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INTRODUCTION

We propose a joint MAP channel estimation and data detection technique based on the expectation maximization (EM) method
with paralel interference cancelation (PIC) for downlink multicarrier (MC) code division multiple access (CDMA) systems in
the presence of frequency selective channels. The quality of multiple access interference (MAI), which can be improved by using
channel estimation and data estimation of all active users, affects considerably the performance of PIC detector. Therefore, data
and channel estimation performance obtained in the initial stage has a significant relationship with the performance of PIC. So
obviously it is necessary to make excellent joint data and channel estimation for initialization of PIC detector. The EM algorithm
derived estimates the complex channel parameters of each subcarrier iteratively and generates the soft information representing the
data a posterior probabilities. The soft information is then employed in a PIC module to detect the symbols efficiently. Moreover,
the MAP-EM approach considers the channel variations as random processes and applies the Karhunen-Loeve (KL) orthogonal
series expansion. The performance of the proposed approach is studied in terms of bit-error rate (BER) and mean square error
(MSE). Throughout the simulations, extensive comparisons with previous works in literature are performed, showing that the new
scheme can offer superior performance.

Copyright © 2008 Hakan Dogan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

system complexity due to equalization in the frequency do-

Traditional wireless technologies are confronted with new
challenges in meeting the ubiquity and mobility require-
ments of cellular systems. Extensive attemps have therefore
been made in recent years to provide promising avenue that
makes efficient utilization of the limited bandwidth and cope
with the adverse access environments. These include the de-
velopment of several modulation and multiple access tech-
niques. Among these, multicarrier (MC) and code division
multiple access (CDMA) have gained considerable interest
due to their considerable performance [1, 2].

MC modulation technique, known also as OFDM (or-
thogonal frequency division multiplexing), has emerged as
an attractive and powerful alternative to conventional mod-
ulation schemes in the recent past due to its various advan-
tages. The advantages of MC which lie behind such a success
are robustness in the case of multipath fading, a very reduced

main and the capability of narrow-band interference rejec-
tion. OFDM has already been chosen as the transmission
method for the European radio (DAB) and TV (DVB-T)
standard and is used in xDSL systems as well. Supporting
multiple users can be achieved in a variety of ways. One pop-
ular multiple access scheme is CDMA. CDMA makes use of
spread spectrum modulation and distinct spreading codes
to separate different users using the same channel. It is well
known that CDMA system has an ability to reduce user’s
signal power during transmission using a spreading so that
the user can communicate with a low-level transmitted sig-
nal closed to noise power level. As a combination of MC and
CDMA techniques, it combines the advantages of both MC
and CDMA [1-3].

To evaluate the performance of these systems, ideal
knowledge of transmission parameters is often assumed
known. Iterative receivers for coded MC-CDMA promise
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a significant performance gain compared to conventional
noniterative receivers by using combined minimum mean
square error-parallel interference cancellation (combined
MMSE-PIC) detector [5] assuming perfectly known chan-
nel impulse response. However, the performance of MC-
CDMA-based transmission systems under realistic condi-
tions critically depends on good estimate of the parameters,
such as the channel parameters. In [4], different detection
schemes were considered for least square estimation case as
well as perfect channel case.

The quality of multiple access interference (MAI), which
can be improved by using channel estimation and data es-
timation of all active users, affects considerably the perfor-
mance of PIC detector. Therefore, data and channel estima-
tion performance is obtained in the initial stage has a sig-
nificant relationship with the performance of PIC. So obvi-
ously it is necessary to make excellent joint data and chan-
nel estimation for initialization of PIC detector. Inspired by
the conclusions in [4, 5], including channel estimation into
the iterative receiver yields further improvements. We there-
fore consider iterative channel estimation techniques based
on the expectation-maximization (EM) algorithm in this pa-
per.

The EM algorithm is a broadly applicable approach to
the iterative computation of parameters from intractable and
high complexity likelihood functions. An EM approach pro-
posed for the general estimation from superimposed signals
[6] is applied to the channel estimation for OFDM systems
and compared with SAGE version in [7]. For CDMA sys-
tems, Nelson and Poor [8] extend the EM and SAGE algo-
rithms for detection, rather than for estimation of continu-
ous parameters. Moreover, EM-based channel estimation al-
gorithms were investigated in [9, 10] for synchronous uplink
DS-CDMA and asynchronous uplink DS-CDMA systems,
respectively. Unlike the EM approaches, we adopt a two-step
detection procedure: (i) use the EM algorithm to estimate
the channel (frequency domain estimation) and (ii) use the
estimated channel to perform coherent detection [11, 12].
The paper has several major novelties and contributions. The
major contribution of the paper is to obtain EM-based chan-
nel estimation algorithm approach as opposed to the existing
works in the literature which mostly assumed that the data is
known at the receiver through a training sequence. Note that
very small number of pilots used in our approach is necessary
only for initialization of the EM algorithm leading to chan-
nel estimation. Although, the joint data and channel estima-
tion technique with EM algorithm seems to be attractive in
practice, it is known that the convergency of the algorithm
is much slower, it is more sensitive to the initial selection
of the parameters and the algorithm is more computation-
ally complex than the techniques that deal with only chan-
nel estimation. As it is known in the estimation literature,
non-data-aided estimation techniques are more challenging
mainly due to a data-averaging process which must be per-
formed prior to optimization step. The proposed EM-MAP
receiver compared with the combined MMSE-PIC receiver in
the case of LS, LMMSE, and perfect channel estimation [4].

Another significant contribution of the paper comes
from the fact that the proposed approach considers the

channel variations as random processes and applies the
Karhunen-Loeve (KL) orthogonal series expansion. It was
shown that KL expansion enable us to estimate the chan-
nel in a very simple way without taking inverse of large-
dimensional matrices for OFDM system [11, 12]. However,
this property will not help to avoid matrix inversion for the
signal model in this paper as shown in Section 4. On the
other hand, we show that optimal truncation property of the
KL expansion help to decrease inverse matrix dimension so
that reduction in computational load on the channel estima-
tion algorithm can be done.

The rest of this paper is organized as follows. In Sections
2 and 3 we introduce the model of a downlink MC-CDMA
system and the corresponding channel model established, re-
spectively. Using the discrete-time model, the maximum a
posteriori (MAP) channel estimation algorithm is derived in
Section 4. Moreover, in this section, truncation property of
the KL expansion and complexity calculation of the proposed
algorithm are also given. In the next section, PIC-detection
scheme is then developed for the proposed channel estima-
tion algorithm. Finally, computer simulation results are pre-
sented with detailed discussions in Section 6, and conclu-
sions are drawn in Section 7.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters; all vectors are column vectors;
(-)T, (-)Jr and (-)_1 denote the transpose, conjugate trans-
pose, and matrix inversion, respectively; I denotes the L X L
identity matrix; diag{-} denotes a diagonal matrix.

2. DOWNLINK MC-CDMA

Transmission of MC-CDMA signals from the base station to
mobile stations forms the downlink transmission. The Base
station must detect all the signals while each mobile is re-
lated with its own signal. In the downlink applications, all the
signals arriving from the base station to specific user propa-
gate through the same channel. Therefore, channel estima-
tion methods that is developed for OFDM systems can be
appliciable for downlink application of MC-CDMA systems
[11].

Let b*’s denote the QPSK modulated symbols that would
be send for kth user within mobile cell k = 1,..., K where K
is the number of mobile users which are simultaneously ac-
tive. The base station spread the data b ’s over chips of length
N. by means of specific orthogonal spreading sequences, cX =

(k... czli,c) where each chip, c¥, takes values in the set
{—1/+/N;, 1/4/N;}. Then, the spreaded sequences of all users
ckb* are summed together to form the input sequences of the
OFDM block. After summation process, OFDM modulator
block takes inverse discrete Fourier transform (IDFT) and in-
serts cyclic prefix (CP) of length equal to at least the channel
memory (L). Pilot tones uniformly inserted in OFDM mod-
ulated data for the initial channel estimation [19]. In this
work, to simplify the notation, it is assumed that the spread-
ing factor equals to the number of subcarriers and all users
have the same spreading factor.
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At the receiver, CP is removed and DFT is then applied to
the received discrete time signal to obtain the received vector
expressed as

R=HCb+W, (1)
where C = [c!,...,cK] isthe N. x K spreading code matrix,
b=[b', ...,bK]T isthe K x 1 vector of the transmitted sym-

bols by the K users. # is the N. X N, diagonal channel matrix
whose elements representing the fading of the subcarriers are
modeled in the next section, W is the N, X 1 zero-mean, i.i.d.
Gaussian vectors that model additive noise in the N, tones,
with variance 02/2 per dimension. Note that due to orthog-
onality property of the spreading sequences, C"'C = Ig.

In this study, our major focus lies on the development
of a MAP-EM channel estimation algorithm based on the
observation model (1). However, in the sequel we will first
present the channel model based on KL expansions.

3. CHANNEL: BASIS EXPANSION MODEL

The fading channel between the transmit and the receive
antenna is assumed to be frequency and time selective and
the fading process is assumed to be constant during each
OFDM symbol. Let H = [H}, Ha, ... ,HNC]T denote the cor-
related channel coefficients corresponding to the frequency
response of the channel between the transmit and the receive
antenna. The KL expansion methodology has been applied
for efficient simulation of multipath fading channels [14].
Prompted by the general applicability of KL expansion, we
consider in this paper the parameters of H to be expressed by
a linear combination of orthonormal bases,

H=YG, (2)
where ¥ = [cy, v, ..., ¥y ], ¥;’s are the orthonormal basis
vectors, G = [Gj,...,Gn,] T, and G; is the vector representing

the weights of the expansion. By using different basis func-
tions W, we can generate sets of coefficients with different
properties. The autocorrelation matrix Cy = E[HH'] can be
decomposed as

Cy = YAYT, (3)

where A = E{GG'} is a diagonal. Then (3) represents the
eigendecomposition of Cy. The fact that only the eigenvec-
tors diagonalize Cy leads to the desirable property that the
KL coefficients (G, ..., Gy,) are uncorrelated. Furthermore,
in the Gaussian case, the uncorrelatedness of the coefficients
renders them independent as well, providing additional sim-
plicity. Thus, the channel estimation problem in this study is
equivalent to estimating the i.i.d. Gaussian vector G, namely,
the KL expansion coefficients.

4. EMBASED MAP CHANNEL ESTIMATION

In MC-CDMA system, channel equalization is moved from
the time domain to the frequency domain, that is, the chan-
nel frequency response is estimated. Note that, it is pos-
sible to estimate the channel parameters from the time-
domain channel model (channel impulse response), in our

Pilot based
initial estimation

R p—
: . MAP i
BN Calculation of L channel | PIC

r@ estimation

OFDM
demodulator

F1GURE 1: Receiver structure for MC-CDMA systems.

work, time-domain approach introduces additional com-
plexity mainly because the frequency domain channel pa-
rameters are required and directly employed in the de-
tection process. Moreover, the frequency domain estima-
tor presented in this paper was inspired by the conclu-
sions in [15, 16], where it has been shown that time do-
main channel estimators based on a Discrete Fourier Trans-
form (DFT) approach for non sample-spaced channels cause
aliased spectral leakage and result in an error floor. Further-
more, our proposed frequency domain iterative channel esti-
mation technique employs the KL expansion which reduces
the overall computational complexity significantly.

To find MAP estimate of G, (1) can be rewritten by using
the channel KL expansion as follows:

R = diag(Cb)¥G + W. (4)
The MAP estimate G is then given by

G= arg max p(GIR) (5)

Direct maximization of (5) is mathematically intractable.
However, the solution can be obtained easily by means of the
iterative EM algorithm. A natural choice for the complete
data for this problem is y = {R,b}. The vector to be esti-
mated is G, and the incomplete data is R. The EM algorithm
stated above is equivalent to determining the parameter set

G that maximize the Kullback-Leibler information measure
defined by

Q(GIGY) = > p(R, b, G?)logp(R,b,G),  (6)
b

where G is the estimation of G at the gth iteration. This
algorithm inductively reestimate G so that a monotonic in-
crease in the a posteriori conditional pdf (probability density
function) in (5) is guaranteed.

Note that, the term log p(R, b, G) in (6) can be expressed
as

log p(R,b,G) =logp(b | G) +logp(R | b,G) +1log p(G).
(7)

The first term on the right-hand side of (7) is constant, since
the data sequence b and G are independent of each other
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and b have equal a priori probability. The probability den-
sity function of G is known as a priori by the receiver and
can be expressed as

p(G)~exp (- GTAT'G). (8)

Also, given the transmitted symbols b and the discrete chan-
nel representation G and taking into account the indepen-
dence of the noise components, the conditional probability
density function of the received signal R can be expressed as

p(R|b,G)
~exp [ — (R — diag(Cb)¥G) ="' (R — diag(Cb)¥G)],
©)

where X is an N, X N, diagonal matrix with X[k, k] = o2, for
k=1,2,...,Ne.

Taking derivatives in (6) with respect to G and equating
the resulting equations to zero, we have

> p(R,b,G?) (¥'diag(b'C")
b (10)
x £71(R - diag(Cb)¥G) — A"'G) = 0.

Note that p(R,b,G@) may be replaced by p(b | R,G?)
without violating the equalities in (10). Solving (10) for G,
after taking average over b, the final expression of reestimate
of G*1) can be obtained as follows:

G = (THT@ + zA—l)_lTT”’R, (11)

where
T@ = diag(CI'?)w. (12)
I'? = [roq), 1), .., 1K) | represents the a posteriori prob-

abilities of the data symbols at the gth iteration step defined
as

I@(k) = > bP(b* =b | R,G), (13)
hESk

9 can be computed for QPSK signaling as follows [11]:

1 V2 4 j V2. 4
(@) — - (q) Ve (q)
T \ﬁtanh[a2 Re(Z )} + \/jtanh[a2 Im(Z )},

(14)
where

7@ = CT(H™ 7D + 621y) ' HTR (15)

Finally, the data b transmitted by each user can be estimated
at the gth iteration step as

b@ = %csign(l“(q)), (16)

where “csign” is defined as csign(a+ jb) = sign(a) + jsign(b).

Truncation property

A truncated expansion vector G, be formed from G by se-
lecting r orthonormal basis vectors among all basis vec-
tors that satisfy Cq¥ = WA. The optimal solution that
yields the smallest average mean-squared truncation error
(1/N.) E[el€,] is the one expanded with the orthonormal
basis vectors associated with the first largest r eigenvalues as
given by

LE[G:FET] =

1 &
N —r ZAI', (17)

N —r<

where €, = G — G,. For the problem at hand, truncation
property of the KL expansion results in a low-rank approx-
imation as well. Thus, a rank-r approximation of A can be
defined as A, = diag{A;, As,..., A,} by ignoring the trailing
N, —r variances {Al}fiﬁr, since they are very small compared to
the leading r variances {A;}]_,. Actually, the pattern of eigen-
values for A typically splits the eigenvectors into dominant
and subdominant sets. Then the choice of r is more or less
obvious. For instance, if the number of parameters in the ex-
pansion include dominant eigenvalues, it is possible to obtain
a good approximation with a relatively small number of KL
coefficients.

Complexity

Based on the approach presented in [17], the traditional
LMMSE estimation for H can be easily expressed as

H = Cu[Cy + X(diag(Cb)diag(Cb)) ']

-

“O(N})” computational complexity (18)
x [diag(Cb)] 'R.

Since [ Cqg + Z‘.(diag(Cb)diag(Cb)_1 ]_1 changes with data
symbols, its inverse cannot be precomputed and has high
computational complexity due to required large-scale matrix
inversion.! Moreover, the error caused by the small fluctua-
tions in Cy and X have an amplified effect on the channel es-
timation due to the matrix inversion. Furthermore, this effect
becomes more severe as the dimension of the matrix, to be
inverted, increases [18]. Therefore, the KL-based approach is
needed to avoid large-scale matrix inversion. Using (2) and
(11), the iterative estimate of H with KL expansion can be
obtained as

N -1
A = (T T@ + 3A7") TR, (19)

However, in this form, complexity of channel estimate is
greater than the traditional LMMSE estimate. Therefore, to
reduce the complexity of the estimator further we rewrite
(19) as

A = WAATITWA + 2A) 'ATI"R  (20)

I The computational complexity of an N. x N, matrix inversion, using
Gaussian elimination is O(N2).
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TaBLE 1
Algorithm Computational complexity
LMMSE 2N2 + 5N, + N.K + O(N?)

KL N? +4N2? + N.K + 2N, + O(N?)
KL-truncated N.#% +3N.r +r* + N.K + 2r + O(r?)

and proceed with the low-rank approximations by consider-
ing only r column vectors of ¥ and T corresponding to the r
largest eigenvalues of A, yielding

HO = ¥A, (AT'TVA +%A) AT'R - (21)
“O(r3)” computajtrionul complexity

where X, is an X r diagonal matrix whose elements are equal
to 02. W, and T, are in (21) an N, X r matrices which can
be formed by omitting the last N. — r columns of ¥ and T,
respectively. Equation (21) can then be rearranged as follows:

A =, (T + A7) TR (22)

Thus, the low-rank expansion yields an excellent approx-
imation with a relatively small number of KL coefficients.
Computational complexity has been evaluated quantitatively
and summarized in Table 1.

5. PARALEL INTERFACE CANCELLATION (PIC)

The estimated complex QPSK vector b given by (16) is passed
to a PIC module after last iteration. In this module, the cal-
culation of all interfering signals for user k can be written as

~ N~ /\k
RE = HCb forb =0. (23)
Interfering signals for user k subtracted from the received sig-
nal R, then passed to the single user detector. Finally, the PIC

detector for kth user can be written as
bE. = ()T[HR-RE))]

pic int

fork=1,..., K (24)

For the last iteration, detected symbols for QPSK modulation
are

~

1 .
béic = ﬁcmgn(bgic) fork=1,..., K. (25)

Initialization

Given the received signal R, the EM algorithm starts with an
initial value G’ of the unknown channel parameters G. Cor-
responding to pilot symbols, we focus on a under-sampled
signal model and employ the linear minimum mean-square
error (LMMSE) estimate to obtain the under-sampled chan-
nel parameters. Then the complete initial channel gains can
easily be determined using an interpolation technique, that
is, Lagrange interpolation algorithm. Finally, the initial val-
ues of G,(f)) are used in the iterative EM algorithm to avoid

divergence. The details of the initialization process are pre-
sented in [11, 17].

6. MODIFIED CRAMER-RAO BOUND

The modified Fisher information matrix (FIM) can be ob-
tained by a straightforward modification of FIM as [11],

o> In p(R | G) 0’ In p(G)
LA _
Il @)= —F [ 9G*9GT ] i [ 9G*9GT ]j 20
J6) 15(G)

where J,(G) represents the a priori information.

Under the assumption that G and W are independent of
each other and W is a zero-mean Gaussian vector, the trans-
mitted signals become uncorrelated due to the orthogonal
spreading codes. The conditional PDF of R given G can be
obtained by averaging p(R | b, G) over b as follows

PRI G) = E{p(R|b, G)}. (27)
From (27), the derivatives can be taken as follows:

I pRIG) _ 1 g iag(Ch)¥G) diag(C)¥,

oGT T o2
FinpRIG) 1ot oo N
ToGraGT —;‘I’ diag(b” C")diag(Cb)¥.
(28)
Second term in (26) is easily obtained as follows:
olnpG) 4 Plnp@
oGT G'A™, 3G oGT A (29)

Taking the negative expectations, the first and the second
term in (26) becomes J(G) = (1/0*)Iy. and Jp (G) = A,
respectively. Finally, (26) produces for the modified FIM as
follows:

1
Ju(G) = ;IN[ + AL (30)

Inverting the matrix Jy(G) vyields MCRB(G) =
Joi (G). MCRB(G) is a diagonal matrix with the elements on
the main diagonal equaling the reciprocal of those J(G) ma-
trices.

7. SIMULATIONS

In this section, performance of the MC-CDMA system based
on the proposed receivers is investigated by computer simu-
lations operating over frequency selective channels. In simu-
lation, we assume that all users receive the same power. The
orthogonal Gold sequence code is selected as spreading code
and the processing gain equals to the number of subcarriers.
The assumption of a full-load system is made throughout the
simulations except Figure 4, that is the number of active users
K, is equal to the length of the spreading code N, = 128.
The correlative channel coefficients, H, have exponen-
tially decaying power delay profiles, described by 0(z,) =
C exp(—17,/Tims). The delays 7, are uniformly and indepen-
dently distributed over the length of the cyclic prefix. Tims
determines the decay of the power-delay profile and C is



6 EURASIP Journal on Wireless Communications and Networking

10°

10-1F

MSE

1072+

10°3 F

Ep/No
—— LS —=- EM-2.it
—%— LMMSE —— Allpilot
—— EM-1.it --1x-- MCRLB

FIGURE 2: Comparison of different channel estimation algorithms
(MSE).

the normalizing constant. Note that the normalized discrete
channel-correlations for different subcarriers and blocks of
this channel model were presented in [17] as follows:

Cu(k, k")
1—exp| = L(1/Tmms +2mj(k — k')/N.)]
exp (= L/Tims)) (1/Tems + j2m(k — k')/N¢)
(31)

Trms(l -

where (k, k") denotes different subcarriers, L is the cy-
clix prefix, N, is the total number of subcarriers. The sys-
tem has an 800 KHz bandwith and is divided into N, =
128 tones with a total period T; of 165 microseconds, of
which 5 microseconds constitute the cyclic prefix (L = 4).
We assume that the rms value of the multipath width is
Trms = 1 sample (1.25microseconds) for the power-delay
profile. With the 7,4 value chosen and to avoid ISI, the
guard interval duration is chosen to be equal to 4 sample
(5 microseconds)[17].

7.1. Performance evaluation

The performance merits of the proposed structure over
other candidates are confirmed by corroborating simula-
tions. Figure 2 compares the MSE performance of the EM-
MAP channel estimation approach with a widely used LS and
LMMSE pilot symbol assisted modulation (PSAM) schemes
[14], as well as all-pilot estimation for MC-CDMA systems.
Pilot insertion rate (PIR) was chosen as PIR =1 : 8 That
is one pilot is inserted for every 8 data symbols. It is ob-
served that the proposed EM-MAP significantly outperforms
the LS as well as LMMSE techniques and approaches the all-
pilot estimation case and the MCRLB at higher E;/N, values.
Moreover, the BER performance of the proposed system is
also studied for different detection schemes in Figure 3. It is

10—2 L

BER

1073}

1074

0 2 4 6 8 10 12 14 16 18
E,/Noy

—— LS-MMSE

—©— LS-MMSE-PIC

—— LMMSE-MMSE

—+— LMMSE-MMSE-PIC
—— EM-2 it

—&— EM-PIC

—o— Allpilot-MMSE
—7— Allpilot-MMSE-PIC
—#*— Perfect-MMSE

—&— Perfect-MMSE-PIC

F1GURE 3: BER performances of receiver structures for full load sys-
tem.

BER

1074 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
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-0- LS-MMSE - EM-2 .t

—*— EM-PIC
== Allpilot-MMSE
—— Allpilot-MMSE-PIC

—— LS-MMSE-PIC
--O- LMMSE-MMSE
—©6— LMMSE-MMSE-PIC

FiGUre 4: BER performances of receiver structures in terms of sys-
tem capacity usage.

shown that the BER performance of the proposed receiver
structure is much better that the combined MMSE-PIC re-
ceiver in the case of LS, LMMSE while approaches the perfor-
mance of the all-pilot and perfect channel estimation cases.
We also determined BER performance of the algorithm
as a function of the system capacity usage for E;/Ny = 12 dB.
As shown in Figure 4, the BER performance will degrade as
the total capacity usage approaches full load for both two de-
tection schemes. On the other hand, our simulation results
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FIGURE 6: Optimal truncation property of the KL expansion.

show that the performance difference between MMSE and
MMSE-PIC detection becomes more distinguishable as the
total active users decreases.

7.2. Theoptimal truncation property

The KL expansion minimizes the amount of information re-
quired to represent the statistically dependent data. Thus,
this property can further reduce the computational load of
the channel estimation algorithm. An example of the Eigen-
spectrum is shown in Figure 5 for the correlation matrix of
the channel given in (31). Since the Eigenspectrum of the
correlation matrix among different frequencies has an ex-
ponential profile, a reduced set of channel parameters can
be employed. Therefore, the optimal truncation property of
the KL expansion is exploited in Figure 6 where MSE perfor-
mances versus the number of coefficient used KL expansion

are given for 12dB and 16 dB. If the number of parameters
in the expansion includes dominant eigenvalues (Rank = 8),
it is possible to obtain an excellent approximation with a rel-
atively small number of KL coefficients.

7.3. Mismatch simulations

Once the true frequency-domain correlation, characterizing
the channel statistics and the SNR values, is known, the chan-
nel estimator can be designed as indicated in Section 4. In
the previous simulations, the autocorrelation matrix and the
SNR were assumed to be available as a priori information at
the receiver. However, in practice the true channel correla-
tion and the SNR are not known. It is then important to an-
alyze the performance degradation due to a mismatch of the
estimator to the channel statistics to check its robustness to
the variation of these parameters.

Correlation mismatch

We designed the estimator for a uniform channel correlation
which gives the worst MSE performance among all channel
models and evaluated it for an exponentially decaying power
delay profile. Note that as 7, goes to infinity, the power de-
lay profile of the channel given by (31) approaches to the uni-
form power delay profile with autocorrelation

1 iftk=k
1— e—jZnL(k—k’)/NL- (32)

Cu(k, k') = .
milk k)N, TR

Figure 7 demonstrates the estimator’s sensitivity to the
channel statistics as a function of the average MSE perfor-
mance for the following mismatch cases.

Case 1. True statistic = 7,ns = 1,L = 4, N, = 128.
Mismatch = 7, = 0, L =4, N, = 128.

Case 2. True statistic = T;ms = 1,L = 8, N, = 128.
Mismatch = 7. = c0,L = 8, N, = 128.

From the mismatch curves presented in Figure 7, it is
seen that for Case 1, practically there is no mismatch degra-
dation observed when the estimator is designed for mis-
matched channel statistics specified above. Thus, we con-
clude that the estimator is quite robust against the channel
correlation mismatch for Case 1. For Case 2 frequency selec-
tivity of the channel is increased by increasing the channel
length L. In this case, we observed that the mismatch perfor-
mance of the estimator was degraded moderately. In fact, the
performance degradation between true and mismatch cases
is approximately 0.9 dB for BER = 1073.

In Figure 8, we investigate again sensitivity of estimator
to the channel statistics between the true correlation with
Trms = 1 and the effective channel length L = 4 against
Trms = o and for L = 2, 3, 4, 5, 6. We conclude from the
mismatch curves presented in Figure 8 that the mismatch af-
fects substantially on the MSE performance when L is less
than the correct channel length, and affects less when L is
greater than the correct channel length.
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SNR mismatch

The BER curves for a design SNR of 5dB, 10dB, and 15dB
are shown in Figure 9 with the true SNR performance. The
performance of the EM-MAP estimator for high SNR (15 dB)
design is better than low-SNR (5dB) design across a range
of SNR values (10-18 dB). These results confirm that the
channel estimation error is concealed in noise for low SNR
whereas it tends to dominate for high SNR. Thus, the system
performance degrades especially at low-SNR region.

I SERRERS S SULEEERETEEER SRR ERSERRS SR EREESEE:
5dB design -
L A S E SRR R ER SR RS
E -+ 10dB design
1073 Frestrr it NN 1] ]
15dB design -
10—4 1 1 1 1 1 1 L L L L f
0 2 456 8 10 12 141516 18

Ep/Ny

—— True SNR
—8- SNR design = 5dB

—0— SNR design = 10dB
—#— SNR design = 15dB

FiGURE 9: SNR mismatch.

8. CONCLUSIONS

In this work we have presented an efficient EM-MAP
channel-estimation-based PIC receiver structure for down-
link MC-CDMA systems. This algorithm performs an itera-
tive estimation of the channel according to the MAP crite-
rion, using the EM algorithm employing MPSK modulation
scheme with additive Gaussian noise. Furthermore, the ad-
vantage of this algorithm, besides its simple implementation,
is that the channel estimation is instantaneous, since the sig-
nal and the pilot are orthogonal code division multiplexed
(OCDM) and they are distorted at the same time. Moreover,
it was shown that KL expansion without optimal truncation
property did not enable us to estimate the channel in a very
simple way without taking inverse of large dimensional ma-
trices for MC-CDMA systems. Computer simulation results
have indicated that the MSE and BER performance of the
proposed algorithm is well over the conventional algorithms
and approaches to the MCRLB by iterative improvement. Fi-
nally, we have also investigated the effect of modelling mis-
match on the estimator performance. It was concluded that
the performance degradation due to such mismatch is negli-
gible especially at low SNR values.

ACKNOWLEDGMENTS

This work was supported in part by the Turkish Scientific
and Technical Research Institute (TUBITAK) under Grant
no. 104E166 and the Research Fund of Istanbul University
under Projects UDP-889/22122006, UDP- 921/09052007, T-
856/02062006. This research has been also conducted within
the NEWCOM-++ Network of Excellence in Wireless Com-
munications funded through the EC 7th Framework Pro-
gramme. Part of the results of this paper was presented at the
IEEE Wireless Communications and Networking Conference
(WCNC-2007), March 11-15 2007, Hong Kong.



Hakan Dogan et al.

REFERENCES

[1] N. Yee, J.-P. Linnarz, and G. Fettweis, “Multi-carrier CDMA

in indoor wireless radio networks,” in Proceedings of the 4th
IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC *93), pp. 109-113, Yokohama,
Japan, September 1993.

K. Fazel and L. Papke, “On the performance of convolution-
ally-coded CDMA/OFDM for mobile communication sys-
tem,” in Proceedings of the 4th IEEE International Sympo-
sium on Personal, Indoor and Mobile Radio Communica-
tions (PIMRC ’93), pp. 468-472, Yokohama, Japan, September
1993.

S. Hara and R. Prasad, “Overview of multicarrier CDMA,”
IEEE Communications Magazine, vol. 35, no. 12, pp. 126-133,
1997.

[16] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P.

O. Borjesson, “Analysis of DFT-based channel estimation for
OFDM,” Wireless Personal Communications, vol. 12, no. 1, pp.
55-70, 2000.

O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O.
Borjesson, “OFDM channel estimation by singular value de-

composition,” IEEE Transactions on Communications, vol. 46,
no. 7, pp. 931-936, 1998.

J. Zhu and W. Lee, “A low-complexity channel estimator for
OFDM systems in multipath fading channels,” in Proceedings
of 15th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’04), vol. 3, pp. 1978—

1982, Barcelona, Spain, September 2004.

S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estima-
tion techniques based on pilot arrangement in OFDM sys-
tems,” IEEE Transactions on Broadcasting, vol. 48, no. 3, pp.

(4 223-229, 2002.

—

S.Iraji, T. Sipila, and J. Lilleberg, “Channel estimation and sig-
nal detection for MC-CDMA in multipath fading channels,”
in Proceedings of the 4th IEEE International Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC ’93),
Yokohama, Japan, September 1993.

[5] V. Kuhn, “Combined MMSE-PIC in coded OFDM-CDMA
systems,” in Proceedings of the IEEE Global Conference on
Telecommunications (Globecom °01), pp. 231-235, San Anto-
nio, Tex, USA, November 2001.

[6] M. Feder and E. Weinstein, “Parameter Estimation of super-
imposed signals using the EM algorithm,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 36, no. 4, pp.
477-489, 1988.

[7] Y. Xie and C. N. Georghiades, “Two EM-type channel estima-
tion algorithms for OFDM with transmitter diversity,” IEEE
Transactions on Communications, vol. 51, no. 1, pp. 106-115,
2003.

[8] L. B. Nelson and H. V. Poor, “Iterative multiuser receivers for
CDMA channels: an EM-based approach,” IEEE Transactions
on Communications, vol. 44, no. 12, pp. 1700-1710, 1996.

[9] A. Kocian and B. H. Fleury, “EM-based joint data detection
and channel estimation of DS-CDMA signals,” IEEE Transac-
tions on Communications, vol. 51, no. 10, pp. 1709-1720, 2003.

[10] A. A. D’Amico, U. Mengali, and M. Morelli, “Channel esti-
mation for the uplink of a DS-CDMA system,” IEEE Transac-
tions on Wireless Communications, vol. 2, no. 6, pp. 1132-1137,
2003.

[11] H. A. Cirpan, E. Panayirci, and H. Dogan, “Nondata-aided
channel estimation for OFDM systems with space-frequency
transmit diversity,” IEEE Transactions on Vehicular Technology,
vol. 55, no. 2, pp. 449-457, 2006.

[12] H. Dogan, H. A. Cirpan, and E. Panayirci, “Iterative channel
estimation and decoding of turbo coded SFBC-OFDM sys-
tems,” IEEE Transactions on Wireless Communications, vol. 6,
no. 8, pp. 3090-3101, 2007.

[13] S.M. Kay, Fundamentals of Statistical Signal Processing: Estima-
tion Theory, Prentice-Hall, Englewood Cliffs, NJ, USA, 1993.

[14] K. W. Yip and T.-S. Ng, “Karhunen-Loeve expansion of the
WSSUS channel output and its application to efficient sim-
ulation,” IEEE Journal on Selected Areas in Communications,
vol. 15, no. 4, pp. 640-646, 1997.

[15] B.Yang, Z. Cao, and K. B. Letaief, “Analysis of low-complexity
windowed DFT-based MMSE channel estimator for OFDM
systems,” IEEE Transactions on Communications, vol. 49,

no. 11, pp. 1977-1987, 2001.



	1. INTRODUCTION
	2. DOWNLINK MC-CDMA
	3. CHANNEL: BASIS EXPANSION MODEL
	4. EM BASEDMAP CHANNEL ESTIMATION
	5. PARALEL INTERFACE CANCELLATION (PIC)
	6. MODIFIED CRAMER-RAO BOUND
	7. SIMULATIONS
	7.1. Performance evaluation
	7.2. The optimal truncation property
	7.3. Mismatch simulations

	8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

