
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 349465, 17 pages
doi:10.1155/2008/349465

Research Article
Using High-Level RTOSModels for HW/SW Embedded
Architecture Exploration: Case Study onMobile Robotic Vision

François Verdier, Benoı̂t Miramond, Mickaël Maillard, Emmanuel Huck, and Thomas Lefebvre

ETIS Laboratory, CNRS UMR 8051/University of Cergy-Pontoise/ENSEA, 6 avenue du Ponceau, 95000 Cergy-Pontoise Cedex, France

Correspondence should be addressed to François Verdier, verdier@ensea.fr

Received 1 March 2008; Revised 19 June 2008; Accepted 22 July 2008

Recommended by Guy Gogniat

We are interested in the design of a system-on-chip implementing the vision system of a mobile robot. Following a biologically
inspired approach, this vision architecture belongs to a larger sensorimotor loop. This regulation loop both creates and exploits
dynamics properties to achieve a wide variety of target tracking and navigation objectives. Such a system is representative of
numerous flexible and dynamic applications which are more and more encountered in embedded systems. In order to deal with
all of the dynamic aspects of these applications, it appears necessary to embed a dedicated real-time operating system on the
chip. The presence of this on-chip custom executive layer constitutes a major scientific obstacle in the traditional hardware and
software design flows. Classical exploration and simulation tools are particularly inappropriate in this case. We detail in this paper
the specific mechanisms necessary to build a high-level model of an embedded custom operating system able to manage such a
real-time but flexible application. We also describe our executable RTOS model written in SystemC allowing an early simulation
of our application on top of its specific scheduling layer. Based on this model, a methodology is discussed and results are given on
the exploration and validation of a distributed platform adapted to this vision system.

Copyright © 2008 François Verdier et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Today, real-time visual scene processing represents one of
the major problem for autonomous robots. Lots of robot
behaviours are based on this processing: navigation, object
recognition and manipulation, target tracking, and even
social interactions between human and robots. Currently,
visual systems require large computing capabilities making
them hard to embed. Indeed, most of such heavy vision tasks
are often performed by distant host computers via network
connections.

However, for several years, new approaches developed
for visual processing have been proposed. The visual
system is not considered isolated anymore but as part
of an architecture integrated in its environment. They
take into account more and more parameters related
to the dynamic properties of the systems they belong
to (see active vision [1]). These new visual processing
algorithms strongly depend on the dynamics of interac-
tions between the whole system and its environment by
continuous feedbacks regulating even the low-level visual

stages (see, e.g., the attentional mechanisms in biological
systems).

The studied application consists in a subset of a cognitive
system allowing a robot equipped with a charge-coupled
device (CCD) camera to navigate and to perceive objects. The
global architecture in which the visual system is integrated is
biologically inspired and based on the interactions between
the processing of the visual flow and the robot movements
(Per-Ac architecture [2]). The learning of the sensorimotor
associations allows the system to regulate its dynamics [3]
and, therefore, navigate, recognise objects, or create a visual
compass [4].

In this paper, we aim at designing an embedded visual
processing system in the form of a single chip that could
be used for building the CCD-based smart camera of our
robot. On one hand, the embedded processing part should
be flexible enough in order to allow a variety of navigation
missions. It also needs to adapt to evolutive constraints
due to the global system intrinsic dynamics (see Figure 1).
On the other hand, the architecture should also provide
intensive computation capabilities to deal with low-level



2 EURASIP Journal on Embedded Systems

Number of keypoints (max)
Detection threshold
Camera fps
. . .

Sensorimotor
control

Motor
actions

Vision
SoC

Local features

Quality factor

Environment

Robot

Figure 1: The dedicated SoC architecture used in a robot global
sensorimotor loop.

image processing. One of the solutions to provide efficiency
and flexibility may consist in implementing the application
both in hardware and software. All regular and intensive
computation tasks should be implemented in pipelined
hardware modules and all irregular and control tasks should
be mapped onto classical processing elements. These design
choices implicitly lead to a heterogeneous and probably
distributed application composed of multiple computation
tasks. Such an application will be managed by a dedicated
real-time operating system (RTOS). In our case, the use of
an RTOS becomes essential in a domain where applications
exhibit dynamic and adaptive behaviours.

1.1. Relatedworks

When designers are faced with an SoC implementation of
a new application, the hardware and software parts of the
SoC must be designed according to the computing properties
of the application. Precisely, our vision application has
a specific dynamical real-time behaviour. As a result, we
advocate for the use of high-level system models to early
validate architecture alternatives and the corresponding real-
time behaviours according to the constraints. Practically, the
definition of a custom SoC architecture following a high-
level design methodology is based on [5] the following:

(i) high-level modelling of the hardware and software
components of the SoC,

(ii) exploration of the design space,

(iii) validation of the selected design solutions.

Some system level methodologies and tools already help
to design SoC architectures composed of hardware and
software processing elements. These methodologies are often
based on system level design languages (SLDLs) such as
SystemC [6] or SpecC [7] and are presented in the following.
Unfortunately, only few of the proposed techniques include
the definition of a dedicated RTOS into their design flow.

Indeed, hardware/software codesign now includes the prob-
lem of the RTOS design which is considered as the main
component responsible for the control of the global system.

For example, some works have proposed efficient solu-
tions for the automatic synthesis of distributed implemen-
tations of dataflow-dominated applications under real-time
constraints. For software-based applications, the SynDex tool
[8] allows, for example, to describe an application as a
hierarchical dataflow graph (and the corresponding code
of elementary blocks) and to automatically generate a fully
static software implementation on a heterogeneous multi-
processor architecture. With this kind of scheduling solution,
the execution order of the elementary blocks must be
defined at compile time. It thus cannot be used efficiently in
application domains where potential parallelism can change
dynamically according to input data (except if a worst-case
architectural dimensioning is done). Unfortunately, visual
computations such as the one found in autonomous robotics
cannot always be predetermined. The degree of parallelism
can vary during its execution. Static scheduling solutions are
thus inappropriate in a real-time context and a dynamical
scheduling must be defined online by a real-time operating
system.

In the codesign context, many automatic HW/SW syn-
thesis methods have been proposed [9, 10] but do not
provide anymore dynamic behaviours management. Some
codesign methods such as COSYN [11] deal with multitask
application specifications but in the same static context.
Realistic embedded systems design need methods to rapidly
define RTOS in an application-specific way. This need has
been identified by recent research works. First of all, in the
context of high-level design methods, solutions have been
proposed to model an RTOS at a high level. Gerstlauer
et al. in [12] have recently initiated this research activity by
presenting an RTOS model on top of the SpecC SLDL. As
SystemC or SpecC SLDLs allow timed simulations of written
models, the work in [12] takes advantage of SpecC primitives
to explicitly model dynamic behaviour of multitasks systems
at high levels of abstraction.

SoCoS in [13] is a C++ library for system-level design
providing the user automatic linking with operating system
(OS) services. The main difference with [12] is that SoCoS
requires its own proprietary simulation engine.

In [14], Le Moigne et al. describe a SystemC model of a
multitask RTOS. This model is a part of the Cofluent tool
[15] which allows timing parametrisation and validation of
the RTOS model by configuring context load, context save,
and scheduling duration.

After modelling and simulating high-level RTOS rep-
resentation, another problem addressed by Gauthier et al.
is the automatic generation of RTOS code. In [16], they
present a method of automatic generation of operating
systems for a target processor. This method finds OS services
required in the code of the application SW and generates
the corresponding code deduced from dependencies between
services in an OS service library.

Putting aside the works of [12], none of the existing
RTOS modelling approaches deals with creation of dynamic
processes. However, as it will be explained in this paper, this



François Verdier et al. 3

property is needed to early validate the real-time behaviour
of our application. Hence, our method addresses this design
challenge by introducing a high-level RTOS model for
custom SoC design. Working at a high level of abstraction
allows the designer to jointly explore the RTOS architecture
in terms of custom services adapted to the application
and the parallel SoC architecture. Both dynamic behaviour
control and embedded constraints satisfaction problems can
thus be solved by a single approach.

Contributions of this work consist in proposing a Sys-
temC functional accurate dynamical RTOS model allowing
a high-level simulation of a distributed architecture. This
simulation is done at a Service Accurate level in the sense that
allows functional and timed verification without the need of
modelling explicitly processing resources. By working at this
level of abstraction, an early exploration of the architecture
dimensioning and the validation of application real-time
constraints are feasible.

1.2. Paper organisation

The rest of the paper is organised as follows. Section 2
presents our robotic vision application in more details and
stresses its dynamical properties. Section 3 describes the
proposed RTOS modelling approach based on the system-
level design language SystemC. Results are also given on
the corresponding dynamical implementation of the vision
application.

We then discuss in Section 4 how our simple RTOS
model can be used for building a parallel and distributed
multiprocessor architecture coupled with dedicated hard-
ware accelerators. In Section 5, we give the results of the
proposed Hw/Sw exploration process permitted to define
the multiprocessor system-on-chip (MPSoC) platform ded-
icated to our vision application. Finally, we conclude and
discuss some perspectives in Section 6.

2. A VISION APPLICATION FOR ROBOT PERCEPTION
ANDNAVIGATION

In the following, we first describe the considered vision
application. This application mainly consists in applying
classical filtering, subsampling, and extraction operators,
and it can be considered as a pure data flow process.
However, we will detail in Section 2.2 how this application
is inserted in a global dynamic and adaptive regulation loop
(see Figure 1). We will then show why that forbids the use of
classical implementation flows in this specific context.

2.1. Application description

The current visual system here is close to the one used by
Leprêtre et al. in [17] and integrate a multiscale approach
to extract the visual primitives. In doing so, it also allows
a wider range of applications. Roughly the visual system
provides a local characterisation of the keypoints detected on
the image flow of an 8-bit gray-scale CCD camera (382×286
pixels). This local characterisation feeds a neural network
which can associate motor actions with visual information:

this neural network can learn, for example, the direction
of a displacement of the robot as a function of the scene
recognition. The studied visual system can be divided into
two main modules:

(i) a multiscale mechanism for characteristic points ex-
traction (keypoints detection),

(ii) a mechanism supplying a local feature of each key-
point.

2.1.1. Themultiscale keypoints detection

The multiresolution approach is now well known in the
vision community. A wide variety of keypoints detectors
based on multiresolution mechanisms can be found in
the literature. Amongst them are the Lindeberg interest
point detector [18], the Lowe detector [19]—based on local
maxima of the image filtered by difference of Gaussians
(DoGs)—or the Mikolajczyk detector [20], where keypoints
correspond to those provided by the computation of a 2D
Harris function and fit local maxima of the Laplacian over
scales.

The visual system described here is psychophysically
inspired in the sense that it takes into account the work
done on the Müller-Lyer illusions in [21]. The used detector
extracts points in the neighbourhood of the keypoints, which
are sharp corners of the robot’s visual environment. More
precisely, the keypoints correspond to the local maxima of
the gradient magnitude image filtered by DoGs (Figure 2).
Moreover, the detector remains computationally reasonable
and is characterised by a good stability. It also automatically
sorts the keypoint lists. The gradient magnitude Grad is com-
puted by the following equation (where I(x, y) corresponds
to the pixel magnitude at coordinates (x, y)):

Grad(x, y)

=
√
√
√
(

I(x+1, y)−I(x−1, y)
)2

+
(

I(x, y+1)−I(x, y−1)
)2

2
.

(1)

Keypoints are detected in a sampled scale space based
on an image pyramid. Pyramids are used in multiresolution
methods to avoid expensive computations due to filtering
operations. The algorithm used to construct the pyramid
is detailed and evaluated in [22]. The pyramid is based
on successive image filtering with 2D Gaussian kernels
(Gσ(x, y)) normalised by a factor S:

Gσ(x, y) = e(−(x2+y2)/2σ2)

S
. (2)

These operations achieve successive smoothing of the
images. Two successive smoothing are carried out by two
Gaussian kernels with variance σ2 = 1 and σ2 = 2. The scale
factor doubles (achievement of an octave) and thus the image
is decimated by a factor of two without loss of information.
The same Gaussian kernels can be reused to continue the
pyramid construction. Interestingly, the kernel sizes remain
small (half-width and half-height of 3 × σ) allowing a fast



4 EURASIP Journal on Embedded Systems

Image data

Keypoint research
(max: N keypoints)

Keypoints
coordinates

Neighbourhood
extraction

N

Log/polar
mapping

(LUT)

Normalization

Neural
network

Neighbourhood
extraction

N

Half-scale 2.1

Half-scale 2.2

Half-scale 3.1

Keypoint research
(max: N keypoints)

SW only

SW only

HW/SW

HW/SW

−
+

−
+

−
+

−
+

−
+

−
+

Smoothing
σ = 1

Smoothing
σ = 1

Smoothing
σ = √2

2

Smoothing
σ = 1

Smoothing
σ = √2

2

Smoothing
σ = 1

Smoothing
σ = √2

Scale 1 (HF)

Scale 2 (MF)

Scale 3 (LF)

2Gradient

CCD
grey-scale

1 byte

Figure 2: Global architecture of the algorithm. Local features are extracted from the neighbourhood of characteristic points detected on
each image of the pyramid.

computation of the pyramid. Finally, the images filtered by
DoGs in the pyramid can be simply obtained by subtracting
two consecutive images.

Keypoints detected on the images are the first N local
maxima existing in each DoG image of the pyramid.
Thus, the keypoint research algorithm orders the N first
local maxima according to their intensities and extracts
their coordinates. The shape of the neighbourhood for the
research of maxima is a circular region with a radius of 20
pixels.

The number N which parametrises the algorithm cor-
responds to a maximal number of detections. Indeed, the
robot may explore various visual environments (indoor
versus outdoor) and particularly more or less cluttered
scenes may be captured (e.g., walls with no salience versus
complex objects as illustrated in Figure 3). A detection
threshold (γ) is set to avoid nonsalient keypoints (Figure 3
illustrates the effect of this parameter on different images).
This threshold is based on a minimal value of the local
maxima detected. The presence of this threshold is even more
important in the lowest resolutions since the information
is very coarse at these resolutions. This particularity of
the algorithm confers it a dynamical aspect. Precisely, the

number of keypoints (and consequently the number of
local features) depends on the visual scene and is not
known a priori. Furthermore, the threshold γ could be set
dynamically through a context recognition feedback but
discussing here this mechanism is not our purpose (see an
example of context recognition in [23]). However, even if this
threshold is considered as a constant value, the number of
detected keypoints varies dynamically according to the input
visual scene. Consequently, the number of computations
(neighbourhood extractions) also depends on the input
data.

2.1.2. The local image feature extraction

At this stage, the neighbourhood of each keypoint has to be
characterised in order to be learnt by the neural network.
Existing approaches to locally characterise keypoints are
numerous in the literature: local jets, scale invariant feature
transform (SIFT) and its variants, steerable filters, and so
forth (see [24] for a review of local descriptors).

In the current application, we simply reuse a view-based
characterisation where keypoint neighbourhoods are repre-
sented in a log-polar space. This representation has good



François Verdier et al. 5

(a) (b) (c)

Figure 3: Keypoints detected on different visual viewpoints. The same detection threshold is used in the three cases. Keypoints coming from
the same octave are gathered on one image (2 octaves represented): (a) cluttered scene (29 keypoint detected); (b) same scene but closer, less
cluttered (22 keypoints); (c) view captured during a wall following (9 keypoints).

θ

Gradient Keypoints

ρ
Log-polar

representation
Neighbourhood

Figure 4: Local features extracted at one scale on Müller-Lyer’s
illusion.

properties in terms of scale and rotation robustness [25].
This kind of mapping is also used by the GLOH descriptor
[24]. The local feature of each keypoint is, therefore, a
small image resulting from the log-polar transformation of
the neighbourhood (Figure 4). This transformation is done
by a lookup table (LUT) allowing the mapping: (ρ, θ) =
f (x, y).

The neighbourhoods are extracted from the gradient
magnitude image at the scale the keypoint was found by
the detector. Each neighbourhood extracted is a ring of
radius (5, 36) pixels. Excluding the small interior disc avoids
multiple representations of the central pixels in the log-polar
coordinates.

The angular and logarithmic radius scale of the log-polar
mapping are sampled with 20 values. Each feature is thus an

image of dimension 20× 20 pixels. The sizes of the rings and
feature images have been determined experimentally for an
indoor object recognition. The given parameters represent a
tradeoff between stability and specificity of the features [26].
Finally, the small log-polar images are normalised before
their use by the rest of the neural architecture. By associating
the data provided by the visual system with actions, the
global system allows the robot to behave coherently in its
environment [3].

Generally, the visual system must not be considered
isolated but integrated in a whole architecture whose mod-
ules interact dynamically with each other and through the
environment [27]. Hence, the evaluation of the parameters
of the visual system depends on the rest of the robot system
architecture.

2.2. A customRTOS as a solution for
domain-specific implementation

When integrated in mobile robots with navigation or object
recognition objectives, this application must obviously sat-
isfy some real-time constraints. For example, the local image
features extracted in the neighbourhood of keypoints may
be used for obstacle perception and, therefore, for trajectory
guidance. In the general case, this vision subsystem must
match real-time constraints if it is used in a global sensori-
motor loop. Robot and environment integrities depend on
these constraints.

However, due to the complex dynamic behaviour of
our vision application, a precise characterisation of its
timing behaviour is not trivial a priori. Expressing a
global application deadline or period matching all context
conditions (robot motivation and internal state, nature
of the visual scenes, etc.) is impossible at compile time
and mainly depends on the global system dynamics (see
Figure 1). In our use case, the period constraint (the
camera fps) is a parameter, amongst other regulation signals
(maximum number of extracted keypoints N , detection



6 EURASIP Journal on Embedded Systems

threshold γ), given by the external control system. All of
these parameters will dynamically vary during the system
lifetime.

More precisely, let us suppose the rough functional
partitioning of our application into separate tasks as given
in Figure 2 (at this step we do not consider the Hw/Sw
partitioning). In this case, the number of concurrent
computation subtasks (number of extracted keypoints thus
the parallelism degree) and their deadlines have different
configurations according to the current system mode. In
these conditions, all classical implementation tools are clearly
inappropriate for the design of our SoC architecture. Since
deadlines are variable, all static scheduling-based compilers
or synthesisers will be inapplicable except if the number of
processing resources corresponds to the maximum degree of
parallelism. The latter is of course unthinkable in embedded
systems.

As an example, we have done a temporal profiling of
the vision application and measured the execution time of
the application tasks. This experiment has been done with a
pure software version of the application executed on a single
Nios2-embedded 32 bits microprocessor from Altera with a
100 Mhz clock frequency. Application tasks can be divided in
three groups according to the execution time:

(i) intensive data-flow computation tasks that execute in
a constant time,

(ii) tasks with execution time correlated with the number
of interest points (Figure 5),

(iii) tasks with unpredictable execution time (Figure 6).

These preliminary results obviously show that intensive
computation tasks would interestingly be implemented as
pure (eventually pipelined) hardware modules. On the other
hand, execution results of the search, sort, and extraction
tasks confirm a software implementation poorly adapted to
a static scheduling.

It is well known that multiscale systems take advantage
of distinguishing the visual processing done at the different
scales. In the classical but limited coarse-to-fine approach,
lowest resolutions are considered with highest priorities.
Visual data from these resolutions are integrated quickly
in the system to get a first coarse description of the
environment. This description is then refined by other scales.
More reasonably, the visual system behaves in a more flexible
way but remains still based on these different priorities. It
may favour the utilisation of different frequency domains
according to its objectives. For example, the recognition
of facial human expressions can be done selectively in
different frequency domains (see [28] for a more detailed
discussion on frequency selection). In a navigation task, this
approach can be extended: in noncluttered environments, a
priority to the low scales can be given to navigate coarsely.
The robot speed and/or the camera acquisition speed (the
frame per second) can be increased. At the opposite, to
precisely recognise objects, keypoints from other scales must
also be taken into account (more scales would have high
priorities) and the robot and camera speeds must be reduced
accordingly.

12 14 16 18 20 22 24 26 28 30 32 34 36 38

Number of keypoints extracted

0

5e + 06

1e + 07

1.5e + 07

2e + 07

2.5e + 07

3e + 07

3.5e + 07

4e + 07

4.5e + 07

5e + 07

E
xe

cu
ti

on
ti

m
e

(n
s)

Extract 1 of scale 1
Extract 2 of scale 1
Extract 1 of scale 2

Extract 2 of scale 2
Extract 1 of scale 3
Extract 2 of scale 3

Figure 5: Tasks with execution time linearly dependent with the
number of keypoints processed on representative samples.

12 14 16 18 20 22 24 26 28 30 32 34 36 38

Test images

5e + 08

6e + 08

7e + 08

8e + 08
E

xe
cu

ti
on

ti
m

e
(n

s)

Extract 1 of scale 1

Figure 6: Tasks with unpredictable execution time on representa-
tive samples.

Yet designing a hard real-time system imposes the
static knowledge on upper bounds of application param-
eters. So our application, with its particular properties,
seems not adapted to execute in real time with deter-
ministic and predictive times. For that reason, we have
defined three modes (ranges of parameters and constraints)
based on the selective coarse-to-fine approach, which cor-
respond to the three main types of behaviour for the
robot.

(i) Fast mode: the robot moves around in a learnt
environment, it only needs coarse description of
the landscape but at a high frame rate. Thus, only
the lower scales are processed but the keypoints of
the current image must be provided to the neural
network (sensorimotor control in Figure 1) at the
rate corresponding to the robot speed.



François Verdier et al. 7

Table 1: Application modes.

Mode N FPS deadline mission

Fast 10 20 50 ms
Obstacle detection in
known environment

Intermediate 30 5 200 ms
Exploration of
unknown
environment

High detail 120 1 1s
Static detailed analysis
of environment

It is the reason why in this first mode we fix the
maximum number of extracted keypoint N = 10,
and the number of frames processed per second (fps)
to 20.

(ii) Intermediate mode: the robot moves slowly, for
example, when the passage is blocked (obstacle
avoidance, door passage) and needs more precision
on its environment. In this mode, the middle and
the lower scales are processed. So, keypoints with
information on a larger frequency band are provided
to the neural network.

In the intermediate mode, we fix N = 20 and the
system works at a rate of 5 fps.

(iii) High-detail mode: the robot is stopped in a recogni-
tion phase (object tracking, new place exploration).
All scales are fully processed and full information on
the visual environment is provided at the expense of
the processing time.

For this last mode, we fix N = 120 and the rate of the
system to 1 fps.

For all of these modes, summarised in Table 1, we
consider a constant value for the detection threshold γ =
200. The system parameters, such as the number of frames
per second processed by the system (and consequently the
period), have been defined from measures on a represen-
tative sample of images (acquired by the robot) on the
embedded softcore processor we use to determine realistic
times (the Nios II introduced previously). Moreover, the
upper, average, and lower bounds of execution times for
those three modes have been analysed in order to extract
predictive behaviours from the global dynamics. Exactly this
approach limits the system dynamics so that in each mode
the system would now be under hard real-time constraints.
It also allows to explore and define the dimensioning of the
embedded architecture.

Inside each mode, and from a task-scheduling point
of view, these mechanisms can be modelled by attributing
different priorities to the local features extraction and
normalisation tasks. Moreover, in some cases. the lowest
priority tasks may not be executed without significantly
damaging the robot behaviour. According to the external
conditions, scheduling or not the lowest priority tasks must
be integrated in a quality-of-service (QoS) information. This
information will be necessary to insure an efficient global
sensorimotor loop. Such a quality factor would easily be

computed locally with the number of extracted features
versus the total number of keypoints ratio. This execution
scenario can only be achieved by an embedded dynamical
real-time operating system.

So far, we are faced with a twofold problem. First, to
integrate the development of an embedded RTOS in an
HW/SW design flow. Second, to propose a design methodol-
ogy for exploring application-specific dynamical scheduling
strategies. Such a SoC design approach requires a methodical
design process based on the concept of high-level modelling
which allows designers to explore and validate application
deployment alternatives on a dedicated architecture. It
permits also to incrementally refine this model towards
the final hardware and software implementation. Today,
developing a high-level RTOS model constitutes a challenge
and exploring dedicated dynamical scheduling policies is not
addressed by existing approaches such as [11, 14, 16].

Since version 2.1 of the SLDL SystemC simulation
engine, we developed the basic mechanisms for building such
a model of an embedded RTOS. Those mechanisms will be
essential for the development of our future SoC platform.
From these basic blocks, we developed a modular SystemC
RTOS model. It provides the RTOS services responsible
for the dynamic control of the execution sequencing and
the possibility to dynamically create applicative processes.
The high-level model of this is described in the Section 3.
Section 4 will bring the first guidelines for using our model
as a basis for the exploration and validation of a dedicated
distributed embedded platform needed by our application.

3. BUILDING THE SYSTEMCMODEL OF
A REAL-TIME OS

We present in this section how it is possible to define a
SystemC model of a relatively simple but realistic real-time
operating system layer. We will particularly focus on the
dynamical mechanisms of the RTOS (i.e., the dynamical
creation and preemption of processes) needed by our vision
application.

For the sake of illustration, Figure 7(a) gives a subset
of the vision application, partitioned into several tasks,
that will be used to highlight the mechanisms we propose.
Sampling, Smoothing and DoG tasks correspond to the
subsampling, Gaussian filtering, and difference of Gaussian
operations. Search task searches, sorts, and extracts the
coordinates of the first keypoints above the detection thresh-
old. It takes as data input the result of DoG and its associated
Smoothing, and its parameters are N and γ. Extract task
builds the corresponding neighbourhoods and Norm task
transforms and normalises the local features. The exact way
the application is partitioned into tasks is out of the scope of
this work. Our purpose here is only to illustrate how we can
model and simulate the execution of a multitask application
on top of an embedded real-time OS.

In order to obtain the attended dynamic behaviour, our
application needs to create, depending on some parameters
or data, new treatments with different parallelism degrees.
This behaviour cannot be estimated during development nor
at compile time. The SystemC simulation kernel can neither



8 EURASIP Journal on Embedded Systems

Smoothing

Extract 2.2 Search 2.2 DoG 2.2 Subsampling

Norm Norm
Smoothing

Smoothing DoG 3.1 Search 3.1 Extract 3.1

Norm Norm

Outputs to NN

Outputs to NN

(a)

Smoothing Norm

Norm

Norm

Extract 3.1

Search 3.1

DoG 3.1

Smoothing

Sampling Norm
Norm
Norm
Norm
Norm
Norm

Extract 2.2
Search 2.2

DoG 2.2

Smoothing

Ta
sk

s

Time

(b)

Figure 7: Example of the vision application partitioned into a task graph in (a). Only two half scales belonging to two different scales
are illustrated. If an infinite number of resources are available and an ASAP (as soon as possible) scheduling is used, this graph would be
scheduled as illustrated in (b) where the two half-scales contain, respectively, 6 and 3 keypoints.

handle such an execution model. Indeed, standard SystemC
processes must be declared before starting a simulation
(at elaboration time) and cannot vary until the end of
simulation. This constitutes the first limitation of modelling
dynamical-embedded software as classical processes in Sys-
temC 2.0.

The second problem of modelling an OS in SystemC
consists in finding a mechanism allowing an explicit schedul-
ing of applicative tasks instead of the native event-based
SystemC scheduler. The native SystemC simulation kernel
acts as an abstraction layer and provides to the developer a
model of a pure virtual architecture with an infinite number
of resources. It thus simulates the execution of all processes
in a parallel way (see the example of Figure 7(b)). If an
architecture with a finite number of resources (processors)
is targeted, the exact behaviour of an application composed
of multiple tasks sharing the same resource cannot easily be
simulated.

As a third keypoint, scheduling a task in an RTOS not
only consists in starting or killing it but also, if preemptive
schedulers are targeted, in interrupting tasks and switching
between contexts. SystemC does not allow interrupting a
thread without an explicit declaration of breakpoints by
using the SystemC wait() primitive. Unfortunately, the
wait() call cannot take into account several preemption and
resume cycles. Thus a specific mechanism must be developed
for modelling such an execution scheme.

3.1. Modelling the baremechanisms

Dynamical creation of tasks—creation of SystemC proces-
ses—is now possible by using the new SystemC kernel
version 2.1 that comes with the public boost library. This
library offers primitives for spawning processes and attaching
them to SystemC modules after the elaboration phase, thus

dynamically during simulation. Moreover, thanks to the
dynamic lists of sensitivity, SystemC threads can be started
and resumed depending on dynamically created events.

3.1.1. Task creation service

As shown in Figure 7(b), the potential parallelism of the nor-
malisation tasks (Norm) depends on the dynamical threshold
γ set by an external context recognition feedback (see also
Figure 1). The Extract task thus needs to dynamically
create a variable number of Norm subtasks depending on the
results of Search task.

We have implemented the create task() service of
the RTOS with the sc spawn() primitive of the kernel.
The create task() service allows an applicative task to
dynamically create several instances of new tasks. Our RTOS
model implements tasks as C++ classes containing several
data as member variables: priority, period, deadline, function
code, and so forth. It is important to note that our task
objects are not modelled as SystemC modules. Instead, each
task is given as a global function that comes in a separate
C++ file linked with our RTOS model. create task()
creates an instance of a new thread attached to the RTOS
model. It creates also a new event that will be used by the
scheduler for starting and resuming the thread. Finally, it
creates the corresponding C++ structure containing all task
data (e.g., task control block) for an easy manipulation by the
RTOS.

By specifying tasks as functions instead of SystemC
modules, application engineers do not need to take care
about detailed implementation of the model. Moreover, as
it will be mentioned in Section 4, the same application code
could be used in a refined architectural model without any
modification of the source code. For example, it could be
linked with a more complicated platform model having



François Verdier et al. 9

Wait(tick) Wait(tick)Wait(tick)

Wait(synchroA)Wait(delayA, tick)

T

Timeout

Timeout

Wait(delayA− T ,
tick)

Wait(delayB, tick)

t1 t2

t3 t4 t5

Context switch
delay

Idle timeIdle time

SynchroA

SynchroB

Tick

Scheduler

TaskA

TaskB

Events notifications

Figure 8: Details of the preemption mechanism provided by the os wait() service.

several RTOS instances, thus modelling a multiprocessor
architecture.

3.1.2. Scheduling

The main module of our RTOS model is the scheduler
function. This function is developed as a member method
of the scheduling module inside the RTOS model. Thanks
to the object-oriented SystemC kernel, modifications of
the scheduler can be done by using inheritance. Method
overload is a light way for exploring different scheduling
strategies. Even without the preemption mechanism, the
model can help the developers to set the right task priorities
and explore the scheduling algorithm. However, with the
execution time modelling, a refined preemptive scheduling
could be simulated and could give results on the OS overhead
(number of context switches).

3.1.3. Tasks preemption

For modelling task interruption and preemption, we have
created a dedicated os wait() service that gives control to
the OS model and allows taking into account preemption
and context switches. Tasks are viewed as sequence of
functional code and system calls. So their code is splitted
into unbreakable portions of code each having their own
estimated execution time, mentioned by using the os wait()
primitive. The os wait() primitive has been written as a
blocking call that returns after a specific time delay and
allow to model preemption. This delay is the estimated task
duration added dynamically by the sum of all interrupt
treatments or scheduler invocations durations suspending
the task. In this manner, os wait() service acts as a way to
model exact execution time and concurrency of tasks.

As an illustration, Figure 8 gives details about how pre-
emption is modelled on a single processor architecture. The
call to the SystemC wait primitive is encapsulated into the
os wait() service. In this example, when taskA is launched,
it first runs its functional code portion in zero simulation
time, then it simulates its execution time by the os wait()
call instead of the classical wait() with its duration given in

parameter (delayA). In fact, the corresponding service code
waits for both the duration timeout and any interruption
event like the real-time clock tick which announce the
wakeup of the scheduling service. As the execution time of
TaskA is greater than the clock period, the elapsed time T
(t2− t1 on Figure 8) is taken into account and subtracted to
the attended execution time.

At date t2, the scheduler is executed and launches TaskB
which has the same priority, following the round-robin
policy. After the simulated context switching duration (t3 −
t2), the synchronisation event of TaskB is notified and the
schedule process waits until a new clock tick. At time, t3
TaskB executes its functional code till the first encountered
os wait() call. This functional code is executed in zero time
in the SystemC simulation engine. At its turn, TaskB calls the
os wait() service for a duration lower than the tick period
and terminates. At date t4, TaskA is scheduled again and
completes its execution time simulation (t5).

With this preemption model, the number of context
switches between SystemC threads is approximately equal to
the one in a real-preemptive RTOS kernel [29]. This leads
to an efficient simulation with no significant overhead (see
Section 3.3).

3.2. Buildingmodular RTOSmodels

Thanks to the object-oriented nature of the SystemC library,
the RTOS model can be developed in a modular way
[29]. Adding new or specific services and modules can be
easily done by using objects aggregation or inheritance and
objects relationships. The RTOS interface (its application
programming interface) works exactly the same way and
can be updated and augmented according to the application
needs.

Our RTOS model is implemented as a single hierarchical
SystemC module and instantiates multiple service modules
(see Figure 9). Each service module is also a hierarchical
SystemC channel (is a SystemC module that inherits from
SystemC interfaces). The application programming interface
of a given service module is a part of the global RTOS API.
This global API provided to the application is constructed



10 EURASIP Journal on Embedded Systems

API1 API2 API3
RTOS
API

Service calls

Application tasks

sc
ex

p
or

t
(A

P
I1

)

Service
module 1

sc port<iif3>iif1

API1 sc
ex

p
or

t
(A

P
I2

)

Service
module 3

sc port<iif2>iif3

API3

sc export (API3)

Service
module 2

sc port<iif1>iif2

API2

Modular RTOS model

Figure 9: The modular RTOS model is a hierarchical SystemC
module containing multiple interconnected service modules. Each
service module is a SystemC channel requiring and implementing
some dedicated interfaces.

in a modular way in the sense that it is the union of the all
API interfaces instantiated by service modules. This can be
done automatically at design time thanks to the sc export()
facility.

In addition, each service module of an RTOS model can
provide an internal interface through which other service
modules can interact. Respectively, each service module
can have an internal communication port (sc port〈〉)
requiring the internal interface of another service module.
Communication between modules are for the moment
modelled as simple method invocations. An example of
such a communication is the internal change task state()
service call offered by the task management module: it allows
other modules (as for the scheduling module for example) to
change the internal state of an active task (see Algorithm 1
for the SystemC skeleton).

In order to propose a generic RTOS structure, we have
defined several service categories by taking into account the
potential locality of shared internal data as an important cri-
terion. It is important to notice that minimising the service
modules granularity—by building elementary modules—
could enhance the exploration capability of the OS model at
the expense of more complex communication infrastructure
between modules. Our nonexhaustive service module list
is then mainly composed of the following services: task

// Task management service API
class task mgr if: virtual public sc interface {
public:

virtual task∗ create task (· · · ) = 0;
virtual void kill task (· · · ) = 0;
virtual int get pid (· · · ) = 0;
· · ·

};
// Task management service internal interface
class task mgr iif: virtual public sc interface {
public:

virtual void change task state (· · · ) = 0;
· · ·

};
// Task management service module header
class task mgr: public sc channel,

public task mgr if,
public task mgr iif {

private:
· · ·

}; // End class taskmgr

// RTOS SystemC module
class my OS: public sc module{
public:

// export all services API
sc export〈task mgr if〉 TMGR IF;
· · ·

SC HAS PROCESS (my OS);
· · ·
// instanciates all service modules
task mgr my task mgr;
scheduler my sheduler;
· · ·
// inter module binding
my scheduler·task mgr port (my task mgr);
· · ·
// modules/exports binding is done in
// the constructor
· · ·
}; // End class my OS

Algorithm 1: Example of the modular construction of the RTOS
module. This example shows how a service module is declared with
both a global interface exported to the application and an internal
interface offered by this module to other service modules. The
whole API is built by exporting each service’s interface.

management, interrupt requests management, semaphore
service, scheduling, timer, and real-time clock management.

3.3. Validation of the abstract OS

Our RTOS model has been written in SystemC and was firstly
validated under a single processor assumption with all of
the presented services and RTOS modules. Two schedulers
with different strategies have been tested in the model (fixed
priorities without preemption and real-time round-robin).



François Verdier et al. 11

0 1000 2000 3000 4000 5000

Video frame

0

50

100

150

200

250

300

350

400

450

N
u

m
be

r
of

pr
oc

es
se

s

High detail mode
Intermediate mode
Low detail mode

Figure 10: Number of process created and managed by the OS
model during the application simulation.

The vision application source code has also been validated
on top of the RTOS model. One can notice that porting
this source code on the RTOS API did not represent a
significant effort. The simulation of our application with the
RTOS layer produced interesting results: a graphical C++
library (gtk + 2.0) has been included in the SystemC code
and allowed us a quick functional verification (Figure 11).
In addition, the model produces execution traces that
allows a deep examination of the application behaviour. For
example, simulation results presented in Figure 10 illustrate
the dynamic behaviour of the RTOS model. Figure 10 shows
the evolution of the number of active process in the different
modes according to the complexity of the visual environ-
ment. In high-detail mode, all scales are processed and the
number of process depends on the number of keypoints
in the video frames. In this example, the OS dynamically
creates, schedules, and deletes up to 420 processes. In the
intermediate and fast modes, the number of process is,
respectively, bounded to 30 and 10 processes by half-scale.

Moreover, a timed simulation is possible with this model.
Indeed, timing data can be inserted in the SystemC code.
Execution time estimations can be added in the RTOS model
by using the dedicated wait() function inside the each RTOS
module for modelling durations of system calls. By doing
so, it becomes possible to simulate the timing overhead
produced by the RTOS calls and scheduling operations. In
addition, a global performance evaluation is also possible
by giving worst-case execution time (WCET) estimations
of each code portion as parameters to the os wait()
pseudoservice calls in the application code.

We evaluated the accuracy of our modelling approach by
performing several sets of experiments and comparing the
simulated execution times relatively to actual board measure-
ments for multiple sets of data. The average application times
are depicted in Table 2.

According to these results the high-level simulation,
accuracy is within 3-4% of board measurements. This
accuracy is acceptable at this level of description where the
processing elements are abstracted. In addition, the exact
task ordering and preemption realised by μC/OS-II on the
board is modelled [29] thanks to the preemption modelling
described precedently.

We have also compared the simulation duration of our
application with or without the RTOS model. The simulation
duration is about 2 minutes 53 seconds for the application
described as pure functional C code (using Linux host API)
and 3 minutes 12 seconds when the application runs over
4 SystemC RTOS models. These results have been obtained
with a simulation host machine equipped with an Intel Dual-
core at 1.66 GHz and on a set of 1000 images.

These results demonstrate that an annotated OS-based
exploration methodology responds to the tradeoff between
simulation time and estimation accuracy at early design
steps in order to model and explore concurrency without
taking into account specificities of the processing elements
architecture. These properties will help us to explore the
architecture dimensioning in Section 5.

4. TOWARDS A GLOBAL PLATFORM EXPLORATION
ANDDESIGN FLOW

In order to finalise the SoC platform, we must follow a
dedicated methodology that includes the RTOS exploration
and validation. We thus propose a global exploration and
design flow based on successive refinement steps of both
the architecture and the RTOS implementation strategies.
This flow is partially inspired by the works of Gajski et al.
and Jerraya et al. and is illustrated in Figure 12. A three-
step modelling approach (specification, architecture, and
implementation levels) has been proposed in [12]. The main
drawback of this proposal is that there still exists a design gap
between the architectural model (the one exhibiting the OS
model) and the final implementation model (with processors
modelled as instruction set simulators (ISSs)). For bridging
this gap, we propose an intermediate distributed architecture
model where the parallelism can be explored. The presented
high-level RTOS model is used both in the second and third
steps of this flow.

4.1. The SoCmodelling flow

The proposed methodology then consists in four successive
modelling levels (specification, executive, distribution, and
implementation models) described in the following.

4.1.1. Specificationmodel

This model is written as a pure SystemC model of the appli-
cation where each applicative task is a SystemC thread or pro-
cess and where intertask communications take place through
the SystemC primitive channel (sc mutex, sc fifo, etc.).
Tasks are synchronised with sc events. The whole appli-
cation is specified as a single sc module with all tasks as
member functions. A complete functional verification of the



12 EURASIP Journal on Embedded Systems

Figure 11: Graphical results of the SystemC functional model simulation obtained by using the gtk + 2.0 C++ library.

Table 2: Comparison between accuracy and simulation time of the OS model.

Board measurements Simulation estimations Error percentage Simulation duration per image

29268.570400 ms 28369.598240 ms 3.07% 192 ms

application is possible at this level. The SystemC kernel and
its API model the pure virtual architecture that executes
the application. Due to the SystemC concurrency principle,
an infinite number of resources is simulated at this level.
Moreover, additional C++ libraries can be used for debug
purpose and can give a functional trace of the application
similar to the one illustrated in Figure 11.

4.1.2. Executivemodel

The second model refines the previous one by adding
an explicit RTOS layer in the application model. At this
level, a SystemC module models the whole application.
This main module only contains the first main task of the
application that acts as the boot code of a real-embedded
RTOS: it initialises the scheduler (OSInit() service), creates
the first task, and launches the OS scheduler (OSStart()
service). The application source code has access to the
RTOS services through the whole RTOS API. All accesses
to SystemC primitive channels are thus replaced by OS
calls. This can be done automatically by a simple C/C++
compiler preprocessing step. In addition, execution time
of tasks may be modelled by os wait() calls. No further
modifications of the application code are necessary and a
very fast validation can then be done. At this level, a number
of strategies can be explored for customising the needed
RTOS layer (scheduling policies, preemption model, and

implementation of some optional services). Exploring the
software or hardware implementation of the applicative tasks
is not yet addressed at this level. The main objective is to
explore the global sequencing of operations.

4.1.3. Distributionmodel

The distribution model is built by instantiating multiple
(eventually different) OS models (see Figure 13). All models
have access to the applicative C++ functions given in
the specification source code and a global multiprocessor
evaluation is allowed. In this case, each RTOS node integrates
some specific modules dedicated to inter-OS synchronisation
and communication. The associated RTOS services can then
be explored at this level. One can note that simulating
the architecture at this level allows an exploration of the
number and type of resources without explicitly modelling
processing resources (microprocessors). Up to this level,
communication infrastructure refinement will be done by
following the transaction level modelling (TLM) supported
by the SystemC language [6].

4.1.4. Implementationmodel

This model is the last step before the physical synthesis of the
platform. Hardware parts (memories, I/O devices, interrupt



François Verdier et al. 13

T1

T2 T3

T4
T5 T6

1) Specification model

SystemC
threads

SystemC native API
(sc events, sc mutex, threads)

(a)

Scheduler Synchro RTC

OS model

2) Executive model

C++
functions

RTOS API
(createTask, create semaphore, . . . )

(b)

OS1 OS2 Mem.

Bus model (TLM)

3) Distribution model

Hw
acc. OS3 I/O

App.
testbench

(c)

Proc1
ISS

Proc2
ISS Mem.

Ex. code

Bus model (TLM)

4) Implementation model

Hardware
task

Proc3
ISS

I/O

App.
testbench

(d)

Figure 12: The proposed platform refinement flow starts with the specification model and provides at least four refinement steps until the
final implementation model.

RTOS API RTOS API RTOS API

IRQ handlerScheduler

Semaphore
proxy

Basic OS

Task
manager

IRQ handlerScheduler

Semaphore
proxy

Basic OS

Task
manager

IRQ handlerScheduler

Semaphore
proxy

Basic OS

Task
manager

Hardware
semaphore

skeleton

Hardware accelerator

(gradients, smoothing, . . . )

Shared hardware sempahore service
as a dedicated single service RTOS model

Figure 13: MPSoC platform modelled as a collection of interacting RTOS models.



14 EURASIP Journal on Embedded Systems

handlers, hardware accelerators, etc.) of the platform are
described as register transfer level (RTL) models. Processors
are represented by their instruction set simulators. The
application source code must be compiled and inserted
in the platform model in the form of executable binaries.
Simulation results can then be accurate at the clock cycle level
(Cycle Accurate) or even at the signal level (Bit Accurate).
At this level, the exploration and validation of a number
of strategies have been done and the following physical
synthesis of the platform can be realised by classical hardware
design tools. We are not concerned in developing models at
this level of abstraction.

This exploration methodology can be applied to a lot
of different platform architectures and application domains.
This flow is particularly well adapted to dynamic contexts,
applications, and environments.

4.2. Modelling a distributed architecture

This part presents the latest results obtained when using
the RTOS model presented in Section 3 for modelling a
distributed multiprocessor architecture for the vision appli-
cation.

Based on the presented SystemC RTOS model, and by
taking advantage of modularity and genericity of SystemC
models, we have developed a multi-RTOS model. At this level
of abstraction, each processing element is represented by a
single RTOS model. Each RTOS is responsible in executing its
own part of the application (we assume that the application
partitioning is done at design time). The application thus
comes in the form of one main task per execution node.
These main tasks are responsible in the creation of all
application tasks and interrupt handlers. Each RTOS is also
augmented by a communication port through which it can
communicate with external world.

A common shared service is necessary to insure com-
munication and synchronisation between tasks executed on
different nodes. A shared semaphore module has been easily
modelled by adding an extra RTOS model representing a
unique semaphore service module. This module would be
either refined as a single processor running a dedicated
semaphore service or a hardware interprocessor synchro-
nisation block. Figure 13 illustrates how multiple RTOS
models can interact by using this shared module. Each local
semaphore service module has been replaced by a proxy
module implementing multi-RTOS communications. We
inspired from the CORBA philosophy where proxies are used
to implement a service invocation and skeletons are in charge
of implementing the service itself. Distant communications
between proxies and skeletons are modelled as simple
method invocations and can be managed by any transport
layer as for a TLM infrastructure for example.

5. EXPLORING THE APPLICATION ARCHITECTURE

Based on the presented design flow, we use our modelling
framework to explore the architecture of the vision appli-
cation. As described in Section 2.2, we made the profiling
of the entire application on an embedded platform. We

Table 3: Software profiling of the significant application tasks
Average execution times on 20 representative images.

Task
Average execution
time (ms)

Percentage

Gradients 13915.4 49%

HF Gaussian filtering 9795.8 35%

LF Gaussian filtering 426.0 1.5%

HF DoGs 443.0 1.6%

LF DoGs 15.3 0.05%

HF Searches 1286.1 4.6%

HF Extracts (+ norm.) 58.8 0.21%

LF Searches 45.1 0.16%

LF Extracts (+ norm.) 33.1 0.12%

Others (MF tasks, sampling) 2238.2 7.9%

Total 28257.2 100 %

also built the profile of the μC/OS-II real-time services
(deterministic). The timing data were measured and back-
annotated into the high-level model in order to explore
and evaluate the architecture dimensioning and the imple-
mentation strategies: tasks distribution, services distribution,
scheduling algorithms, and so forth.

As illustrated in Table 3, the on-board measurements
helps to determine the critical portions of the application.
In high-detail mode the gradient and the HF Gaussian
filters represent more than 80% of the total execution
time. Moreover, on the software implementation, all the
treatments realised on high frequencies, except the extract
task, are very critical and exceed the real-time constraint of
the high-detail mode of the application: 1000 milliseconds.
More generally, the actual software implementation of the
common gradient task is incompatible with any of the three
identified real-time behaviours.

For these reasons, we used the modularity advantage of
the OS model to evaluate the gain of parallelism on the
execution time of the three identified modes. Figure 14 shows
the potential gain using multiple processors (from 2 to 5)
for the high-detail mode. The better software partitioning
among the explored ones is depicted on Figures 2 and 16;
but the parallelisation has no significant effect beyond 2
processors. Indeed, the concurrency in the application only
appears between the sequential Gaussian pyramid and the
different scales (searches and extractions tasks), and between
the normalisation tasks inside each scale, the latters only
represent a small percentage of the total software application
time. In addition, as illustrated in Table 3, the difference of
complexity between scales explains the nonsignificant gain
for the parallelisation of the normalisation tasks on a third
processor.

Hence, only a hardware and software implementation
could thus respect our variable constraints by accelerating
the Gaussian pyramid.

According to the results of the first exploration phase,
the identified critical and regular treatments (gradient,
HF Gaussian filters, and DoGs) are candidates to a static



François Verdier et al. 15

1 2 3 4 5

Number of processors
Mode: high detail

24.5

25

25.5

26

26.5

27

27.5

28

28.5

29

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)
(m

ea
su

re
d

on
a

sa
m

pl
e

of
20

re
pr

es
en

ta
ti

ve
im

ag
es

)

Full SW (max)
Full SW (avg)
Full SW (min)

Figure 14: Execution times for different numbers of processors, in
a full SW implementation.

hardware implementation as dedicated accelerators. These
results conduct to a first-refinement process. Indeed, in
order to evaluate the acceleration, we developed a VHDL
description of the selected tasks. The temporal characteristics
reported by the hardware synthesis tool (Altera’s Quartus
II for our example) were integrated into the model. The
corresponding hardware tasks were modelled as indepen-
dent and concurrent SystemC threads with back-annotated
execution times. In addition, each hardware block provides
an interruption line for synchronisation with the software
part when data are produced. From the identified Hw/Sw
partitioning, we led a second set of experiments resulting on
the performance evaluations depicted in Figure 15 (the figure
only represents results for the high-detail mode). Comparing
Figures 14 and 15, we found a speed up factor of x17, thanks
to the hardware acceleration. The hardware implementation
of the pyramid also makes the parallelisation effects more
significant on the third processor.

However, the challenge of the exploration was to find
an architecture respecting the constraints corresponding to
the three application modes. Exactly each mode executes
different treatments under different rates. The variation of
constraints finally leads to three embedded architectures that
are presented in Figure 16. In fast mode, the lower scales are
implemented on two processors. If two processors or more
are used, the worst-case execution time of the application is
about 48 milliseconds thus corresponding to the robot speed.
In intermediate mode, 3 processors are needed leading to a
total execution time under 150 milliseconds. In this mode,
since the period constraint is relaxed, the two half lower
scales can be implemented on the same processor. Finally,
in the high-detail mode, the search and extract tasks of the
two high-frequency half scales are processed on separate
processors while low and medium frequencies are executed
on a single processor. The maximum total execution time in

1 2 3 4 5

Number of processors
Mode: high detail

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)
(m

ea
su

re
d

on
a

sa
m

pl
e

of
20

re
pr

es
en

ta
ti

ve
im

ag
es

)

SW + HW (max)
SW + HW (avg)
SW + HW (min)

Figure 15: Execution times for different numbers of processors, on
our hybrid HW/SW architecture.

this mode is 950 milliseconds on our three processor model.
In the three cases, the architecture contains at least two
common components: the hardware-gradient accelerator
and a processor executing at least the low-frequency tasks.
The performance results obtained with the following Hw/Sw
solution are summarised in Figure 17.

The final system meets all the application requirements
in each mode.

As a conclusion, we have successfully modelled a realistic
multiprocessor platform with our distributed OS model.
Thanks to the properties of the model, we have explored
and defined the architecture adapted to the application
requirements. The considered target platform is a System on
Programmable Chip (SoPC) from ALTERA [30].

With our conclusions, an FPGA will be configured with
3 RISC microprocessors (Nios II) and the selected hardware
blocks (accelerator and semaphore). Each processor will
run an instance of a custom RTOS refined from the OS
model. The interprocessor synchronisation will be realised
through the shared hardware semaphore service. The entire
application can thus be implemented on a single chip SoC.

In order to optimize the mode changes, we are now
interested in refining the OS in order to support new specific
services such as online software migration and dynamic
voltage scaling (DVS) scheduling since only two of the three
processors are useful in fast mode. These mechanisms will
be managed by the dedicated and distributed OS. Another
interesting perspective is the management of dynamically
hardware reconfigurable units in order to propose a hard-
ware adaptive architecture.

6. CONCLUSION

We have presented in this paper a particular design problem
dealing with the SoC implementation of a visual system



16 EURASIP Journal on Embedded Systems

SW: high detail mode

Half scale 1.1
search/extract

/normalizations
P3

Half scale 1.2
search/extract

/normalizations
P2

Half scale 2.1
search/extract

/normalizations

Half scale 2.2
search/extract

/normalizations

Half scale 3.1
search/extract

/normalizations

Half scale 3.2
search/extract

/normalizations
P1

SW: intermediate mode

Half scale 2.1
search/extract

/normalizations
P3

Half scale 2.2
search/extract

/normalizations
P2

Half scale 3.1
search/extract

/normalizations

Half scale 3.2
search/extract

/normalizations
P1

SW: fast mode

Half scale 3.1
search/extract

/normalizations
P2

Half scale 3.2
search/extract

/normalizations P1

HW filtering
pyramid

Figure 16: Architectures corresponding to the 3 application modes.

1 2 3

Robot modes (1: fast/2: intermediate/3: high detail)
Values for an hybrid SW/HW architecture with 3 processors

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

E
xe

cu
ti

on
ti

m
e

(s
ec

on
ds

)
(m

ea
su

re
d

on
a

sa
m

pl
e

of
20

re
pr

es
en

ta
ti

ve
im

ag
es

)

Maximum time
Average time
Minimum time

Figure 17: Execution times comparison on different modes on our
hybrid architecture (HW + multiprocessor SW).

embedded in a mobile robot. The image-processing applica-
tion works on a multiscale pyramidal decomposition of the
images and extracts local features in the neighbourhoods of
interest points. Such an application could be used for objects
localisation, tracking, or recognition.

Since this application is inserted into a biologically
inspired sensorimotor loop, it participates to the global sys-

tem dynamics. As a first contribution, we precisely analysed
the impact of the dynamics on the application behaviour. It
has been shown that a lot of characteristics dynamically vary
according to the regulation process imposed by the global
system.

We have also shown that these variations are unpre-
dictable without an entire a priori knowledge on the envi-
ronment. We have thus demonstrated that classical design
techniques based on static scheduling will fail to efficiently
implement such an application. Only a custom RTOS with
dedicated services could manage the adaptation of the
architecture to the environment variations. The exploration
and the definition of the required architecture have been
made possible thanks to a high-level executable model of
RTOS. This model facilitates early system dimensioning and
application partitioning.

Our second contribution consists in detailing the bare
dynamic mechanisms necessary to build a SystemC RTOS
model. These mechanisms mainly provide the dynamical
creation of SystemC processes and the preemption and
execution time modelling. We have chosen the SystemC lan-
guage for its ability to model and simulate both hardware and
software systems at multiple levels of abstraction. We have
also presented in this paper an operational executable RTOS
model including these mechanisms. This model has been
used to simulate the vision application on a representative
set of data.

Finally, we have described how this RTOS model can
be modified in order to be used for building a distributed
architecture model. We have constructed the model of a
realistic MPSoC platform containing multiple execution



François Verdier et al. 17

nodes and a shared-hardware semaphore. The application
partitioning and the architecture dimensioning have been
made by using and customizing our generic model during
the proposed exploration process. The obtained results
constitute a promising way for the final SoC design. More
generally, this work falls into the scope of the OveRSoC
project [31] that aims at developing an exploration method-
ology adapted to the design of dynamically reconfigurable
systems. The high-level SystemC RTOS model presented in
this paper is expected to be used also for the exploration of
custom RTOS services dedicated to the management of these
particular dynamically reconfigurable resources.

REFERENCES

[1] D. H. Ballard, “Animate vision,” Artificial Intelligence, vol. 48,
no. 1, pp. 57–86, 1991.

[2] P. Gaussier and S. Zrehen, “PerAc: a neural architecture to
control artificial animals,” Robotics and Autonomous Systems,
vol. 16, no. 2–4, pp. 291–320, 1995.

[3] M. Maillard, O. Gapenne, L. Hafemeister, and P. Gaussier,
“Perception as a dynamical sensori-motor attraction basin,”
in Proceedings of the 8th European Conference on Advances in
Artificial Life (ECAL ’05), M. S. Capcarrère, A. A. Freitas, P.
J. Bentley, C. G. Johnson, and J. Timmis, Eds., vol. 3630 of
Lecture Notes in Computer Science, pp. 37–46, Canterbury, UK,
September 2005.

[4] P. Gaussier, C. Joulain, J. P. Banquet, S. Leprêtre, and A. Revel,
“The visual homing problem: an example of robotics/biology
cross fertilization,” Robotics and Autonomous Systems, vol. 30,
no. 1-2, pp. 155–180, 2000.

[5] A. A. Jerraya and W. Wolf, “The what, why, and how of
MPSoCs,” in Multiprocessor Systems-on-Chips, chapter 1, pp.
1–18, Morgan Kaufmann, San Francisco, Calif, USA, 2004.

[6] “SystemC standard,” http://www.systemc.org/.
[7] “SpecC language,” http://www.specc.org/.
[8] Y. Sorel, “SynDEx: system-level cad software for optimizing

distributed real-time embedded systems,” Journal ERCIM
News, vol. 59, pp. 68–69, 2004.

[9] R. K. Gupta, Co-Synthesis of Hardware and Software for Digital
Embedded Systems, Kluwer Academic Publishers, Norwell,
Mass, USA, 1995, foreword By-Giovanni De Micheli.

[10] G. De Micheli, Ed., “Special issue on hardware/software co-
design,” Proceedings of IEEE, vol. 85, no. 3, 1997.

[11] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN:
hardware-software co-synthesis of embedded systems,” in
Proceedings of the 34th Design Automation Conference, pp. 703–
708, Anaheim, Calif, USA, June 1997.

[12] A. Gerstlauer, H. Yu, and D. D. Gajski, “RTOS modeling
for system level design,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’03), pp. 130–
135, Munich, Germany, March 2003.

[13] D. Desmet, D. Verkest, and H. De Man, “Operating system
based software generation for systems-on-chip,” in Proceedings
of the 37th Design Automation Conference (DAC ’00), pp. 396–
401, Los Angeles, Calif, USA, June 2000.

[14] R. Le Moigne, O. Pasquier, and J.-P. Calvez, “A generic RTOS
model for real-time systems simulation with SystemC,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’04), pp. 82–87, Paris, France, February 2004.

[15] “Cofluent StudioTM,” www.cofluentdesign.com.
[16] L. Gauthier, S. Yoo, and A. Jerraya, “Automatic generation

and targeting of application specific operating systems and

embedded systems software,” in Proceedings of the Conference
on Design, Automation and Test in Europe (DATE ’01), pp. 679–
685, IEEE Press, Munich, Germany, March 2001.

[17] S. Leprêtre, P. Gaussier, and J. Cocquerez, “From naviga-
tion to active object recognition,” in Proceedings of the 6th
International Conference on Simulation of Adaptive Behavior
(SAB ’00), pp. 266–275, Paris, France, August 2000.

[18] T. Lindeberg, “Feature detection with automatic scale selec-
tion,” International Journal of Computer Vision, vol. 30, no. 2,
pp. 79–116, 1998.

[19] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[20] K. Mikolajczyk and C. Schmid, “Scale & affine invariant
interest point detectors,” International Journal of Computer
Vision, vol. 60, no. 1, pp. 63–86, 2004.

[21] M. Seibert and A. M. Waxman, “Spreading activation layers,
visual saccades, and invariant representations for neural
pattern recognition systems,” Neural Networks, vol. 2, no. 1,
pp. 9–27, 1989.

[22] J. Crowley, O. Riff, and J. H. Piater, “Fast computation of
characteristic scale using a half-octave pyramid,” in Proceed-
ings of the International Workshop on Cognitive Computing
(Cogvis ’02), Zurich, Switzerland, October 2002.

[23] A. Torralba and A. Oliva, “Statistics of natural image cate-
gories,” Network: Computation in Neural Systems, vol. 14, no.
3, pp. 391–412, 2003.

[24] K. Mikolajczyk and C. Schmid, “A performance evaluation
of local descriptors,” in Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR ’03), vol. 2, pp. 257–263, Madison, Wis, USA, June
2003.

[25] E. L. Schwartz, “Computational anatomy and functional
architecture of striate cortex: a spatial mapping approach to
perceptual coding,” Vision Research, vol. 20, no. 8, pp. 645–
669, 1980.

[26] D. Marr, Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information, W.H.
Freeman, San Francisco, Calif, USA, 1982.

[27] R. A. Brooks and L. A. Stein, “Building brains for bodies,”
Autonomous Robots, vol. 1, no. 1, pp. 7–25, 1994.

[28] P. G. Schyns and A. Oliva, “Dr. Angry and Mr. Smile: when
categorization flexibly modifies the perception of faces in
rapid visual presentations,” Cognition, vol. 69, no. 3, pp. 243–
265, 1999.

[29] E. Huck, B. Miramond, and F. Verdier, “A modular systemC
RTOS model for embedded services exploration,” in Proceed-
ings of the 1st European Workshop on Design and Architectures
for Signal and Image Processing (DASIP ’07), Grenoble, France,
November 2007.

[30] Altera Corp, “Creating Multiprocessor Nios II systems,
ver. 1.3,” December 2007, http://www.altera.com/literature/
lit-nio2.jsp.

[31] I. Benkhermi, A. Benkhelifa, D. Chillet, S. Pillement, J.-
C. Prévotet, and F. Verdier, “System-level modelling for
reconfigurable SoCs,” in Proceedings of the 20th Conference on
Design of Circuits and Integrated Systems (DCIS ’05), Lisboa,
Portugal, November 2005.


	1. INTRODUCTION
	1.1. Related works
	1.2. Paper organisation

	2. A VISION APPLICATION FOR ROBOT PERCEPTION AND NAVIGATION
	2.1. Application description
	2.1.1. Themultiscale keypoints detection
	2.1.2. The local image feature extraction

	2.2. A customRTOS as a solution for domain-specific implementation

	3. BUILDING THE SYSTEMCMODEL OF A REAL-TIME OS
	3.1. Modelling the bare mechanisms
	3.1.1. Task creation service
	3.1.2. Scheduling
	3.1.3. Tasks preemption

	3.2. Buildingmodular RTOS models
	3.3. Validation of the abstract OS

	4. TOWARDS A GLOBAL PLATFORM EXPLORATION AND DESIGN FLOW
	4.1. The SoC modelling flow
	4.1.1. Specificationmodel
	4.1.2. Executivemodel
	4.1.3. Distributionmodel
	4.1.4. Implementationmodel

	4.2. Modelling a distributed architecture

	5. EXPLORING THE APPLICATION ARCHITECTURE
	6. CONCLUSION
	REFERENCES

