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Rayleigh sea clutter model with embedded Swerling 0, 1, or 3 target signal models. The results are examined to obtain a qualitative
understanding of the effects of using the different target models. The Swerling 0 model is observed to exhibit a heightened
sensitivity to changes in measured signal strength and provides enhanced detection of the maritime target examined at the cost of
more peaked or multimodal posterior density in comparison with Swerling 1 and 3 targets.
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1. INTRODUCTION

Traditional approaches to detecting and tracking maritime
targets typically rely on a multiphase strategy in which target
detections are fed to a Kalman-filter-based tracker. This
is commonly combined with a simple linear track-before-
detect (TkBD) scheme to provide noncoherent integration
prior to the final detection step.

For highly manoeuvrable targets, the above approach
provides poor performance due to the failure of the target
dynamics to meet the constant velocity requirements. In
addition, the methodology also fails to utilize all available
target signal information as a “hard” detection decision
must be made prior to tracking via a Kalman filter with a
linear measurement function. The loss of information due to
pretracking detection is particularly detrimental for targets
possessing very low signal-to-interference ratios (SIRs).

Two approaches which are commonly used for solving
nonlinear continuous-discrete problems with nonanalytical
measurement functions are particle filters (PFs) and grid-
based methods (see, e.g., [1, 2]). In this study, we focus on a
grid-based approach and in particular a finite difference (FD)
algorithm. Unlike simple TkBD methods, the FD approach
utilizes the complete measurement set from each scan to
evolve the complete state conditional probability density.

For radar surveillance, the “measurement” at each time step
corresponds to the filtered amplitude radar echoes or returns
from all range-azimuth bins within a scanned sector.

The solution of the TkBD problem based on the
continuous-discrete filtering and continuous-continuous fil-
tering (based on the Duncan-Mortensen-Zakai equation)
has previously been studied in the context of SAR [3], and IR
[4] images, or ground moving target indicator (GMTI) radar
measurements [5]. However, these studies utilized simulated
targets and/or simulated clutter.

2. THEORY

2.1. Continuous-discrete filtering

In continuous-discrete filtering theory (see, e.g., [2]), the
state model is given by the Itô stochastic differential equation
of the form

dx(t) = f
(
x(t), t

)
dt + e

(
x(t), t

)
dv(t). (1)

Here, x(t) is an Rn-valued process, f (x(t), t) ∈ Rn,
e(x(t), t) ∈ Rn×p, and v(t) is an Rp-valued Brownian process
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with covariance Q(t). The forward diffusion operator, L, of
the state process generated by (1) is given by

L(·) = −
n∑

i=1

∂(· fi)
∂xi

+
1
2

n∑

i, j=1

∂2
[
·(eQeT)i j

]

∂xi∂xj
. (2)

The general continuous-discrete filtering problem con-
siders the following signal and measurement processes:

dx(t) = f
(
x(t), t

)
dt + e

(
x(t), t

)
dv(t),

y(tk) = h
(
x
(
tk
)
, tk,w

(
tk
))
.

(3)

Here, y is an Rm-valued process, h(x(t), t,w(t)) ∈ Rm, and
w(t) is an Rq-valued Brownian process.

The continuous-discrete filtering problem is solved as
follows. Let the initial distribution be σ0(x) and let the
measurements be collected at time instants t1, t2, . . . , tk, . . . .
We use the notation Y(τ) = {y(tl) : t0 < tl ≤ τ}. Then, at
observation at time tk, the conditional density is given by

p
(
tk, x|Y(tk

)) = p
(
y
(
tk
)|x)p(tk, x|Y(tk−1

))

∫
p
(
y
(
tk
)|ξ)p(tk, ξ|Y(tk−1

)){
dnξ

} , (4)

and p(tk, x|Y(tk−1)) is given by the solution of the Fokker-
Planck-Kolmogorov forward equation (FPKfe)

∂

∂t
p
(
t, x|Y(tk−1

)) = L
(
p
(
t, x|Y(tk−1

)))
, tk−1 ≤ t < tk,

(5)

with initial condition p(tk−1, x|Y(tk−1)). Often, the signal
and measurement model is described by the following
system:

dx(t) = f
(
x(t), t

)
dt + e

(
x(t), t

)
dv(t),

y
(
tk
) = h

(
x
(
tk
)
, tk
)
dt + w

(
tk
)
, k = 1, 2, . . . ,

(6)

where y(t) ∈ Rm×1, h ∈ Rm×1, and the noise process is
described by w(t).

2.2. Signal andmeasurementmodels

The state model we consider is the constant velocity (CV)
model on the plane so that the resulting state model is four-
dimensional. If

[
x1(t) x2(t) x3(t) x4(t)

] = [ x(t) vx(t) y(t) vy(t)
]
,

(7)

then the model is

⎡

⎢
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⎢
⎢
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(8)

The FPKfe for the CV model (where Q(t) = 1) is

∂u

∂t
(t, x) =

(
σ2

2

2
∂2

∂x2
2

+
σ2

4

2
∂2

σx2
4
− x2

∂

∂x1
− x4

∂

∂x3

)
u(t, x).

(9)

The measurement model is specified by p(y(tk)|x),
where a measurement y(tk) is the return amplitude on a grid.

Another possible state model is the integrated Ornstein-
Uhlenbeck model (see, e.g., [6]). This has the nice property
that the variance of the velocity is bounded, which is
especially relevant if no measurements are available over
a long period of time. In the data that was processed in
this study, the measurements were available at short-time
intervals, and the CV model was found to be adequate.

2.3. Multiplicative operator splitting

The solution of the continuous-discrete filtering problem
thus requires the solution of a PDE of the following form:

∂u

∂t
(t, x) =

s∑

i=1

Liu(t, x). (10)

For the CV model we have

L1 = σ2
2

2
∂2

∂x2
2

, L2 = σ2
4

2
∂2

∂x2
4

,

L3 = −x2
∂

∂x1
, L4 = −x4

∂

∂x3
.

(11)

In the forward Euler explicit scheme (see, e.g., [7]), (10) is
numerically solved using the following approximation:

u(t + Δt, x)− u(t, x)
Δt

=
s∑

i=1

Liu(t, x), (12)

so that

u(t + Δt, x) =
(

1 + Δt
s∑

i=1

Li

)

u(t, x)

≈
s∏

i=1

(
1 + ΔtLi

)
u(t, x) + O(Δt)2.

(13)

The advantage of the multiplicative form is that it reduces
the s-dimensional problem into s one-dimensional problems
thus resulting in memory and computational savings.

Note that if the time step is too large, the explicit scheme
is unstable. This problem is evaded by splitting up the time
interval between measurements into NT time steps prior to
applying the forward Euler scheme, that is,

(
1 + ΔtLi

) ≈
(

1 +
Δt

NT
Li

)NT

. (14)

Furthermore, stability of the discretization of the convection
operators requires that “upwind differencing” be used for the
first order derivative operator [7]. This also ensures that the
probability remains positive.
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Figure 1: Speedboat used as target in trials.

Table 1: Radar and aircraft operating parameters.

Radar resolution <1 meter

Radar scan rate 36◦/s

Sector width 100◦

Pulse repetition frequency (PRF) 500 Hz

Aircraft altitude 1000 feet

Often, the backward Euler (or Laasonen) implicit scheme
is used and the following approximation is made:

u(t + Δt, x)− u(t, x)
Δt

= Δt
s∑

i=1

Liu(t + Δt, x), (15)

or

u(t + Δt, x) =
s∏

i=1

(
1− ΔtLi

)−1
u(t, x). (16)

Since the matrices are tridiagonal, the inverses may be
computed eficiently using the Thomas tridiagonal method
[8]. This implicit scheme has the advantage of being stable
even for large time steps. However, it is not as accurate as
the explicit scheme. Since the time-step restrictions on the
explicit scheme is not severe in this application, we used the
explicit scheme.

Finally, the Dirichlet boundary conditions are applied
which ensures that the probability vanishes at the boundary.

3. DATA DESCRIPTION

The data used in this study was collected near the mouth
of Halifax harbour in Nova Scotia, Canada using the
DRDC Ottawa X-band Wideband Experimental Airborne
Radar (XWEAR). A small, highly manoeuvrable speedboat,
see Figure 1, was fielded. The relevant radar and aircraft
operating parameters are given in Table 1.

After pulse compression, the radar returns were normal-
ized using a cell averaging (CA) approach so as to remove
large scale fluctuations in underlying power levels (see, e.g.,
[9]). In particular, the estimated mean power of the cell
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Figure 2: Histogram of real-data distribution and plots of Rayleigh
and K distribution probability distribution functions with variance
and/or shape parameter matched to real data.

under test (CUT) was calculated using a total of 256 range
bins equally distributed on both sides of the CUT with a
guard band of 30 cells to prevent self-nulling of the target
signal via target contamination of the mean. The choice
of 256 as a background sample dimension was arrived at
through trial and error experimentation against a range of
smaller and larger background sizes. For this data set, the
chosen values of background and guard band size produced
the best results.

Figures 2 and 3 present a histogram of the measured
clutter returns for the data set and the corresponding
Rayleigh probability distribution functions (pdfs) matched
to the variance of the real data. It is evident that the Rayleigh
distribution is not a particularly good match to the real data,
which exhibits a much longer tail corresponding to a greater
probability of high-amplitude outliers. This tail is commonly
observed in high-resolution sea clutter measurements and is
caused by the presence of sea spikes. Past studies have shown
that the K distribution often provides a better fit to the
real data [10, 11]. The corresponding K distribution is also
shown in Figures 2 and 3. The measured shape parameter of
3.5 was calculated from the real data using the z log z method
[12].

Figures 4 and 5 present the measured boat velocity and
change of velocity, respectively, at each time step as measured
using onboard GPS. The bearing and change in bearing is
also plotted. It can be seen that the boat was manoeuvring
strongly. It should also be noted that for approximately the
first 10 scans the boat was moving very slowly after which
time it rapidly accelerated to a velocity of greater then 10 m/s
(20 knots). A final observation is made on the SIR of the boat.
During the early portion of the data set, the signature of the
boat is much less visible against the clutter background (not
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Figure 3: Close up of Figure 2 on high-amplitude tail of distribu-
tion.
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Figure 4: Velocity and bearing of boat for each scan during trial
collection period.

shown). After approximately 15 scans, the relative strength
of the target signal is seen to increase greatly with respect
to the clutter background, probably due to a combination of
changes in incidence and viewing angle.

4. IMPLEMENTATION OF THEMEASUREMENT
CORRECTION

The measurement correction corresponds to the application
of p(y(tk)|x) in (4). Implementation of the measurement
correction is practically difficult due to the departure of real-
life target and clutter characteristics from the analytically
tractable stochastic models that must be used. In this paper,
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Figure 5: Change of velocity and bearing of boat between scans of
trial collection period.

we will examine the application of a variety of commonly
used target pdfs against the real data. To model the radar
clutter we use the well-known Rayleigh pdf. As discussed
above this choice tends to underrepresent the proportion
of high-amplitude returns observed in the real data. While
the K distribution appears to offer a slightly better fit, it
does not permit a closed form expression for the signal-plus-
noise pdf and requires the use of a numerical integration.
This imposes a significant computational load and has not
been implemented in this study. It will be examined in future
studies. The implications of choosing the Rayleigh model are
discussed further below.

A common choice for a target model is the Swerling
0, or constant amplitude, target model. Unfortunately,
highly manoeuvrable small cross-section targets tend to
undergo very large cross-section fluctuations between scan-
to-scan and even between pulse-to-pulse measurements. In
recognition of this limitation, Rutten et al. [13] suggested
the application of the fading Swerling target models in
Rayleigh clutter. In this paper, we implement models for
Swerling 1 and Swerling 3 targets in Rayleigh clutter and
compare it with Swerling 0 target results. While Rutten
et al. indicated that the application of Swerling 1 and
Swerling 3 models would necessitate the use of a numerical
integral, this is not strictly true for the case where the
measurement samples are statistically independent. For this
case, simple closed form expressions are available for the
Swerling 0 and Swerling 3 pdfs [14]. In general, the Swerling
1 target model is applicable to a complex target comprised
of numerous independent scatterers of similar cross-section,
while Swerling 3 is representative of a target comprised of one
large scatterer and numerous smaller cross-section scatterers.
The corresponding pdf for each target type is shown in
Figure 6.

It is easily shown that calculating p(y(tk)|x) is equivalent
to the calculation of the product of the likelihood ratios for
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Figure 6: Sample probability distribution function curves for pure
Rayleigh clutter and Swerling 0, 1, and 3 targets in Rayleigh clutter.
Average target signal power is 3 dB above clutter power.

each measurement point within the target-spread function to
within a common normalization factor [15]. The following
sections detail the likelihood function corresponding to each
of the clutter-plus-target models utilized in this study.

For all models the spread function of the target, hin, is
assumed to be Gaussian and is given by

hin = Iexp

[

−
(
xi − xn

)2
+
(
yi − yn

)2

2σ2
s

]

, (17)

where xi and yi are the x- and y-locations of the current
measurement and xn and yn are the x- and y-locations of
the current state point. I is the postulated amplitude of
the target and σ2

s is the variance of the Gaussian spread
function. In regions where no component of the target
spread function exists, the likelihood ratio reduces to a
value of 1. It should again be emphasized that p(y(tk)|x)
corresponds to the product of all the likelihood ratios formed
from all the measurement locations (xi and yi) within the
spread function, that is,

l
(
y
(
tk
)|xn(tk

)) =
∏

i

p
(
yi
(
tk
)|xn(tk

)
,H1

)

p
(
yi
(
tk
)|xn(tk

)
,H0

) , (18)

where H1 and H0 denote the target “present” and “not
present” cases, respectively.

4.1. Rayleigh distributionmodel with swerling 0 target

The pdf for a Swerling 0 target in Rayleigh clutter is given by

p
(
yi
(
tk
)|xn(tk

)
,H1

)

= 2yi
(
tk
)

P
exp

(

− yi
(
tk
)2

+
(
hin
)2

P

)

I0

(
2hin y

i
(
tk
)

P

)
,

(19)

(see, e.g., [13]) where I0 is a modified Bessel function
of the first kind and P is the average Rayleigh clutter
power determined by calculating the mean power across the
measurement frame. The pdf for Rayleigh clutter without a
target is given by

p
(
yi
(
tk
)|xn(tk

)
,H0

) = 2yi
(
tk
)

P
exp

(

− yi
(
tk
)2

P

)

. (20)

The corresponding likelihood ratio for the Rayleigh case is
therefore given by

l
(
yi
(
tk
)|xn(tk

)) = exp

(

−
(
hin
)2

P

)

I0

(
2hin y

i
(
tk
)

P

)
. (21)

4.2. Rayleigh distributionmodel with swerling 1 target

In this case,

p
(
yi
(
tk
)|xn(tk

)
,H1

) =
(

1 +

(
hin
)2

P

)

exp

(

− yi
(
tk
)2

P +
(
hin
)2

)

,

(22)

where the intensity used in calculation now corresponds
to the average target intensity [14]. The corresponding
likelihood ratio is formed using (22) and (20).

4.3. Rayleigh distributionmodel with swerling 3 target

In this instance,

p
(
yi
(
tk
)|xn(tk

)
,H1

) = 1
(

1+
(
hin
)2
/2P
)

⎡

⎢
⎣1+

yi
(
tk
)2
/P

(
1+2P/

(
hin
)2
)

⎤

⎥
⎦

× exp

⎡

⎢
⎣− yi

(
tk
)2
/P

(
1 +

(
hin
)2
/2P
)

⎤

⎥
⎦ ,

(23)

where the intensity used in calculation now corresponds
to the average target intensity [14]. The corresponding
likelihood ratio is formed using (23) and (20).

4.4. Comments

To calculate the spread function, the target intensity, I , is
required. This is typically not known a priori although
a reasonable estimate may be formed through knowledge
of desired target types. Methodologies for choosing an
optimum intensity value are not examined in this paper,
rather, an optimum intensity value is determined by trial and
error. For the purposes of this study, the optimum intensity
is considered to be that which achieves target detection on
the maximum number of scans. The concept of a “detection”
is discussed in further detail in Section 5 below. In all cases,
the target intensity is held constant across all scans.

Even presuming the optimum intensity value has been
accurately chosen, significant performance degradation can
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still occur due to the mismatch between the real and postu-
lated target-plus-clutter models. Significant problems arise
due to the enhanced high-amplitude tail of the real clutter
that was observed in Figure 2. Since the Rayleigh distribution
does not “anticipate” this increased prevalence of high-
amplitude clutter spikes, its produces a larger likelihood ratio
than is warranted.

The result is a filtered state probability distribution,
which fails to maintain a “lock” on the actual target
location. Instead, the locations of the state-distribution peaks
fluctuate rapidly from scan to scan, the latest peak location
corresponding to the most recent clutter spike. The problem
is compounded for very large spread functions, that is, large
number of measurement points. In this study, the observed
3 dB width of the target spread function contains over 600
separate measurement points. Ideally, more measurements
will result in greater integration gain, but in practise, the
mismatch between the real and postulated target-plus-clutter
models introduces a small error to each calculated likelihood
ratio. These small errors translate into huge errors when
the overall likelihood ratio is formed from the product
of all individual likelihood ratios. The resulting overall
likelihood ratios can be many orders of magnitude larger
than warranted. Care was taken during the processing in this
analysis to restrict the extent of the spread function in order
to prevent this exponential growth of overall likelihood ratio
error. In addition, a simple ad hoc approach was adopted
in this study whereby the value of the overall likelihood
function was limited to a maximum upper value so as
to suppress the effect of the largest clutter spikes. This
approach was seen to provide a significant improvement
in performance. All three target models were observed to
exhibit similar performance gains when likelihood limiting
was employed.

It is instructive to further examine the properties of the
Swerling target models with respect to one another. Figure 6
presents the pdf curves for Swerling 0, 1, and 3 targets
in Rayleigh clutter. As anticipated, the Swerling 1 and 3
distributions exhibit a larger variance than the Swerling 0
target model, with the Swerling 1 being the broadest. The
effect of increased variance on the calculated likelihood ratio
is illustrated in Figures 7 and 8.

From Figure 7, it is observed that likelihoods ratios of
the Swerling 0 model are most sensitive to the average target
power assumption (corresponding to choosing intensity, I ,
in the spread function calculation detailed above) while
the Swerling 1 model is least sensitive. In a practical
implementation, the choice of a correct target power is
not a trivial task and the apparent desensitization of this
parameter could prove highly advantageous. The flipside of
the relationship is illustrated in Figure 8 where the likelihood
ratio is plotted against received power for a fixed underlying
target power. It is readily observed that the Swerling 0
target model provides the most aggressive promotion and
demotion of the posterior density. Namely, when a weak
signal power is observed, the posterior density is more
heavily suppressed (i.e., the likelihood ratio is less than
one); while for strong signals, the posterior is most strongly
promoted (i.e., likelihood ratio greater then one). While the
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Figure 7: Variation of calculated likelihood ratio against postulated
average target power for received measurement powers of 0 dB, 3 dB
and 6 dB above clutter power. Curves are shown for Swerling 0, 1,
and 3 target models.

difference in individual likelihood ratios between Swerling
models may appear small, it can become very large when the
product of a large number of likelihoods ratios is computed
to determine the overall likelihood ratio.

Neither of the above behaviors is unexpected but must be
fully appreciated when comparing results via different target
models. In practical terms, one would expect to find that
the posterior distributions associated with Swerling 0 targets
would be more strongly peaked than those with the Swerling
1 and 3 targets. The broader the variance of the underlying
target model, the flatter the expected posterior distribution.
The temporal behavior of the posterior evolution is also
likely to differ, the low variance Swerling 0 model will likely
show a greater sensitivity to anomalous clutter peaks (with
an associated peak in the posterior) but the signature of
transient events will more rapidly decay with time due to the
greater subsequent suppression.

5. RESULTS

The data was processed across a 1.5 km by 1.25 km region
with 100 grid steps in the x- and y-directions (i.e., 104

state points). For a CV model, two additional dimensions,
corresponding to the x- and y-velocities, are also required. A
relatively coarse velocity spacing corresponding to ±40 m/s
spread across 10 grid steps along the velocity dimensions was
used. The CV state grid thus comprises 106 state points.
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Figure 8: Variation of calculated likelihood ratios against received
measurement power for postulated average target power 6 dB above
clutter power.

A “detection” was determined as follows. The state
density was summed across the velocity dimensions. The
location of the maximum value of the collapsed state density
was identified and the probabilities were then zeroed for all
state points falling within±5 grid points. This zeroing acts as
a crude multiple detection pruning technique. The process
can be repeated to extract progressively smaller maximum
state localities. In the following text, detections will be
referred to as a first maximum detection, second maximum
detection, etc. to identify the order of extraction.

It should be noted that while this approach bears
some passing resemblance to the concept of specifying a
given PFA (i.e., allowing one mode to be chosen would
crudely correspond to a PFA of 1/# of independent state
locations, allowing three modes would correspond to 3/# of
independent state locations, etc.), the approach is not strictly
CFAR. In addition, this concept of modal “detection” differs
from the more commonly utilized approach of applying a
threshold to the measured target amplitude in a number of
subtle but significant ways.

The first important difference is that the output of the
TkBD processing is a posterior measure of the probability
that the target is present at a given location within the field
of view rather then some function of the current measured
radar return. The posterior measure reflects the entire history
of measurements up to that point in time, hence it is more
representative of a track than of an individual detection;
and the applicability of detection performance measures
such as probability of detection (PD) and probability of
false alarm rate (PFA) become much less clearly defined.
Characterization of tracking performance is a much more
difficult problem than detection performance and one is
typically forced to resort to a broad range of measures such as

false track rate, false track length, association changes, missed
object history, omitted tracks, track establishment delay, and
so on to quantitatively capture the results. In most cases,
there is not one definitive combination of specifications that
characterize ideal performance, rather the tracker designer
must choose the mixture that best suits their application.
This sort of analysis is beyond the scope of this study and is
in fact not possible here due to the limited size of the data set
and the inability to calculate statistically meaningful values.

As will be discussed later, it is envisioned by the authors
that a practical implementation of TkBD will require a
follow-on tracker stage to refine the tracklet input from
the TkBD and identify the real target tracks. Under this
scenario, the overall performance is an intimately coupled
function of the TkBD and follow-on tracker design. Further
investigations of these aspects are reserved as a topic for
future study. The focus of the following discussion is to
highlight the impact of utilizing different targets models
and, in particular, understand the effect of this choice
on the posterior and the distribution of modes within it.
General observations of how posterior distributions and
modal ‘detections’ are affected by target choice are presented
but definitive statements on the superiority of one model
with respect to another cannot be provided for the reasons
discussed above.

Figure 9 compares results obtained using a Swerling 0,
1, and 3 target model. To generate this plot, the top three
maximum detection localities have been identified on each
scan. Only the detections that clearly coincide with the actual
target location (as determined by GPS truth and raw signal
intensity plots) are retained and plotted.

It is evident from Figure 9 that the Swerling 0 target
provides the greatest detection performance as it successfully
detects the target on almost all scans. The Swerling 1 and
3 models, which produce virtually identical results to each,
suffer from large drop-out regions, particularly near the
beginning of the data set, in which the target is not detected.
At first glance, this result seems somewhat surprising as
the Swerling 0 target model permits the smallest variation
in target signal and would be expected to be least tolerant
of changes in target strength across the data set. Figure 10
sheds further light on this discrepancy. In Figure 10, only
the first maximum detection from each scan is extracted
and only those detections corresponding to the actual target
are plotted in the figure. The result is a strong degradation
of Swerling 0 target model performance with respect to the
Swerling 1 and 3 models in comparison with those observed
in Figure 9. It is difficult to be definitive on the precise
mechanisms at work due to the complicated environmental
conditions, but some of the differences are likely explained
by the enhanced promotion/demotion characteristics of the
Swerling 0 target model discussed above. The ability of the
Swerling 0 target model to provide second or third maximum
detections of the target reflects its greater sensitivity to small
changes in received signal strength. This effect should be
evident as a strongly peaked posterior distribution. The
difference between the target models is likely to be most
pronounced during the earlier scans when the target signal
was observed to be much weaker and less stable, and in fact,
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Figure 9: True target detections for Swerling 0, 1, and 3 target
model when top three maximum localities are considered.
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Figure 10: True target detections for Swerling 0, 1, and 3 target
model when top three maximum localities are considered.

it is in this time frame that the Swerling 1 and 3 targets
suffer from a detection drop-out. However, the enhanced
sensitivity also means that the approach is more sensitive
to clutter spikes, which leads to the increased prevalence of
second or third maximum detections of the actual target in
later scans.

Figures 11 and 12 present sample contour plots of the
posterior density for one scan derived using the Swerling
0 and Swerling 1 target models, respectively. The Swerling
3 results are very similar to the Swerling 1 results and are
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Figure 11: Contour plot of posterior density function for Swerling
0 model on selected scan.
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Figure 12: Contour plot of posterior density function for Swerling
1 model on selected scan.

omitted for conciseness. The enhanced multimodal character
of the Swerling 0 results with respect to the Swerling 1 results
is readily apparent and supports the discussion above.

6. CONCLUSION

The results of the TkBD nonlinear filtering using Swerling 0,
1, and 3 target models provide some insights into the applica-
bility of the models for the detection of small manoeuvring
targets in high-resolution sea clutter. The Swerling 0 model
is observed to exhibit a heightened sensitivity to changes
in measured signal strength, at least for the current data
set. This provides enhanced detection of the maritime target
but at the cost of more strongly peaked or multimodal
posterior density. None of the Swerling models tested
provides universally superior detection performance. The
choice of Swerling model will likely need to be considered
in conjunction with the design for any post-TkBD tracking
that might be applied. The Swerling 0 model appears to be
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most effective when several posterior peaks are identified as
potential targets or tracklets, where it is recognized that many
will represent false targets. However, this approach requires
that the post-TkBD tracking algorithms have the capability
to reliably promote the tracklets to firm track status or
terminate them. Conversely, the use of the Swerling 1 or 3
target models may allow for a simplified detection and post-
TkBD algorithm but at the cost of detection sensitivity.
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