QPSM system with a ZF receiver and
a precoder selection criterion given by

Q∗(F∞) = arg max
Fk∈F

min
i

SNR(ZF)
i

(
Fk
)
. (14)

Then if F is a covering codebook, the precoder Q∗(F∞) pro-
vides the same diversity as provided by F∞.

Proof. The proof of Corollary 1 proceeds in two stages as de-
scribed in Section 3.2. We prove that a precoder chosen from
F according to QP as in (6) provides the same diversity as

F∞. Then we show that Q∗ given by (14) provides a bet-
ter diversity performance than QP ; for a detailed proof see
Appendix B.

Corollary 1 states that a covering codebook preserves the
diversity order of a precoded spatial multiplexing system
with a ZF receiver. (It is worth mentioning that the diver-
sity order of a precoded spatial multiplexing system (using
F∞ as the precoder) with a ZF receiver is not available. As a
supplementary result we establish the diversity order of such
a system with the restriction Mr = Ms in Appendix E.) An
important example of a covering codebook is due to antenna
subset selection. It is straightforward to show the following.

Lemma1. The antenna selection codebook of cardinality
(
Mt

Ms

)
is a covering codebook.

Proof. See Appendix C.

It directly follows from Lemma 1 and Corollary 1 that
transmit antenna subset selection for spatial-multiplexing
systems with a ZF receiver can guarantee full-CSI diversity
[31]. An MMSE receive filter converges to a ZF filter for
high values of Es/N0 leading to the common understanding
that both receivers achieve the same diversity order. This im-
plies that the results presented above also apply to MMSE
receivers.

3.5. Diversity of QPSTBC systems

Recall that in a QPSTBC system (2) the difference codewords
Ei j = Ci−C j , i /= j are full rank. It is known that these systems
provide a diversity order of MtMr . QPOSTBC systems are a
subset of QPSTBC systems where Ei j = αI, i /= j, and α ∈ C.
The Chernoff bound for pairwise error probability (PEP) for
a QPSTBC system may be expressed as [45]

P
(
Ci −→ C j | H

) ≤ e−(Es/N0)‖HFEi j‖2
F , (15)

where P(Ci → C j | H) is the probability of detecting C j

given, Ci is transmitted and the channel realization being H.
From the expression of PEP (15) a precoder selection crite-
rion can be obtained that minimizes the Chernoff bound.
The following corollary assumes such a criterion and sum-
marizes the diversity characterization.

Corollary 2. Assume a QPSTBC system where the difference
codewords are full rank and the precoder selection criterion is
given by

Q∗(F∞) = arg max
Fk∈F

min
i, j

∥∥HFkEi j
∥∥2
F . (16)

Then if F is a covering codebook, the precoder Q∗(F∞) pro-
vides the same diversity as provided by F∞.

Proof. The proof of Corollary 2 proceeds in a way similar to
Corollary 1 by assuming a precoder selection criterion QP

given by (6) and then showing that Q∗ given by (16) pro-
vides a diversity performance better than that by QP ; for a
detailed proof see Appendix D.
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It may be noted that in the particular case of QPOSTBC,
it easily follows from (16) that the precoder selection crite-
rion simplifies to

Q∗(F∞) = arg max
Fk∈F

∥∥HFk
∥∥2
F , (17)

and from Corollary 2 it follows that a covering codebook
provides full diversity. The special case of QPOSTBC has also
been studied in [33] and a sufficient condition for preserv-
ing full diversity was derived. It follows from Corollary 2 and
Lemma 1that a full-rank STBC system with transmit antenna
subset selection is guaranteed to achieve full diversity.

3.6. Observations

It is proven that precoder selection criteria motivated by
postprocessing SNR and the Chernoff bound on PEP pre-
serve diversity order. This is a pleasing result for system de-
signers. Diversity can be guaranteed by a codebook chosen
at random of size determined only by Mt and Ms. The struc-
ture in the codebook or a particular element of a codebook
is irrelevant and thus codebook design algorithms need not
consider diversity as a criterion. It is also interesting to note
that diversity can be preserved with less feedback than that
for antenna subset selection.

4. CHARACTERIZATION OF SNR LOSS

The objective of this section is to quantify the loss in ex-
pected SNR of a received symbol due to quantization for a
QPOSTBC system as a function of the feedback bits B or for
convenience N= 2B.

4.1. Relation of SNR loss with chordal distortion

Following the system model in (2) and considering a
QPOSTBC system, the expected SNR for a received symbol
may be written as E{‖HF‖2

F}(Es/MsN0). This naturally leads
to a precoder selection criterion that maximizes the expected
SNR and is expressed by

Q∗(F∞) = arg max
Fk∈F

∥∥HFk
∥∥2
F . (18)

Notice that the expected SNR of a system using a precoder F
does not change if F is substituted by FQ, where Q is an ar-
bitrary square unitary matrix (of dimension Ms ×Ms). This
fact, similar to the case of diversity, justifies the representa-
tion of a precoding matrix on a complex Grassmann mani-
fold. Recall from Section 3.2 that the first step in the proof
is to consider a precoder selection criterion based on dC(·, ·)
given by (8). Then we have the following result.

Theorem 2. Assume a precoder selection criterion given by

QC
(
F∞
) = arg min

Fk∈F
dC
(
F∞,Fk

)
. (19)

Then

E
{∥∥HF∞

∥∥2
F

}−E{∥∥HQ
(
F∞
)∥∥2

F

}=(Λ−Λ)E
{
d2
C

(
F∞, Q

(
F∞
))}

,
(20)

where Λ=(1/Ms)
∑Ms

i=1E{λi}, Λ=(1/(Mt−Ms))
∑Mt

i=Ms+1E{λi},
where λ1 ≥ λ2 ≥ · · · λMt ≥ 0, are the ordered eigenvalues of
HHH.

Proof. See Appendix F.

An intuitive understanding of the final SNR result fol-
lows directly from Theorem 2. It follows from a result
in [46–48] that (8) defines a quantization problem with
a distortion function as d2

C(·, ·) and the expected distor-
tion, E{d2

C(F∞, Q(F∞))} ∼ N−1/Ms(Mt−Ms) in the asymptotic
regime of large N . Then it follows from (20) that the SNR
loss due to quantization also decays as ∼N−1/Ms(Mt−Ms). Now,
as part of the second step of the proof, it is easy to see that the
precoder selection criterion (18) results in an equal or better
SNR compared to (19). Thus with (18), the SNR loss due to
quantization decays at least as fast as ∼N−1/Ms(Mt−Ms). A pre-
cise set of arguments follows and our final result is presented
in the following subsection.

4.2. Asymptotic characterization of SNR

Theorem 2 shows that the loss in expected SNR due to pre-
coder quantization can be exactly captured by the expected
chordal distance between F∞ and its quantized version as-
suming a precoder selection criterion given by (8). Note that
E{d2

C(F∞, Q(F∞))} is the expected distortion for the quanti-
zation function Q defined by (8). This class of quantization
problems with chordal distortion has been studied in [46–
48]. In the particular case of an uncorrelated Rayleigh fading
channel the probability distribution of F∞ is known [49]. A
lower bound on the expected distortion E{d2(F∞, Q(F∞))}
is derived in [36] for large N which takes the form

E
{
d2(F∞, Q

(
F∞
))}

≥
(

Ms
(
Mt −Ms

)
Ms
(
Mt −Ms

)
+ 2

){
c
(
Mt,Ms

)
N
}−1/Ms(Mt−Ms),

(21)

where c(Mt,Ms) is a constant and may be expressed as
c(Mt,Ms) = (1/(MtMs −M2

s )!)
∏Ms

i=1((Mt − i)!/(Ms − i)!) for
Ms ≤ Mt/2 and c(Mt,Ms) = (1/(MtMs −M2

s )!)
∏Ms

i=1((Mt −
i)!/(Mt −Ms− i)!) otherwise. Thus for large N and with pre-
coder selection criterion given by (8) we can write

E
{∥∥HQ

(
F∞
)∥∥2

F

} ≤ E
{∥∥HF∞

∥∥2
F

}− KN−1/Ms(Mt−Ms),
(22)

where K is independent of N and may be obtained from
(20) and (21). It is also known from quantization theory
[47, 50] that there exits a sequence of codebooks of cardi-
nality 1, 2, . . . ,N ,N + 1, . . . such that

lim
N→∞

E
{
d2
C

(
F∞, Q

(
F∞
))}

= 0 =⇒ lim
N→∞

E
{∥∥HQ

(
F∞
)∥∥2

F

} = E
{∥∥HF∞

∥∥2
F

}
.

(23)

It directly follows from (23) that for sufficiently large N , the
left-hand side and the right-hand side of (22) is contained
within a ball of radius ε > 0.
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It is easy to observe that the precoder selection criterion
given by (8), in general, does not maximize E{‖HQ(F∞)‖2

F}.
On the other hand, a precoder selection criterion given by

Q
(
F∞
) = arg max

Fk∈F

∥∥HFk
∥∥2
F (24)

maximizes E{‖HQ(F∞)‖2
F}. It is easy to see that for any given

codebook F , we have

E
{∥∥HQ

(
F∞
)∥∥2

F

} ≤ E
{∥∥HQ

(
F∞
)∥∥2

F

} ≤ E
{∥∥HF∞

∥∥2
F

}
;
(25)

and using the same sequence of codebooks as before, we have
from (23) and (25)

lim
N→∞

E
{∥∥HQ

(
F∞
)∥∥} = E

{∥∥HF∞
∥∥}. (26)

It follows from (22), (23), and (26) that for sufficiently large
N ,

sup
F : card(F )=N

E
{∥∥HQ

(
F∞
)∥∥}

≈ E
{∥∥HF∞

∥∥2
F

}− KN−1/Ms(Mt−Ms),
(27)

where the approximation in (27) means that the left-hand
side and the right-hand side can be contained in a ball of
radius ε > 0.

4.3. Special case ofMRT-MRC

In the special case of single-stream beamforming with Ms =
1, F∞ reduces to maximum-ratio transmission (MRT). Con-
sidering a maximum-ratio combining (MRC) receiver, the
loss in expected SNR of the received symbol due to quan-
tization of the beamformer F∞ may be expressed as ΔSNR =
E{‖HF∞‖2

F} − supF : card(F )=NE{‖HQ(F∞)‖2
F}. The approxi-

mation (22) simplifies to the form

ΔSNR ≈ (E{λ1
}−Mr

)
N−1/(Mt−1). (28)

This particular result has also been derived earlier by Mondal
and Heath [36].

4.4. Experimental results

The utility of the approximation (22) is validated by sim-
ulations. A 4 × 4 QPOSTBC MIMO system is considered
and precoding with Ms = 1, 2 is simulated. In both cases,
the codebooks are designed using the FFT-based search al-
gorithm proposed in [51]. The precoder selection criterion
is given by (24) and E{‖HQ(F∞)‖2

F} is plotted in dB as a
function of log2N in Figure 4. The experimental results show
that the approximation in (27) is reasonably accurate even at
small values of N and provides a practical characterization of
performance.

4.5. Observations

To better understand the result in (27), we provide an anal-
ogous result from vector quantization theory [52, 53]. Con-
sider a D-dimensional (complex dimension) random vector
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Ms = 1, analytical
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Ms = 2, analytical
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Figure 4: The expected SNR, 10 log10(E{‖HQ(F∞)‖2
F}), is plotted

against the number of bits used for quantization. The simulation re-
sults are compared against the closed-form approximation in (27).
The system parameters are Mt = 4, Mr = 4, and the perfect CSI case
meaning E{‖HF∞‖2

F} is also plotted for comparison.

and let every instance of the vector be quantized indepen-
dently with B bits. Then the average error due to quantiza-
tion measured in terms of square-Euclidean distance follows
∼2−B/D. The loss in expected SNR from (27) may be written
as ∼2−B/Ms(Mt−Ms) where B = log2N represents the number
of quantization bits used for every instance of the precoding
matrix. Comparing the two results, it appears that although
the precoding matrices are of complex dimension MtMs, the
dimension of the space that is getting quantized is much
smaller, and of dimension Ms(Mt − Ms). In fact, it can be
shown that if the performance metric is unitarily invariant,
the precoding matrices are unitary and the elements of F are
also unitary, then the precoding matrices can be mapped to a
bounded space of dimension Ms(Mt −Ms), and then equiva-
lently quantized. (The space of dimension Ms(Mt−Ms) is the
complex Grassmann manifold and this equivalent formula-
tion of quantization is available in [47, 54].) The reduction
in dimension (as well as the bounded nature of the space)
implies that we are quantizing a much smaller region (com-
pared to CMtMs) which is the precise reason why the loss in
performance due to quantization is surprisingly small. This
also justifies the quantized precoding matrices being unitary.

The loss in expected SNR reduces exponentially with the
number of feedback bits B. Thus, most of the gains in chan-
nel power is obtained at low values of feedback rates and
increasing feedback further leads to insignificant gains (also
evident from Figure 4). It may be noted from (20) that the
loss in expected SNR depends on the spread of the expected
eigenvalues. The number of receive antennas Mr only affects
the factor (Λ − Λ) in (20). It is observed from experiments
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that this factor decreases with increasing Mr and, thus, the
loss in expected SNR also reduces for a fixed N .

5. CONCLUSIONS

In this paper a precoded spatial multiplexing system using a
ZF or MMSE receiver and a precoded space-time block cod-
ing system are investigated. The focus was on precoding ma-
trices that are unitary and quantized using a codebook of ma-
trices. The main result states that there is no loss in diversity
due to quantization as long as the cardinality of the codebook
is above a certain threshold (determined only by the num-
ber of transmit antennas and the number of data streams)
irrespective of the codebook structure. In precoded OSTBC
systems, the loss in SNR due to quantization reduces expo-
nentially with the number of feedback bits. Thus increasing
the number of feedback bits beyond a certain threshold pro-
duces diminishing returns.

In this analysis, we have assumed perfect channel knowl-
edge at the receiver and considered an uncorrelated Rayleigh
fading channel. Performance analysis incorporating channel
estimation errors and more general channel models is a pos-
sible direction of future research.

APPENDICES

A. PROOF OF THEOREM 1

In this proof we abuse notation and denote the column space
of an arbitrary matrix F also by F. The connotations are ob-
vious from context.

Claim 1. Let S ∈ GMt ,Ms be any point and Fk be any element
of F (both S, Fk are unitary). Then

dP
(
S,Fk

)
< 1 ⇐⇒ S⊥ ∈ c

(
Fk
)
, (A.1)

where S⊥ denotes the orthogonal complement of the sub-
space S and c(Fk) denotes the complement of Fk as defined
in Theorem 1,

dP
(
S,Fk

)
< 1 ⇐⇒ ∥∥FHk S⊥∥∥2 < 1 (A.2)

⇐⇒ max
1≤i≤min (Ms,Mt−Ms)

cos θi < 1 (A.3)

⇐⇒ Fk ∩ S⊥ = {0}, (A.4)

where (A.2) follows from the representation dP(S,Fk) =
‖FHk S⊥‖2 mentioned in [55], (A.3) follows from the notation
that cos θi are the singular values of FHk S

⊥ which also means
that θi are the critical angles between the subspaces Fk and
S⊥, for a reference see [55], (A.4) follows from [55, Theorem
12.4.2] which states that if all the singular values (cos θi) are
less than 1, then the subspaces have zero intersection.

Also, Fk + S⊥ = CMt , thus CMt = Fk ⊕ S⊥ and the claim
follows. From Claim 1, it follows that the following are equiv-
alent.

(i) dP(S,Fk) < 1 for some Fk ∈ F for all S ∈ GMt ,Ms .
(ii) c(F1)∪ c(F2)∪ · · · ∪ c(FN ) = GMt ,Mt−Ms .

Now, define a function over GMt ,Ms by the following:

f (F) = min
Fi∈F

∥∥FFH − FiFHi
∥∥

2. (A.5)

Then f (F) is continuous over GMt ,Ms . This implies

sup
F∈GMt ,Ms

f (F) = δ < 1 (A.6)

since f (F) < 1 for F ∈ GMt ,Ms and GMt ,Ms is compact.

B. PROOF OF COROLLARY 1

Recall the definition of U, Σ, U based on the SVD
of HHH from Section 2.3. Let Σ = diag(λMt , . . . , λMs),
Σ = diag(λMs+1, . . . , λmin(Mt ,Mr )) and U be the Mt ×
(min (Mt,Mr) − Ms) submatrix of U corresponding to
{λMs+1, . . . , λmin(Mt ,Mr )}. Since HHH is of rank equal to
min (Mt,Mr) with probability 1, in the following we consider
Σ to be full rank. It may be noted, however, that the rank de-
pends on the value of Mt, Mr , and Ms and in case Mr =Ms, Σ
and U are not defined and the following derivation remains
valid while ignoring all terms involving Σ and U.

Claim 2. Consider F = F∞. Then the diversity may be written
as

d = − lim
η→∞

logE
{
e−ηλMs

}
logη

, (B.1)

where η is a constant.

The postprocessing SNR for the kth stream can be ex-
pressed as

SNR(ZF)
k

(
F∞
) = Es

MsN0
[
FH∞HHHF∞

]−1
kk

= Es

MsN0[Σ]
−1
kk

= Es
MsN0

λk.

(B.2)

The expected probability of symbol error can be written as

Pe �
Ms∑
k=1

E

{
NeQ

(√
Esd

2
minλk

2MsN0

)}
(B.3)

≤
Ms∑
k=1

E
{
e−(Esd2

min/4MsN0)λk
}

, (B.4)

where Ne is the number of nearest neighbors and Q(·) is the
Gaussian Q-function. Thus as Es/N0 →∞, we can write

Pe ≤ E
{
e−(Esd2

min/4MsN0)λMs
}
. (B.5)

Note that the upper bound in (B.4) stems from the Chernoff
bound due to the inequality Q(x) ≤ e−x

2/2. It is straightfor-
ward to show that Q(x) ≥ η1e−η2x2

for some constants η1,
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η2 and a lower bound to Pe could be derived using the same
arguments as before. Thus the diversity can be expressed as

d = − lim
η3→∞

logE
{
e−η3λMs

}
logη3

(B.6)

for some constant η3. This justifies the claim.

Claim 3 (cf. (6)). If F = QP(F∞) = arg minFi∈F dP(F∞,Fi),
then

1[
FHHHHF

]−1
kk

≥ 1[
FHUΣU

H
F
]−1

kk

. (B.7)

Since F is a covering codebook, according to Theorem 1
we have dP(F∞,F) < 1. Noting F∞ = U, it follows that FHU is
full rank. Also, Σ and Σ are full rank by definition. Then we
can write

[
FHHHHF

]−1 = [FHUΣUH
F + FHUΣUHF

]−1 (B.8)

= [A + YΣYH
]−1 (B.9)

= A−1 − A−1Y
(
Σ−1 + YHA−1Y

)−1
YHA−1

(B.10)

= A−1 − A−1YVSVHYHA−1 (B.11)

= A−1 − BBH , (B.12)

where (B.9) is just a change in notation by defining A =
FHUΣU

H
F and Y = FHU, (B.10) follows from a standard

formula in [56], (B.11) is derived by an SVD decomposition

given by (Σ−1 + YHA−1Y)
−1 = VSVH , and (B.12) is again a

change in notation where B = A−1YVS1/2. Since BBH have
real-positive diagonal entries, it follows from (B.12) that

[
FHHHHF

]−1
kk ≤

[
FHUΣU

H
F
]−1

kk
(B.13)

which justifies the claim.

Claim 4 (cf. (6)). If F = QP(F∞) = arg minFi∈F dP(F∞,Fi),
then

1[
FHUΣU

H
F
]−1

kk

≥ ηλMs , (B.14)

where η is a positive constant.

In the following ek denotes a vector of unit magnitude
where the kth element is unity:

eHk
[
FHUΣU

H
F
]−1

ek ≤
∥∥eHk (FHU)−1∥∥2

Fλ
−1
Ms

(B.15)

≤ ∥∥(FHU)−1∥∥2
Fλ
−1
Ms

(B.16)

= ∥∥WSVH
∥∥2
Fλ
−1
Ms

(B.17)

≤ max
1≤i≤Ms

(
Ms

cos2θi

)
λ−1
Ms

(B.18)

=
(

Ms

1− δ2

)
λ−1
Ms
. (B.19)

In the above (B.15) holds due to the fact that (xHΣ
−1
x/

‖x‖2) ≤ λ−1
Ms

, (B.16) holds because ‖AB‖2
F ≤ ‖A‖2

F‖B‖2
F ,

(B.17) follows from the SVD decomposition of

(FHU)
−1 = WSVH , (B.18) holds due to the fact that S =

diag(1/ cos θ1, . . . , 1/ cos θMs), where θi are the critical angles
between the column spaces of F and U, and finally (B.19)
holds because the covering radius of the codebook is upper
bounded by δ < 1 from Theorem 1. Thus the claim is
justified.

Let us define the selected precoder E as [cf. (14)]

E = Q∗(F∞) = arg max
F∈F

min
k

SNR(ZF)
k (F). (B.20)

Then we have the following:

SNR(ZF)
k (E) = Es

MsN0
[
EHHHHE

]−1
kk

(B.21)

≥ min
k

Es

MsN0
[
EHHHHE

]−1
kk

(B.22)

≥ min
k

Es

MsN0
[
FHHHHF

]−1
kk

(B.23)

≥ min
k

Es

MsN0

[
FHUΣU

H
F
]−1

kk

(B.24)

≥ ζλMs , (B.25)

where ζ is a constant. In the above (B.23) holds because F is
chosen according to the criterion F = arg minFi∈F dP(F∞,Fi)
and is a suboptimal precoder [cf. (6)], (B.24) follows from
Claim 3, and (B.25) holds due to Claim 4.

From (B.25) and Claim 2 it follows that the diversity is
preserved when F is a covering codebook and the precoder
selection criterion is (B.20).

C. PROOF OF LEMMA 1

An alternate representation for dP(F1,F2) for arbitrary
F1,F2 ∈ GMt ,Ms is given by [44]

dP
(
F1,F2

) = max
1≤i≤Ms

sin θi, (C.1)

where θi are the critical angles between the column spaces of
F1, F2. Consider an arbitrary precoder F ∈ GMt ,Ms and the an-
tenna selection codebook F = {F1,F2, . . . ,FN}, where N =(
Mt

Ms

)
. Since rank(F) = Ms, ∃ a set of Ms linearly indepen-

dent rows in F. Suppose {i1, i2, . . . , iMs}, 1 ≤ ik ≤ Mt denote
the set of rows. Also let F∗ ∈ F be the precoder that selects
the antenna set {i1, i2, . . . , iMs}. Then rank(FH∗F) = Ms. Thus
max1≤i≤Msθi < π/2, where θi are the critical angles between
the column spaces of F∗ and F. Then max1≤i≤Ms sin θi < 1.
Then from (C.1) it follows that dP(F∗,F) < 1.
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D. PROOF OF COROLLARY 2

Let us define U, Σ, U, U, Σ, Σ as in Appendix B. Also assume
Ei j is the codeword difference matrix between the codewords
i and j, is of size Mt × T , and subsumes i /= j. Also assume
Ei jEHi j is full-rank for all i, j. Recall that the chosen precoder
E is expressed as [cf. (16)]

E = Q∗(F∞) = arg max
F∈F

min
i j

∥∥HFEi j
∥∥2
F , (D.1)

and for purposes of analysis we also introduce a suboptimal
precoder F given by [cf. (6)]

F = QP
(
F∞
) = arg min

F∈F
dP
(
F∞,F

)
. (D.2)

Note that in an unprecoded OSTBC system with Mt transmit
andMr receive antennas, the Chernoff bound on the pairwise
error probability is of the form e−η1‖H‖2

F , where η1 is a posi-
tive constant and this system can achieve a diversity order of
MtMr . Then it follows from (15) that if ‖HEEi j‖2

F > η2‖H‖2
F

for some positive constant η2, then the precoded system can
also achieve a diversity order of MtMr with (D.1) as the pre-
coder selection criterion.

Claim 5. If F = arg minF∈F dP(F∞,F), then

∥∥HFEi j
∥∥2
F ≥ η‖H‖2

F (D.3)

for some positive constant η.

The left-hand side of (D.3) may be expressed as

∥∥HFEi j
∥∥2
F = tr

(
EHi jF

HUΣUHFEi j
)

(D.4)

= tr
(
EHi jF

HUΣU
H
FEi j

)
+ tr

(
EHi jF

HUΣUHFEi j
)

(D.5)

≥ tr
(
ΣU

H
FEi jEHi jF

HU
)

(D.6)

= tr
(
ΣVSVH

)
(D.7)

= tr
(
SVHΣV

)
(D.8)

≥ tr(Σ)λmin(S) (D.9)

= tr(Σ)λmin
(
U

H
FEi jEHi jF

HU
)

(D.10)

= tr(Σ)λmin
(
Ei jEHi jF

HUU
H
F
)

(D.11)

≥ tr(Σ)λmin
(
Ei jEHi j

)
λmin

(
FHUU

H
F
)

(D.12)

≥ tr(Σ)λmin
(
Ei jEHi j

)(
1− δ2) (D.13)

≥ η‖H‖2
F . (D.14)

In the above (D.4) follows from the definition of Frobe-
nius norm, (D.5) holds because UΣUH = UΣU

H
+ UΣUH ,

(D.6) follows from the fact that EHi jF
HUΣUHFEi j is her-

mitian nonnegative definite so its trace is nonnegative,
(D.7) can be explained by the SVD decomposition given by

U
H
FEi jEHi jF

HU = VSVH , (D.8) follows from the repeated

use of the property tr(AB) = tr(BA), in (D.9) we use the
fact tr(VHΣV) = tr(Σ), (D.10) holds because S is a diago-

nal matrix consisting of the eigenvalues of U
H
FEi jEHi jF

HU,
(D.11) follows from the fact that the eigenvalues of AB and
the eigenvalues of BA are equal when A, B are square [57],
(D.12) follows from the fact that λmin(AB) ≥ λmin(A)λmin(B)
for positive definite Hermitian matrices A, B also mentioned

in [57], (D.13) holds because λmin(FHUU
H
F) = mini cos2θi,

where θi are the critical angles between the column spaces of
F and U along with the fact that the covering radius of F
is δ and by Theorem 1 we have δ < 1, and finally (D.14) is
because mini, j,i /= jλmin(Ei jEHi j ) is a positive constant by defini-
tion of a full-rank STBC and tr(Σ) ≥ λ1 ≥ (1/Mt)‖H‖2

F . This
justifies the claim.

Then we have

∥∥HEEi j
∥∥2
F ≥ min

i, j, i /= j

∥∥HEEi j
∥∥2
F (D.15)

≥ min
i, j, i /= j

∥∥HFEi j
∥∥2
F (D.16)

≥ η‖H‖2
F , (D.17)

where (D.16) is because of the suboptimality of the precoder
F compared to E and (D.17) is due to Claim 5.

E. DIVERSITY ORDER FOR QPSMWITHMR =MS

Lemma 2. A precoded spatial multiplexing system with a ZF
receiver, F∞ is the precoder andMr =Ms can attain a diversity
order ofMt −Ms + 1.

Recall that since Ms = Mr , HHH will have Ms nonzero
eigenvalues with probability 1. Consider {λ1, λ2, . . . , λMs} as
the set of ordered eigenvalues of HHH, where λ1 ≥ λ2 ≥
· · · λMs ≥ 0. Now let {λ(u)

1 , λ(u)
2 , . . . , λ(u)

Ms
} denote the set of

unordered eigenvalues. Then the joint probability density

functions of {λ1, λ2, . . . , λMs} and {λ(u)
1 , λ(u)

2 , . . . , λ(u)
Ms
} differ

only by a scaling factor of Ms!. The marginal probability den-

sities of λ(u)
i , 1 ≤ i ≤ Ms are identical and may be expressed

as [58]

f (λ) = 1
Ms

Ms−1∑
k=0

k!(
k + Mt −Ms

)
!

[
LMt−Ms

k (λ)
]2
λMt−Mse−λ,

(E.1)

where LMt−Ms

k (λ) = (1/k!)eλλMt−Ms(dk/dλk)(e−λλMt−Ms+k) is
an associated Laguerre polynomial of order k [59]. Define

Σ = diag(λ1, λ2, . . . , λMs) and Σ(u) = diag(λ(u)
1 , λ(u)

2 , . . . , λ(u)
Ms

).
Then the postprocessing SNR for the ZF receiver can be writ-
ten as (see (B.2))

SNR(ZF)
k = Es

MsN0[Σ]−1
kk

d= η[
Σ(u)]−1

kk

= ηλ(u)
k , (E.2)
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where the constant η absorbs the factors Es/N0,Ms,Ms!. Then
the probability of symbol error may be expressed as

Pe � NeE

{
Q

(√
ηλ

d2
min

2

)}
(E.3)

≤ NeE{e−ηλ(d2
min/4)} (E.4)

= Ne

Ms

∫∞
0
e−ηλ(d2

min/4)
Ms−1∑
k=0

ak
[
LMt−Ms

k (λ)
]2
λMt−Mse−λdλ

(E.5)

= Ne

Ms

∫∞
0
e−λ[η(d2

min/4)+1]
Ms−1∑
k=0

ak

×
[ k∑
p=0

bpL
2(Mt−Ms)
2p (2λ)

]
λMt−Msdλ

(E.6)

= Ne

Ms

∫∞
0
e−λ[η(d2

min/4)+1]
Ms−1∑
k=0

ak

×
{ k∑

p=0

bp

[ 2p∑
q=0

(−1)qcqλq
]}

λMt−Msdλ

(E.7)

= Ne

Ms

Ms−1∑
k=0

ak

×
{ k∑

p=0

bp

[ 2p∑
q=0

(−1)qcq

∫∞
0
e−λ[η(d2

min/4)+1]λMt−Ms+qdλ

]}

(E.8)

= Ne

Ms

Ms−1∑
k=0

ak

×
{ k∑

p=0

bp

[ 2p∑
q=0

(−1)qc′q

(
η
d2

min

4
+ 1
)−(Mt−Ms+q+1)]}

(E.9)

η→∞� ζ
(
η
d2

min

4

)−(Mt−Ms+1)

, (E.10)

where ζ is a positive constant. In the above, in (E.3), Ne is
the number of nearest neighbors and Q(·) is the Gaussian
Q-function, λ denotes an unordered eigenvalue, d2

min is the
minimum distance of the constellation, (E.4) represents the
Chernoff bound for Q(·), (E.5) follows from the form of
the pdf of λ in (E.1) and ak is a positive constant, (E.6) fol-

lows from an expansion of [LMt−Ms

k (λ)]
2

given in [59] and
bp > 0 are constants, (E.7) follows from an expansion of

L2(Mt−Ms)
2p (2λ) given in [59] and cq > 0 are constants, (E.8)

is just a rearrangement of terms, (E.9) results from the rela-
tion

∫∞
0 x

ne−μxdx = n!μ−n−1 for μ > 0 and absorbing the con-
stant n! into c′q, and (E.9) results from the observation that as
η → ∞ almost the entire contribution to sum is by the term
with q = 0 and absorbing all positive constants into ζ . From
(E.9) we conclude that the diversity order is Mt −Ms + 1.

F. PROOF OF THEOREM 2

Define [cf. (8), (19)]

F = QC
(
F∞
) = arg min

Fk∈F
dC
(
F∞,Fk

)
. (F.1)

Recall from Section 2.3 that the SVD of HHH is given by

HHH = UΣUH , (F.2)

and U is the Mt × Ms submatrix of U corresponding
to the Ms dominant singular values and Σ is defined in
Appendix B. Note that we redefine Σ and U in the follow-
ing. Let Σ = diag(λMs+1, λ2, . . . , λMt ) and let U be the Mt ×
(Mt − Ms) submatrix of U with columns corresponding to
λMs+1, λMs+2, . . . , λMt . Then we have the following:

E
{‖HF‖2

F

} = E
{

tr
(
FHUΣHUHF

)}
(F.3)

= E
{

tr(FHUΣ
H
U

H
F)
}

+ E
{

tr
(
FHUΣHUHF

)}
.

(F.4)

Claim 6.

E
{

tr
(
FHUΣU

H
F
)} = ΛE

{
tr
(
U

H
FFHU

)}
, (F.5)

where Λ = (1/Ms)
∑Ms

k=1E{λk}.

Now, U
d= UΠ, where Π is a Ms×Ms permutation matrix.

This is because U is isotropically distributed and Π is unitary.
Also, Q(U) = Q(UΠ) since d(U,Fk) = d(UΠ,Fk). Then we
have

E{tr(FHUΣU
H
F)} = E{tr(FHUΠΣΠHU

H
F)} (F.6)

= E{tr(FHUΣ
Π
U

H
F)}, (F.7)

where we define Σ
Π = ΠΣΠH . Now,

E
{

tr(FHUΣU
H
F)
} = 1

Ms!

∑
Π

E
{

tr
(
FHUΣ

Π
U

H
F
)}

(F.8)

= E

{
tr

(
FHU

{
1
Ms!

∑
Π

Σ
Π

}
U

H
F

)}

(F.9)

= tr

(
E
{
U

H
FFHU

}
E

{
1
Ms!

∑
Π

Σ
Π

})

(F.10)

= ΛE
{

tr
(
U

H
FFHU

)}
, (F.11)

where
∑

Π denotes a summation over all permutation ma-
trices of the same dimension as Π. Then (F.8) follows from
(F.7) and because there are Ms! permutation matrices of size
Ms ×Ms, (F.9) holds because expectation and trace are lin-
ear operators, (F.10) follows because expectation and trace
can be interchanged and tr(AB) = tr(BA), and (F.11) holds

because E{(1/Ms!)
∑

ΠΣ
Π} = ΛI. This justifies Claim 6.

Claim 7.

E
{

tr
(
FHUΣUHF

)} = ΛMs −ΛE
{

tr
(
U

H
FFHU

)}
, (F.12)

where Λ = (1/(Mt −Ms))
∑Mt

k=Ms+1E{λk}.
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Now, U
d= UΠ, where Π is an (Mt − Ms) × (Mt − Ms)

permutation matrix. Then

E
{

tr
(
FHUΣUHF

)} = E
{

tr
(
FHUΠΣΠHUHF

)}
= E

{
tr
(
FHUΣΠUHF

)}
,

(F.13)

where we define ΠΣΠH = ΣΠ. Then following the steps in
the earlier derivation we have

E
{

tr
(
FHUΣUHF

)} = ΛE
{

tr
(
UHFFHU

)}
. (F.14)

Then we can write

E
{

tr
(
FHUΣUHF

)} = ΛE
{

tr
(
FHUHUF

)}
(F.15)

= ΛE
{

tr(FH
(
I−UU

H)
F)
}

(F.16)

= ΛMs −ΛE
{

tr
(
U

H
FFHU

)}
, (F.17)

where (F.15) holds because tr(AB) = tr(BA), (F.16) follows
from UU

H
+UUH = I, and (F.17) holds also due to tr(AB) =

tr(BA). This justifies Claim 7.

Note that U = F∞ and E{tr(U
H
FFHU)} = Ms −

E{d2
C(F∞,F)} by definition (applying the relation ‖A‖2

F =
tr(AAH)). Then from (F.4), Claims 6, 7 we have

E
{‖HF‖2

F

} = ΛMs + (Λ−Λ)E
{
d2(F∞,F

)}
= E

{∥∥HF∞
∥∥2
F

}
+ (Λ−Λ)E

{
d2(F∞,F

)}
.

(F.18)
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