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Blind localization and tracking of mobile terminals in urban scenarios is an important requirement for offering new location-
based services, handling emergency cases of nonsubscribed users, public safety, countering IEDs, and so forth. In this context, we
propose a track-before-detect scheme taking explicitly advantage of multipath propagation in an urban terrain by using a priori
information about the known locations of the main scattering objects such as buildings. This information is made available for
localization and tracking by a real-time ray tracing technique based on a 2D geographic database. This allows the prediction of
the directional and temporal structure of the received multipath components for an arbitrary transmitter position. We consider
a single observing station where the direction and the relative time of arrival of the received multipath components can be esti-
mated by an antenna array. By a likelihood function, which is algorithmically defined for a randomly distributed set of potential
transmitter positions, these measurements are compared with those being expected by ray tracing. This likelihood function is the
key component of a track-before-detect scheme providing initial state estimates for mobile transmitter tracking using a particle
filtering technique.
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1. INTRODUCTION

There is a rapid growth of wireless applications that re-
quire the knowledge of the mobile terminal’s location [1].
For position estimation of mobile terminals in cellular net-
works there is a variety of methods that can be distinguished
according to the respective underlying physical principles
[2, 3]. All of them have pros and cons regarding accuracy,
available coverage, cost, technical feasibility, and operational
complexity in different environments and applications. Fur-
thermore, they differ in the level of cooperation between the
mobile terminal and the infrastructure or the other location
reference stations. This makes them more or less suited for
the variety of applications. Blind localization, for example,
presumes no cooperation of the mobile terminal with the lo-
cation reference station. This problem is typical of nonsub-
scribed user localization, for example, in emergency, security,
and safety applications [4].

The first group of localization techniques is based on
trilateration/triangulation utilizing received signal strength
(RSS), time of arrival (ToA), time difference of arrival
(TDoA), direction of arrival (DoA) of the signal, as well as
diverse combinations of them [5, 6]. Some of these methods
(ToA) require strict temporal synchronization between mo-
bile station (MS) and the reference station. Others require
synchronization or at least cooperation between the dis-
tributed reference stations (TDoA, DoA) which is no prob-
lem if they belong to the same network infrastructure. DoA
estimation requires the usage of an antenna array at the base
station (BS). All of those methods, however, presume line-of-
sight (LoS) connection. Whereas in macrocell scenarios with
elevated BSs frequently occuring LoS and near-LoS propaga-
tion give useful information on MS position [7], non-line-
of-sight (NLoS) connection is predominant in urban scenar-
ios if the BS is below roof top or just on street level. Although
some methods of mitigating positioning error due to NLoS
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were presented in the literature [2, 8], missing LoS still re-
mains the major source of error of trilateration/triangulation
based localization in urban scenarios.

Whereas missing LoS detrimentally affects the above-
mentioned techniques, there are methods available which
can compensate this drawback by taking explicitly advantage
of the multipath structure of wave propagation [7]. Finger-
print methods [9] belong to this group. They are based on
some “comparison” of measured radio parameters, for exam-
ple, channel impulse response (CIR) signature or DoA signa-
ture to precalculated or premeasured reference data. Correla-
tion with premeasured data is most common for indoor sce-
narios [5] since high costs for creating the database exclude
its application to outdoor scenarios. Moreover, precalcula-
tion of the reference data by application of ray tracing (RT)
methods based upon an accurate database of the propagation
environment constitutes extensive effort since all possible MS
positions relative to the fixed reference position must be con-
sidered in advance. On the other hand, fingerprint meth-
ods are inherently well suited for single station localization
(SSL) since they do not apply trilateration or triangulation.
Instead, they compensate missing measured geometrical pa-
rameters by exploiting the a priori information about the ge-
ometric structure or the electromagnetic response of the en-
vironment. The method proposed in [4] uses blind estimates
of DoA fingerprints at a single elevated BS (which simultane-
ously acts as observing station (OS)) that are compared to a
dataset precalculated from a 3D geographic database by RT.

In this paper, the main goal is the blind localiza-
tion/tracking of a mobile terminal at an OS that is not a part
of the network infrastructure. Blind MS location estimation
has different facets. Firstly, the spatial/temporal (DoA/ToA)
structure of the channel (which is assumed to carry the in-
formation on the spatial location of the terminal relative to
the observer position) has to be carried out without know-
ing details about the transmitted signal. Appropriate blind
space-time-filtering techniques are required to estimate both
the spatial and the temporal characteristics of the radio chan-
nel. Secondly, because of a lack of temporal synchronization
between OS and MS, ToA estimation submits only excess
(or relative to LoS) delay of the multiple propagation paths.
Thirdly, since in the blind case the OS is not part of the net-
work infrastructure, its received signal can be more vulnera-
ble to interference and noise. On the other hand, a dedicated
OS can be moving which allows the fusion of data measured
from different OS positions and hence with different infor-
mational content concerning the MS location. It furthermore
allows the optimization of OS position regarding the SNR,
providing a clear advantage over infrastructure based local-
ization.

Concerning the first point, we assume in this paper that
this problem has been solved at the OS carrying an antenna
array (see [10]). It is furthermore assumed that the OS is able
to separate the multipath components belonging to differ-
ent MSs, therefore the more realistic multiuser situation can
be reduced to the single MS case. That is, the OS provides
the estimates of path’s direction (DoA) and the relative delay
(ToA) which characterize a single MS. In the sequel, we re-
fer to these parameters as “measured multipath parameters.”

The reader is referred to [11] which describes subspace-based
joint space-time filtering and estimation procedures. From
field trials in real propagation environments it is well known
that measured DoA/ToA parameters are subjected to errors
leading to variances of the estimated parameters. Moreover,
the chosen model order can be not correct. Overestimation
of model order may even create completely wrong results
which pretend spurious (or false) paths. This is even aggra-
vated by the nonuniform angular responses of the real an-
tenna arrays because of element coupling and imperfect cal-
ibration [11].

If the MS position is calculated from those erroneous
multipath parameters, this may result in completely wrong
coordinates. However, from the field trials mentioned it is
obvious that the multipath parameters that can be clearly at-
tributed to dominant objects in the environment typically
sustain over longer parts of the OS track, even if these pa-
rameters are slowly changing with time (cf. simulated results
in Figures 7 and 8). For example, whereas a path can disap-
pear at some position because of destructive interference, it
can show up even stronger at another OS position. Also LoS
can occur from time to time depending on the structure of
the propagation environment. So, path parameter tracking
has the potential to considerably increase the reliability of lo-
cation estimation results. This leads us to the main contri-
bution of this paper. Just in the spirit of track-before-detect
techniques (see [12, 13]), we propose to integrate the infor-
mation included in the radio channel observations over time
by applying the path parameter tracking in the first process-
ing step. In the second step, we accomplish the detection and
state estimation of the MS by means of a particle filtering
technique using the predefined likelihood function.

The paper is organized as follows. In Section 2, we intro-
duce the localization principle, the underlying measurement
model, and the likelihood function. The multipath parame-
ter tracking is introduced in Section 3. In Section 4, we an-
alyze the performance of the localization algorithm in syn-
thetic urban scenarios. Finally, Section 5 summarizes the pa-
per and presents an outlook on our future work.

2. LOCALIZATION PRINCIPLE

For SSL, we are looking for a data model which allows tracing
back the geometric information (DoA, relative ToA) to the
mobile terminal measured at the single mobile OS. The fol-
lowing considerations reveal the nature of the problem and
its solution. Since blind SSL can only measure the relative
ToA, information on the LoS distance between OS and MS
is lost. If there were pure LoS connection, we could estimate
only the looking direction from the OS to the mobile ter-
minal which is insufficient for localizing the MS since the
distance is missing. However, if there are multiple delayed
impinging paths resulting from reflections at dominant ob-
jects in the environment, this would give us additional in-
formation since we can trace them back from the OS to the
hypothetical MS position. For this purpose, we propose to
exploit a priori information about the geometry of the en-
vironment from additional sources and process it by means
of a RT analysis. Using this approach, it will be possible to
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carry out a blind SSL in LoS or even in more difficult NLoS
scenarios.

2.1. Wave propagation prediction via 2D ray tracing

In essence, the proposed RT analysis marks the same idea
which was already discussed for fingerprint location meth-
ods. However, in contrast to the approach in [4], any precal-
culating and pre-measuring is impossible if the OS is moving.
This means that the a priori knowledge about the geometric
structure of the environment has to be processed on-the-fly
as a part of the localization procedure. For this end, we pro-
pose to include a real-time RT model into the blind SSL ap-
proach.

In a RT analysis, the propagating radiowaves are modeled
by rays following the laws of geometrical optics and uniform
theory of diffraction [14]. The RT analysis for radiowave
propagation normally consists of two processing steps. In the
first step, the search occurs for possible rays radiating from
the transmitter position and interacting with obstructions
placed in the surrounding area, until finally arriving at the
receiver position. In the second step, the electromagnetic pa-
rameters of a particular traced ray are calculated regarding
the information of its length, the kind of undergone inter-
action phenomena, and dielectric material properties of in-
volved obstacles. Here we assume equal material properties
for all surrounding buildings, while the exact values are un-
known. For the sake of computational simplicity we use only
2D terrain data instead of 3D data. Moreover, it may be easier
to get 2D data from maps or photos. This should be especially
sufficient in case of urban scenarios and the OS on street
level. In case of more elaborate scenarios and with available
information, the data model can be extended to 3D.

Figure 1 demonstrates a ray tracing example in a sim-
ple, synthetic 3D environment and Figure 2 presents its 2D
pendant. The circles represent the OS (or receiver) posi-
tion and MS (or transmitter) position. Hereby, only single
bounce scattering (reflection and diffraction) is considered.
Note that all but one ray which were found in the 3D en-
vironment are also present in a 2D scenario. It is clear that
another MS-OS constellation, a different environment, or a
higher number of allowed interactions can yield more rays
which would be missed in a 2D case. Nevertheless, the rays
corresponding to the 2D case will represent a significant sub-
set of the rays detected in the 3D case especially in urban sce-
narios with OS and MS on the street level. Therefore, it is still
possible to solve the localization and tracking problems using
a 2D terrain data and radiowave propagation model.

Note that rays which are not considered within 2D-RT
analysis would cause a modeling mismatch. In the real mea-
surement applications, this can be avoided by using an an-
tenna array which is able to resolve horizontal and vertical
directions of arrival. Then the paths with large vertical DoAs
corresponding to the elevated reflectors can be sorted out.

There are two commonly used approaches for the ray
search, the launching method and the imaging method
[15]. The implemented RT analysis is based on the imaging
method. Hereby, the transmitted ray is traced by calculating
the imaging point of the transmitter position behind the re-
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Figure 1: 3D synthetic scenario.
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Figure 2: 2D synthetic scenario.

flecting surface. Then the imaging point is connected with
the receiver position, where the connecting line intersects the
reflecting surface in the interaction point. Subsequently, the
trace is determined by connecting the transmitter position,
interaction point, and receiver position. Note that the sin-
gle reflection described above follows the law—the angle of
incidence equals the angle of reflection. Since the multiple
bounce scattering is effectively not a less important propa-
gation phenomenon than a single bounce scattering, we take
into account multiple reflections and diffractions as well as
their combinations.

Obviously, the method takes advantage of rich scatter-
ing. Multiple bounce reflections allow detection of an MS
in NLoS positions even if they are obstructed by multiple
obstacles. However, multiple interactions and thus a longer
distance also increase path attenuation. Therefore, in the RT
model only those rays are considered possessing a minimum
signal level at the receiver position. This signal level depends
on the sensitivity of the particular measurement system and
SNR value. Since we did not specify a particular measure-
ment system, we considered all traced rays in our simula-
tions. The number of traced rays is controlled by the max-
imum number of bounces.
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2.2. Measurementmodel

In this section, we will introduce the underlying measure-
ment model. In the following discussions, we will suppress
the time index whenever there is no danger of ambiguity. Let
us denote the set of measured path parameters for a particu-
lar time index by

z = {zk}nKk=1. (1)

nK is the number of the measured propagation paths which
can vary with time. zk collects the parameters characterizing
the kth measured multipath component and has the follow-
ing structure:

zk =
[
τk ϕk

]T
. (2)

Each multipath component is specified by its relative delay:

τk ∈ [0, τmax], (3)

with τmax denoting the measured delay spread, and by its az-
imuth direction of arrival:

ϕk ∈ [−π,π]. (4)

We denote the known OS position by

r =
[
xr yr

]T
(5)

and the MS position is

d =
[
xd yd

]T
. (6)

Both are allowed to vary with time. In our simulations, we
obtained the “measured path parameters” by modeling the
radio wave propagation between r and d by means of a 2D-
RT. The set of modeled path parameters is denoted by

h(r,d) = hd =
{
hid
}nT
i=1 (7)

and represents the parameters which could be measured if
there were no disturbing factors due to the measurement
process. Note that h(r,d) is a nonlinear function since the
number of the propagation paths and the values of their pa-
rameters depend in a nonlinear way on the position of the
MS and OS. Hereby, nT is the true number of paths at the
MS position d. Parameters characterizing the ith true multi-
path component are contained in a vector:

hid =
[
τid ϕi

d

]T
, (8)

where τid is an excess/relative delay obtained from the origi-
nally calculated length of the corresponding ray lid within the
2D-RT analysis by subtracting the length of the shortest ray
in the set and dividing it by the speed of light:

τid =
(
lid −min

({
lid
}nT
i=1

))

clight
. (9)

r = 0
FOR i = 1 : nT

u∼U[0, 1]
IF u < PD

r = r + 1
m(r) = i

END IF
END FOR

Algorithm 1: Missing paths generation.

m = Poi(nF)
FOR j = 1 : m

h
j
FA = [U[0, max ({τid}

nT
i=1)] U[−π,π] ]

T

END FOR

h̃d = hm
d

⋃
hFA

Algorithm 2: False paths generation.

During the measurement process, the true parameters are af-
fected by different types of errors. Therefore, the measured
path parameters are not identical to the true ones h(r,d). The
low SNR value aggravates the correct separation of the signal
and noise space within the eigenvalue decomposition which
causes missing detections of the true propagation paths or
conversely produces the false paths. Furthermore, we have
to consider the measurement uncertainties which distort the
true parameter values. The modeling mismatch issue, how-
ever, is not considered in this work, that is, we assume that
the real measurement environment is perfectly reproduced
by the 2D-RT.

We assume that missing detections occur randomly and
model it using Algorithm 1. Hereby, PD is the detection prob-
ability of the multipath components, for example, PD = 0.8
means that 80% of the true paths were correctly detected.
With u∼U[0, 1], we describe the realization of the uniform
distribution U[0, 1], hereby 0 and 1 are the interval limits.
Vector m comprises the indices of the detected propagation
paths and the set of detected path parameters is a subset of
hd and is denoted by hmd .

The generation of the false propagation paths is a ran-
dom process as well. We model the number of false paths
(also referred to as spurious paths, false alarms or clutter)
m as a Poisson-distributed random variable with the mean
number of false alarms nF (see Algorithm 2). Since the false
paths originate from the noise space within the eigenvalue
decomposition, their parameters are uniformly distributed

in the delay and DoA domain. h̃d consists of the incomplete
set of true paths and the set of false paths. Finally, we extend
the measurement model to additive measurement noise and
yield the following measurement equation:

z = {h̃kd + wk
}nK
k=1. (10)
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wk denotes the measurement noise with entries:

wk =
[
wk
τ wk

ϕ

]T
, (11)

where wk
τ∼N (0, σ2

τk ) and wk
ϕ∼N (0, σ2

ϕk
) are the realizations

from Gaussian distributions. Let σ2
τk , σ

2
ϕk

denote the noise
variances and let

Ck = diag
(
σ2
τk , σ2

ϕk

)
(12)

denote the noise covariance matrix of the kth measured path.
The values of the noise variances depend on the array config-
uration, system bandwidth, SNR, and are typically different
for every measured propagation path. For simplicity, we as-
sume equal variances for all paths. The measurement model
is now complete. In the next section, we define the underly-
ing likelihood function.

2.3. Data association and likelihood function

The definition of the likelihood function is one of the cen-
tral points of the proposed localization procedure. The like-
lihood function provides a measure of proximity between the
multipath parameters predicted by the 2D-RT analysis for an
arbitrary MS position and the measured multipath parame-
ters obtained by the antenna array at the OS. In calculating
the match between the modeled and measured path parame-
ters, we consider the types of error which distort the path pa-
rameters and those which either cause missing detections of
multipath components or produce the false ones. This leads
to a combinatorial association problem [16, 17] since there
are many ways to interpret the measured data. Since we have
no a priori information about the location of the MS, the
straightforward strategy is to sample the region of interest.
Let us assume a sampled, hypothetical MS position specified
by two Cartesian coordinates:

sp = [ xp yp ]T. (13)

In total, let there be P hypothetical MS positions with p =
1, . . . ,P which can be randomly chosen or arranged in a grid.
P is thus a design parameter of the localization algorithm to
be chosen appropriately depending on the size and the den-
sity of the environmental scenario. We model the radiowave
propagation between the known OS position r and sp by
means of 2D-RT analysis in the same manner as in (7). The
set of predicted path parameters is denoted by

h
(
r, sp

) = hsp =
{
hisp
}nT
i=1

(14)

representing the pendant to the measured parameters de-
fined in (10). Hereby, nP is the number of the predicted prop-
agation paths at the hypothetical MS position sp. Parame-
ters characterizing the ith predicted multipath component
are contained in a vector:

hip =
[
τip ϕi

p

]T
. (15)

Note, that only those paths are considered whose excess de-
lays lie within the measured delay spread τmax defined in (3),
that is, {τip}np

i=1
≤ τmax.

We denote the likelihood function by p(z | sp) which is a
conditional probability density and though can be written as
a sum over all possible data interpretations according to the
total probability theorem:

p
(
z | sp

) =
∑

Ei1···inp

p
(
z,Ei1···inp | sp

)

=
nK∑

i1=0

· · ·
nK∑

inp=0

p
(
z | Ei1···inp , sp

)
p
(
Ei1···inp | sp

)
.

(16)

We denote a possible data interpretation by Ei1,...,inp , where
i1 · · · i j · · · inp is an association vector of modeled to mea-
sured propagation paths, with

i j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, no association, path is not

detected or is due to clutter

k ∈ {1, . . . ,nK
}

, j-th predected path is associated

with the k-th measured path.
(17)

Note that one measured path can be associated only with one
predicted path. Since the number of measured and predicted
paths can differ, there can be several not associated paths.
For example, E0210 represents a possible data interpretation
which means that np = 4, that is, there are 4 predicted propa-
gation paths. Furthermore, the first and the fourth predicted
path were not associated; the second predicted path was as-
sociated with the second and the third predicted paths with
the first measured path. Let us elaborate on the terms from
(16). Under the assumption that the measured propagation
paths are independent of each other, we obtain a factorized
likelihood model conditioned on an association hypothesis
Ei1,...,inp (see [17]):

p
(
z | Ei1···inp , sp

) =
nK∏

k=1

p
(
zk | Ei1···inp , sp

)

=
∏

j∈I0

pC
(
zi j
)·
∏

j∈I
pA
(
zi j | h j

p
)
,

(18)

where I = { j ∈ {1, . . . ,np} ∧ i j /=0} is the subset of n indices
corresponding to the predicted paths which are associated
with the measured paths and I0 = { j ∈ {1, . . . ,np} ∧ i j = 0}
is a subset of nK−n not associated paths. In the above, pC(zi j )
denotes the clutter likelihood model for the i jth measured
path which is assumed to be uniform over the field of view

of the sensor referred to as |FoV| = 2πτmax. pA(zi j | h
j
p)

denotes the association likelihood for an i jth measured path
associated with the jth predicted path. Since the measure-
ment noise is assumed to be independent and Gaussian (see
(12)), the likelihood for the i j th measured multipath compo-
nent, under the hypothesis that it is associated with the jth
predicted path, is given by

pA
(
zi j | h j

p
) = N

(
h
j
p; zi j ,Ci j

)
. (19)
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Following the assumptions made above, the expression (18)
simplifies to

p
(
z | Ei1···inp , sp

) = |FoV|−(nK−n)·
∏

j∈I
N
(
h
j
p; zi j ,Ci j

)
. (20)

The second factor in (16) p(Ei1···inp | sp) is referred to as as-
sociation prior (see [17]). We assume the prior of the associa-
tion hypothesis to be independent of the state and past values
of the association hypothesis and thus can be expressed as a
product of

p
(
Ei1···inp | sp

)

= p
(
i1 · · · inp | n,nK ,np

)
pF
(
nK − n

)
p
(
n | np

)
p
(
np
)
.

(21)

Hereby, the first term describes the probability of a single hy-
pothesis under the assumption that all hypotheses are equiv-
alent and is given as

p
(
i1 · · · inp | n,nK

) = (NH)−1 =
((

np

n

)

· nK !
(nK − n)!

)−1

.

(22)

NH is the number of valid hypotheses which follows from
the number of ways of choosing a subset of n elements from
the available predicted propagation paths np multiplied by
the number of possible associations between associated n and
measured nK paths. Note that np is a hypothetical value of
the true number of measured paths nT , which is normally
unknown. Since we have no a priori information about nT ,
we assume a uniform prior for all values of np:

p
(
np) = 1

max
({
np
}P
p=1

)
+ 1

. (23)

The second term in (21) expresses the probability of nK − n
false alarms:

pF
(
nK − n

) =
(
nF
)(nK−n)

(
nK − n

)
!
·e−nF (24)

which is assumed to follow a Poisson distribution with rate
parameter nF . Finally, the third factor in (21) denotes the
probability of n associated paths which is assumed to follow
the binomial distribution:

p
(
n | np

) =
(
np

n

)

Pn
D

(
1− PD

)(np−n)
(25)

incorporating all possible ways to group n paths among
np assumed true measurements. All measured propagation
paths share the same known detection probability PD accord-
ing to the measurement model introduced in Section 2.2.
Under the assumptions discussed above, the likelihood func-
tion can be expressed as

p
(
z | sp

)∝
∑

Ei1···inp

(
nF|FoV|)(nK−n)

Pn
D·
∏

j∈IN
(
h
j
p; zi j ,Ci j

)

enF nK !
(
1− PD

)(n−np) .

(26)

Table 1: Valid hypothesis after gating.
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Figure 3: Paths mapped into the measurement space.

The number of possible associations NH within the intro-
duced likelihood function can be enormous. It increases
exponentially with the number of measured and predicted
paths. Therefore, suitable techniques for the complexity re-
duction are crucial.

2.4. Gating

Gating is one of the strategies for reducing computational
complexity. Hereby a validation region is defined for each
measured propagation path. Only those predicted paths
which fall within the validation region are allowed to be as-
sociated with the particular measured path.

In the following, we present a gating procedure which is
applied within the proposed localization technique. Figure 3
demonstrates graphically an example of measured and pre-
dicted paths mapped into the measurement space corre-
sponding to the MS-OS constellation of Figure 2. The mea-
sured paths are depicted by circles and their validation re-
gions as ellipses. The filled circles represent the true mea-
sured multipath components whereas the white circles rep-
resent the false paths. The set of the true paths is depicted by
squares. We assumed a situation with two missing and two
false paths.
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missed.

We introduce the normalized squared distance between
the kth measured and ith predicted path based on measure-
ment uncertainties:

dk,i = (zk − hid
)T(

Ck
)−1(

zk − hid
)
. (27)

Since the measurement noise is assumed to be Gaussian, dk,i

is chi-square distributed with the 2 degrees of freedom which
is equal to the dimension of zk. ε denotes the parameter de-
termining the boundaries of the validation region. The vali-
dation region is an ellipsoid that contains a given probability
mass. For example, ε = χ2

2;0.99 means that the corresponding
validation region contains 99% of probability mass. The as-
sociation between the kth measured and ith predicted prop-
agation path is valid if dk,i ≤ ε. This condition decreases the
number of possible hypotheses significantly. Applying this
pruning strategy to the example from the Figure 3, we obtain
the following hypotheses sorted according to the number of
achieved associations between the measured and predicted
paths.

E00000 is the null hypothesis which considers the case that
all measured paths are false alarms. Note that Table 1 con-
tains 12 valid hypotheses which contain the major likelihood
weight. An exhaustive calculation would require the consid-
eration of 1546 hypotheses according to (22). However, the
contribution of most of them is negligible and can be ig-
nored.

2.5. Impact ofmissing and false paths on
the positioning accuracy

In this section, we demonstrate with a simple example, how
missing and false propagation paths affect the localization
result. Therefore, we use the already known MS-OS con-
stellation from Figure 2. Remember that the true parame-
ters depicted by squares are represented in Figure 3. We con-
sider three different cases and calculate the likelihood func-
tion using a grid of 0.5 m for each case. Figure 4 presents
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Figure 5: Region D corresponds to the case with one false and no
missing paths.

three regions corresponding to the three cases which con-
tain ca. 95% of the whole probability mass of the respec-
tive likelihood function. Hereby, region A corresponds to
the ideal case with no spurious paths and no missing true
paths. Region B corresponds to the situation, where h5

d, the
5th true path, is missed, and for region C we assumed that
the 3rd true path h3

d is missed. Furthermore, we assumed
PD = 0.8, nF = 1 and a measurement noise covariance of
Ct = diag((3 m/cLight)

2, (3◦)2). However, we do not add mea-
surement noise and false paths since we want to test the im-
pact of nondetection alone.

We observe that the true MS position is included in all
of these regions. Furthermore, we observe the enlarging of
the uncertainty regions in case B and C compared to case
A. Note, furthermore, that whereas the difference between
case A and B is marginal, it is more significant between cases
A and C. It means that missing true paths in general leads
to a poor positioning accuracy. However, the impact of dif-
ferent missed paths can be different. This behavior can be
explained as follows. In the set of propagation paths corre-
sponding to the particular position some of the paths char-
acterize this position in a distinctive way since they can be
received only from this position. If these paths are not de-
tected, for example, due to measurement disturbances, the
positioning uncertainty will increase significantly, like in case
C. On the other hand, there are propagation paths whose pa-
rameters are related to other MS positions as well. Therefore,
we obtain negligible deterioration of positioning accuracy if
they are missed, like in case B.

Now, we attend to the case D depicted in Figure 5. Here
we assumed no missing paths and one false propagation

path with parameters [28 m 124◦]
T
. Note that region D

containing ca. 95% of the likelihood weight does not include
the true MS position. That is, although all paths were cor-
rectly detected, the position estimation results in wrong co-
ordinates due to the single spurious path.

In the next section, we propose a technique which miti-
gates the impact of missing and false paths on the positioning
accuracy.
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Initialization

t = 1; c = 0; ĝkt = [zkt (1) 0 zkt (2) 0]
T

;Pk
t = PInit

WHILE t < Tp

t = t + 1
[y,Y] = Association [ĝkt−1,Pk

t−1, zt ,Ct]
IF y /=[ ]&Y /=[ ]

c = 0
ELSE

c = c + 1
END IF
IF c < M

[ĝkt ,Pk
t ] = KF path [ĝkt−1,Pk

t−1, y,Y]
ELSE

t = Tp

END IF
END WHILE

Algorithm 3: Path parameter tracking procedure.
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Figure 6: 2D synthetic scenario with MS trajectory.

3. MULTIPATH PARAMETER TRACKING
FOR LOCALIZATION

The simulations have shown that missing propagation paths
as well as the presence of false paths can severely degrade
the positioning accuracy. For example, the spurious paths
produce more association hypotheses and obviously results
in a higher likelihood value for the incorrect hypothetical
MS positions. On the other hand, due to the incomplete set
of true parameters contained in the measured path set, the
highest likelihood value can be achieved at the incorrect hy-
pothetical MS position if its predicted paths fit better with
the observation. In order to make the assumptions about the
true and spurious propagation paths more precise, we pro-
pose to use a priori information included in the temporal be-
havior of the mobile radio channel. In [18], investigation re-
sults on the estimation of the varying space-time structure of
the mobile radio channel in the context of multidimensional
channel modeling [19] are presented. The underlying mea-
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Figure 7: Relative path lengths: light dots represent measurement;
black tracks represent the tracking result; circles represent the true
values.

surements were carried out by means of a real-time chan-
nel sounder [20] which delivers instantaneous radio chan-
nel observations referred to as snapshots. From each of these
snapshots, a set of multipath parameters is estimated. It was
observed that the straightforward assumption about tempo-
ral independency of subsequent snapshot estimates is not
correct. On the contrary, it was found out that the specu-
lar part of the channel response contains wave propagation
paths which persist along a limited number of snapshots.
A maximum likelihood batch estimation procedure for the
tracking of multipath parameters was implemented and ver-
ified on measured data. The insight gained into the mobile
radio channel modeling can be directly applied to the pur-
pose of localization. We propose to use the multipath track-
ing procedure in order to evaluate the reliability of the mea-
sured propagation paths. The false paths possess a random
occurrence character and do not persist during the obser-
vation period of few measurements in contrast to the true
paths which parameters vary deterministically depending on
the dynamics of the MS and OS. It is desirable to detect the
false paths and to exclude them from the localization process
since they deteriorate the position estimation. On the other
hand it is important to detect and to maintain the tracks of
the true paths. In the following we will try to satisfy these re-
quirements by applying a tracking technique to the sequence
of measurements.

3.1. Multipath parameter tracking procedure

We propose to use a parallel bank of linear Kalman filters
for tracking the measured paths. In situations with closely
spaced parameters corresponding to different paths, we ap-
ply a nearest neighbor principle [21]. Although the following
example demonstrates the procedure in case of a single path,
it can easily be extended to a number of paths. Let us denote
the state variable of the kth propagation path at time t by

gkt =
[
τ τ̇ ϕ ϕ̇

]T
. (28)
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Hereby, τ̇ and ϕ̇ describe the mean variation rate of the ex-
cess delay and direction of arrival, respectively. The transition
matrix is defined by

Φ =
[

F 02×2

02×2 F

]

, (29)

where 02×2 is a 2 × 2 zero matrix and

F =
[

1 T
0 1

]

, (30)

with a time interval T . The state equation can be written as

gkt = Φ·gkt−1 + vkt−1, (31)

where

vkt−1 =
[
T2

2
ντ̈,t−1 Tντ̈,t−1

T2

2
νϕ̈,t−1 Tνϕ̈,t−1

]T
(32)

is the process noise according to [22], with ντ̈∼N (0, σ2
τ̈) and

νϕ̈∼N (0, σ2
ϕ̈). Hereby, στ̈ and σϕ̈ specify the nonlinearities

in the variation rate of excess delay and direction of arrival,
respectively. Their values can be roughly estimated from the
highest expected velocity of the MS and OS. With (32), we
can define the covariance matrix of the process noise:

Q = E
[
vkt−1·

(
vkt−1

)T]
, (33)

with E[·] denoting the expectation operator. For simplicity,
Q is assumed to be constant and equal for all paths and points
in time. The measured parameters of the particular path la-
beled with the time index are related to the state of the path
via the linear measurement equation:

zkt =
[

1 0 0 0
0 0 1 0

]

·gkt + wk
t = Hgkt + wk

t , (34)

in accordance with the measurement model (10), (11), and
(2). A pseudocode description of a single cycle of the multi-
path tracking procedure is presented in Algorithm 3.

The input data consists of path parameters measured at
Tp points in time and the corresponding covariance matri-
ces. The output contains the sequence of state estimates of a
single path with the corresponding covariance matrices. The
path track is initialized by the kth measured path and initial
state covariance matrix PInit. There are nK measured paths
at each point in time, however, only one measurement can
be associated with the predicted state estimate. We propose
to use the nearest neighbor principle in order to choose the
most suitable candidate. The corresponding pseudocode can
be found in Appendix A.1. The output of the association pro-
cedure y and Y denotes the associated measured path and its
covariance matrix. y and Y are empty (y = [ ], Y = [ ]), if no
association could be achieved. In this case, the subsequent
Kalman filter proceeds without filtering step (see for details
in Appendix A.2). Furthermore, the counter c which collects
the number of nonassociations within the recent M points in
time is increased by one. As soon as c achieves M, the track
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is declared to be finished. This functionality allows to bridge
over the gaps in the track caused by the missing detections of
the true paths. Moreover, it enables to detect the false paths
which normally can not be continued.

For the sake of simplicity, the functionality of the demon-
strated procedure was limited to the tracking of a single path.
It can be extended to tracking of a number of paths. In the
next section, we present the simulation results of the pro-
posed path tracking algorithm.

3.2. Simulation results formultipath
parameter tracking

Figure 6 presents the synthetic 2D scenario used for simu-
lations. We assumed a static OS and an MS moving along
the depicted straight trajectory. The number of observations
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Figure 11: Case 1: particle distribution after the first SIR cycle.

Tp was set to 100. The measurement noise covariance was
set to Ck

t = diag((1m/cLight)
2, (3◦)2) and is assumed to be

equal for all paths and points in time. Furthermore, we as-
sumed PD = 0.8 and nF = 4. We generated the measure-
ment using the model explained in Section 2.2. Hereby, we
assumed a single bounce scattering for these simulations.
Figure 7 presents the relative path lengths and Figure 8 the
DoAs against time. In spite of the disturbances due to the
measurement noise, and nondetection process, the estimated
parameters almost match the true ones. This can be also ob-
served in Figure 9 which shows the number of the tracked,
true, and measured paths over time depending on the chang-
ing environment.

4. EXPERIMENTS AND RESULTS

In this section, we present the simulation results of the
proposed space state initialization technique for the blind
MS tracking. We use the synthetic scenario represented in
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Figure 12: Case 1: Initialization result achieved after the fifth SIR
cycle.
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Figure 13: Case 2: particle distribution after the first SIR cycle.

Section 3.2. We will try to initiate the track at different parts
of the trajectory depicted in Figure 6 in order to evaluate
the performance of the algorithm under different environ-
mental conditions. Moreover, it is informative to observe the
dependency of the positioning result from the true num-
ber of propagation paths which can be seen from Figure 9.
In the first case, we assumed an NLoS MS position “round

the corner,” it is given by [130 m 125 m]
T

. In the second

case, we also chose an NLoS position at [ 71 m 125 m ]
T

which is obstructed by a building. The third case demon-

strates a LoS position at [41m 125 m]
T

. The velocity vector

[−1 m/s 0 m/s ]
T

corresponding to a pedestrian velocity is
equal in all three cases. The measurement noise covariance
was set to Ck

t = diag((3 m/cLight)
2, (5◦)2). Furthermore, we

assumed PD = 0.8 and nF = 4. We have applied a sam-
pling importance resampling (SIR) filter, a well-known parti-
cle filtering technique (see [13, 23]), for the MS position ini-
tialization. Within the SIR procedure, we used the proposed
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likelihood function with preceding path parameter tracking.
The pseudocode of the SIR filter and the flow chart of the
whole initialization algorithm are presented in Appendices
A.3 and A.4, respectively.

The following rough assumptions concerning the initial
MS state were considered within the SIR algorithm. The MS
is located somewhere outdoor in the region of interest de-
picted in Figure 10, that is, the location probaibility is equal
for all outdoor positions. Hence, we model the initial posi-
tion uncertainty as a uniform distribution in the region of
interest except for the indoor areas. We assume the measure-
ment rates of at least 1 observation per second, that is, the
state variation of the MS moving with the maximum veloc-
ity of up to 5 km/h (valid for pedestrian area) is negligible.
Therefore, we limit the MS state to the x and y coordinates
only and define the following state dynamics function:

sp,t = I·sp,t−1 + ωp,t−1, (35)

where sp,t denotes the sampled MS position p at time t, spec-
ified in (13) also referred to as a particle. I is a 2 × 2 iden-
tity matrix and ωp,t−1 is a process noise with the entries

ωp,t−1 = [ωx ωy]T which are modeled as realizations from
Gaussian distributions ωx∼N (0, σ2

x) and ωy∼N (0, σ2
y). In

our example, σx and σ y were set to 5 m. The measurement
equation is given by (10) and the likelihood function avail-
able for pointwise evaluation is defined in (26). That is, the
assumptions required to use the SIR are satisfied (see [13]).
Figure 10 shows 1000 samples randomly chosen from the re-
gion of interest which approximate the initial position un-
certainty. During the first cycle of the SIR algorithm, the
likelihood weight is evaluated for every particle. The sub-
sequent resampling step eliminates particles with low like-
lihood weights and multiplies particles with high likelihood
weights. Figure 11 presents the particle distribution for the
first case after the resampling in the first cycle of the SIR fil-
ter. Note how the particles are crowded around the true MS
position depicted by a black circle. After the fifth SIR cycle,
we obtained a distribution shown in Figure 12 and stopped
the filtering. The estimated position depicted by light point
lies very close to the true MS position. The ellipse indicates
the 3σ region of the estimated state covariance matrix.

The second case is the most difficult one. Figure 13 shows
the wide distribution of particles after the first SIR cycle.
Only few of them are close to the true MS position. This be-
havior is caused by the fact that there are only 3 true propaga-
tion paths at this MS position (see Figure 9, time index 60).
Therefore, we achieve inferior position accuracy compared
to the first case (see Figure 14).

Figure 15 presents the initialization result for the third
case achieved after the fifth SIR cycle. Note that the 3σ ellipse
is the smallest in this case. This is due to the highest number
of propagation paths corresponding to this MS position (see
Figure 9, time index 90).The simulations were carried out in
MATLAB. For a single cycle of the algorithm, we needed ca.
3 minutes using a 3 GHz PC.

5. CONCLUSION

We presented a track-before-detect method for initialization
of blind mobile terminal tracking in urban scenarios. The key
role plays, hereby, the proposed likelihood function which
determines the proximity of the measured and predicted
multipath components with respect to all possible associ-
ation hypotheses between them. The measurements of the
multipath components are provided by an OS equipped with
an antenna array. The predicted temporal and spatial struc-
ture of the multipath components is generated by means of
the 2D-RT analysis using a priori information about the lo-
cation of the scattering objects.

In order to mitigate the impact of missing and false prop-
agation paths on the positioning result, we proposed the pre-
processing of the measured path parameters by means of a
linear Kalman filter.

The likelihood function which is algorithmically defined
for a randomly distributed set of potential MS positions was
applied within the particle filtering technique and was tested
in the synthetic environment. The simulation results showed
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ŝ = {ŝi}Tp−TD
i=1 , P̂s = {P̂si }
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Figure 16: Flow chart of the proposed state space initialization
technique.

that the proposed track-before-detect technique provides a
robust and accurate state initiation which is essential for the
subsequent track maintenance part of the MS tracking algo-
rithm. This, however, is the subject of our future work.

APPENDIX

A.1. Association procedure

Algorithm 4 shows the association procedure used within the
tracking of multipath parameters. Hereby, ĝt−1 and Pt−1 de-
note the state estimate and state covariance of the previous
point in time. μ is a state prediction and Sk is the mea-
sured innovations covariance. dk denotes the squared dis-
tance based on the measurement innovations for the kth
measured path and ε denotes the validation region. A mea-
sured path with the smallest squared distance d j lying within
the validation region is assumed to be the most suitable can-
didate for the association with ĝt−1.

A.2. Kalman filter formultipath parameter tracking

The Kalman filter equations presented in Algorithm 5 belong
to the standard procedure and can be found in [13, 21]. If
there is no measurement at the current point in time t avail-

[y,Y]=Association [ĝt−1,Pt−1, {zkt }
nk
k=1, {Ck

t }
nk
k=1]

μ = Φ·ĝt−1

FOR k = 1 : nk
Sk = H(Φ·Pt−1·ΦT + Q)HT + Ck

t

dk = (zkt − μ)
T
(Sk)

−1
(zkt − μ)

END FOR
d j = min ({dk}nkk=1)
IF d j ≤ ε

y = z
j
t

Y = C
j
t

ELSE
y = [ ]
Y = [ ]

END IF

Algorithm 4: Path association procedure.

[gt|t ,Pt|t]=KF path [gt−1|t−1,Pt−1|t−1, zkt ,Ck
t ]

Prediction step:
gt|t−1 = Φ·gt−1|t−1

Pt|t−1 = Φ·Pt−1|t−1·ΦT + Q
IF zkt /=[ ]

Kt = Pt|t−1HTS−1
t

St = HPt|t−1HT + Ck
t

Filtering step:
gt|t = gt|t−1 + Kt (zkt −Hgt|t−1)
Pt|t = Pt|t−1 −Kt·St·KT

t

ELSE
gt|t = gt|t−1

Pt|t = Pt|t−1

END IF

Algorithm 5: Kalman filter for path parameter tracking.

able, the predicted state gt from (31) is taken without filtering
step.

A.3. SIR filter

Algorithm 6 presents the pseudocode of the SIR particle fil-
ter. Here, the term p(st | si,t−1) denotes the transitional prior
which is chosen instead of optimal importance density. N is
the number of samples. The weight w̃i,t of each generated
sample si,t is proportional to the value of the likelihood func-
tion given by (26). The weights are normalized before the
resampling stage. The detailed information about the resam-
pling procedure as well as the SIR filter can be taken from
[13, 23].

A.4. Flow chart of the proposed state space
initialization algorithm

In Figure 16 the flow chart of the proposed initializa-
tion technique is presented. The multipath association is
carried out using the nearest neighbor principle like in
Appendix A.1, extended to the multipath case.
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[ŝt , P̂s
t] = SIR[{si,t−1}Ni=1, zt]

FOR i = 1 : N
si,t∼p(st | si,t−1)
w̃i,t = p(zt | si,t)
END FOR

m =
N∑

i=1
w̃i,t

FOR i = 1 : N
wi,t = m−1·w̃i,t

END FOR

Algorithm 6: SIR Filter.

Hereby, the squared distances are calculated between all
existing path tracks and the actual measured parameters. Be-
ginning with the smallest squared distance corresponding
to one measured and tracked path pair, the associations are
specified iteratively within the multipath association proce-
dure. Not associated measured paths addressed by the index
subset I0 are used to initialize the new path tracks. The as-
sociated measured paths with the indices contained in I are
processed by means of the Kalman filter bank. The path track
deletion occurs individually for those paths which were not
associated during M cycles like in the case with the single
path from Section 3.1. Note that only after some delay time
TD which is needed for the detection of the false path tracks
and the confirmation of the existing path tracks, the actual
MS track initiation occurs via particle filtering technique
from Appendix A.3. The result of the sequential state esti-
mation is saved in ŝ and its uncertainty in P̂s.

ABBREVIATIONS

BS: Base station: it provides the whole spectrum of
wireless communication services within cellular
network, for example, handling traffic and
signaling, transcoding of speech channels,
allocation of radio channels to mobile terminals,
quality management of transmission, and reception

CIR: Channel impulse response
DoA: Direction of arrival
GPS: Global positioning system
IED: Improvised explosive device
LoS: Line of sight connection
MS: Mobile station: mobile phone or terminal
NLoS: Nonline of sight connection
OS: Observing station: its task is the localization of MSs

only. This is the main difference to the BS, which
primarily serves for speech and data transfer over
the air interface

RSS: Received signal strength
RT: Ray tracing
SIR: Sampling importance resampling
SNR: Signal to noise ratio
SSL: Single station localization
TDoA: Time difference of arrival
ToA: Time of arrival.
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