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Developed over 15 years ago, the maximum-likelihood-probabilistic data association target tracking algorithm has been demon-
strated to be effective in tracking very low observable (VLO) targets where target signal-to-noise ratios (SNRs) require very low
detection processing thresholds to reliably give target detections. However, this algorithm has had limitations, which in many cases
would preclude use in real-time tracking applications. In this paper, we describe three recent advances in the ML-PDA algorithm
which make it suitable for real-time tracking. First we look at two recently reported techniques for finding the ML-PDA track
estimate which improves computational efficiency by one order of magnitude. Next we review a method for validating ML-PDA
track estimates based on the Neyman-Pearson lemma which gives improved reliability in track validation over previous methods.
As our main contribution, we extend ML-PDA from a single-target tracker to a multitarget tracker and compare its performance
to that of the probabilistic multihypothesis tracker (PMHT).
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1. INTRODUCTION

The problem of tracking very low observable (VLO) targets
in clutter has been an active area of research for a number
of years. The term VLO refers to targets with low signal-
to-noise ratio (SNR), either because the target is stealthy
or because of elevated background noise which masks the
target. A key difficulty lies in the relationship between tar-
get detection probability (Pd) and false alarm probability
(Pf a). In order to achieve a value of Pd sufficient to reli-
ably track, one must lower the detection threshold which
has the undesirable consequence of increasing Pf a. As the
false alarm rate increases (increasing clutter), conventional
Kalman filter-based tracking algorithms, such as multihy-
pothesis trackers (MHTs) which explicitly form track hy-
potheses based on hard measurement-to-target associations,
rapidly lose efficiency and effectiveness. The number of hy-
potheses in MHT grows exponentially as the number of mea-
surements increases.

Therefore, new techniques have been developed to track
VLO targets. One major class consists of track-before-declare

(TBD)—also called track-before-detect—techniques (see,
e.g., [1–3]). TBD refers to the fact that these techniques si-
multaneously perform track estimation and track acceptance
(validation or detection) functions. These techniques share
common traits. They typically use either unthresholded sen-
sor data or thresholded data with significantly lower thresh-
olds than used with conventional trackers, thereby increasing
the measurement data set by one or more orders of magni-
tude. They usually operate on measurement data over sev-
eral scans or frames in a batch algorithm to obtain a track
estimate. Note that single-frame Bayesian TBD techniques,
including those based on particle filters, also exist, for exam-
ple, [4, 5].

As a consequence of the very low or no detection level
thresholding, the computational complexity of TBD algo-
rithms is generally much higher than that of conventional
(i.e., Kalman-filter based) trackers. TBD algorithms are
therefore better suited to those VLO problems where con-
ventional trackers are unable to initiate or sustain a track.
Additionally, as the computational cost is already high, these
trackers are also better focused on problems in which contact
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density is relatively low (i.e., the number of interacting con-
tacts is limited). An example of such an application is in very
long range sonar tracking.

One algorithm within this class is the maximum
likelihood-probabilistic data association (ML-PDA) tracker.
ML-PDA uses low-thresholded measurement data over a
batch of measurement frames and computes track estimates
using a sliding window. It is a parameter estimation tech-
nique which assumes deterministic target motion (no pro-
cess noise). Originally developed in 1990 [14], it was later
enhanced by incorporating measurement amplitude as a fea-
ture into the ML-PDA likelihood function [16]. It has been
used to track sonar targets using bearings-only and bear-
ing/frequency information [14, 16] as well as tracking an air-
craft in an optical data set (infrared) [9]. More recently it
has been used on active sonar data sets, including multistatic
tracking [5, 30].

Despite its ability to effectively track VLO targets, ML-
PDA has suffered from some limitations. As with most TBD
algorithms, it has high-computational complexity and as the
clutter level increases beyond a certain (problem-specific)
point it can no longer perform real-time tracking without
resorting to parallel processing. Second, because ML-PDA al-
ways provides a track estimate, some form of track validation
must take place to determine if the estimate is the result of
an actual target or from noise-due measurements. The chal-
lenge for track validation lies in obtaining the appropriate
statistical distributions from which to perform the correct
hypothesis test. And finally ML-PDA, in its original formu-
lations, is restricted to single-target tracking. In this paper,
we review recent advances that alleviate the first two limita-
tions which brings context to the major contribution of this
paper—extending ML-PDA to a multitarget tracking algo-
rithm.

First, we briefly describe two recently reported tech-
niques for obtaining the ML-PDA track estimate which have
been shown to be significantly more efficient than the pre-
vious method used. These techniques are later used in the
multitarget version of ML-PDA.

Second, we describe work recently reported on an ML-
PDA track validation procedure based on application of the
Neyman-Pearson lemma. We show using extreme value the-
ory that the statistics of the LLR global maximum under the
“no-target” hypothesis is more closely approximated by the
Gumbel distribution as opposed to the Gaussian distribution
used by earlier researchers.

As our main contribution, we extend the ML-PDA al-
gorithm to jointly estimate the parameters of multiple tar-
gets in a joint ML-PDA (JMLPDA) algorithm. By use of
measurement validation gating techniques, we incorporate
ML-PDA and JMLPDA into a multitarget ML-PDA (MLPDA
(MT)) tracking system. Comparisons are made between
MLPDA (MT) and the probabilistic multihypothesis tracker
(PMHT). PMHT is a multitarget tracking algorithm which
has good computational efficiency characteristics [26, 30].

The remainder of this paper is organized as follows.
Section 2 defines the terminology and gives a summary of
the ML-PDA algorithm. Section 3 describes the computa-
tional efficiency improvements in ML-PDA by use of the

genetic search and the directed subspace search techniques.
Section 4 summarizes the ML-PDA track validation proce-
dure. Section 5 derives the JMLPDA for multitarget track-
ing. Section 6 outlines the ML-PDA (MT) procedure to
track multiple targets and presents the comparison between
MLPDA (MT) and PMHT in a 2-target scenario. Section 7
summarizes.

2. ML-PDA PROBLEM FORMULATION

The ML-PDA algorithm was originally developed for use in
passive narrowband target motion analysis for LO targets
[14] and was later extended to incorporate amplitude infor-
mation to handle VLO targets [16]. In the window-based
ML-PDA algorithm, designed for use in real-time applica-
tions, a subset of the Nw most recent data frames is used to
compute the track estimate. When a new frame of data is re-
ceived, the ML-PDA algorithm is repeated after adding the
new frame and deleting one or more of the oldest frames
from the data set, in effect creating a variable sliding window
for track detection and update.

2.1. ML-PDA derivation

A detailed derivation of the ML-PDA algorithm incorporat-
ing amplitude information in a 2D measurement space can
be found in [16]. A summary of the ML-PDA algorithm in-
corporating amplitude information is presented in this sec-
tion, generalized to arbitrary sized measurement and param-
eter spaces. The ML-PDA algorithm uses the following as-
sumptions.

(1) A single target is present in each data frame with a
given detection probability (Pd) and detections are in-
dependent across frames.

(2) At most one measurement per frame corresponds to
the target.

(3) The target operates according to deterministic kine-
matics (i.e., no process noise).

(4) False detections are distributed uniformly in the search
volume (U).

(5) The number of false detections is Poisson distributed
according to probability mass function μ f (m), with
parameter λ (spatial density), a function of the detec-
tor Pf a in a resolution cell, independent across frames.

(6) The amplitudes of target originated and false detec-
tions are distributed according to pdf p1(a) and p0(a),
respectively. The target SNR, which affects p1(a), is ei-
ther known or estimated in real time.

(7) Target originated measurements are corrupted with
additive zero-mean white Gaussian noise.

(8) Measurements obtained at different times are, condi-
tioned on the target state, independent.

The target parameter, xr , consists of the target kinematic
state at a given reference time and is related to the target state
at any time using the (possibly nonlinear) relation

x(i) = F
(

xr , i
)
. (1)



Wayne Blanding et al. 3

The measurement set is given by

(Z, a) = {(Zi, ai
)} = {(zi j , ai j

)}
.

i = 1, 2, . . . ,Nw frame number,

j = 1, 2, . . . ,mi measurement number,
(2)

where zi j consists of the kinematic measurement and ai j the
measurement amplitude.1 Amplitude refers to the envelope
output of the detector in a single resolution cell [18, 28].
Measurements with a single subscript refer to all measure-
ments in a single data frame. Measurements with two sub-
scripts identify a specific measurement.

There are some cases where assumption (2) above breaks
down and the target may appear in more than one measure-
ment cell in a single frame of data. This may occur in an ac-
tive sonar or radar sensor when the target extent exceeds one
resolution cell, or for either passive or active sensors when
the target signal strength is high enough such that detectable
energy above the detector threshold is received in adjacent
cells or beams. In such cases, one can use redundancy elim-
ination logic [3] such as centroiding detections to eliminate
or consolidate the multiple target-originated measurements.
Such logic however may have the undesirable effect in a mul-
tiple interacting target scenario of masking the weaker target
when its detections are adjacent to a stronger target—the de-
tections would be combined into a single centroided detec-
tion.

A measurement, assuming it is target originated, is re-
lated to the parameter xr using the (possibly nonlinear) rela-
tion

z = H
(

xr , xs(i), i
)

+ wi, (3)

where wi is a zero-mean white Gaussian noise with known
covariance matrix R. The sensor kinematic state, xs(i), is in-
cluded to account for (known) sensor motion. From this we
obtain for a target originated measurement

p
(

zi j | xr
) = N

(
zi j ; H

(
xr , xs(i), i

)
, R
)
. (4)

The maximum likelihood approach finds the target pa-
rameter that maximizes the likelihood function, p(Z, a | xr).
When incorporating amplitude into the likelihood function,
it is convenient to define an amplitude likelihood ratio as

ρi j =
p1
(
ai j | τ

)

p0
(
ai j | τ

) , (5)

where τ is the detector threshold (in each resolution cell) and
the conditioning is on the amplitude exceeding the threshold,
ai j > τ. For many applications (including those used in this
paper), the Rayleigh distribution is used which corresponds
to a Swerling-I target fluctuation model.

1 Any other feature with a probabilistic model can also be used.

From these assumptions and definitions, the likelihood
function becomes

p
(

Z, a | xr
)

=
Nw∏

i=1

p
(

Zi, ai | xr
)

=
Nw∏

i=1

[
(
1− Pd

) mi∏

j=1

p
(

zi j , ai j | “clutter”
)

+
Pd
mi

mi∑

j=1

p
(

zi j , ai j | xr
)∏

l /= j

p
(

zil, ail | “clutter”
)
]

=
Nw∏

i=1

[
1− Pd
Umi

μ f

(
mi
) mi∏

j=1

p0
(
ai j | τ

)

+
Pdμ f

(
mi − 1

)

Umi−1mi

mi∏

j=1

p0
(
ai j | τ

) mi∑

j=1

p
(

zi j | xr
)
ρi j

]

.

(6)

The above equation represents the weighted sum of all the
likelihoods of associating a specific measurement (or no
measurement) to the target with all other measurements false
detections. This is obtained using the total probability theo-
rem and is the essence of the PDA approach [1].

Dividing (6) by the likelihood function given that all
measurements are false detections, namely,

Nw∏

i=1

[
1

Umi
μ f

(
mi
) mi∏

j=1

p0
(
ai j | τ

)
]

, (7)

and taking the logarithm of the resulting function, a more
compact form (the log-likelihood ratio (LLR)) is obtained
and is given by

Λ
(

Z, a | xr
) =

Nw∑

i=1

ln
[(

1− Pd
)

+
Pd
λ

mi∑

j=1

ρi j p
(

zi j | xr
)]
. (8)

The ML-PDA track estimate, x̂(k), is given by the LLR global
maximum in the parameter space

x̂(t) = arg max
xr

Λ
(

Z, a | xr
)
, (9)

where t is the reference time corresponding to the target pa-
rameter xr .

The reference time for parameter xr can be selected arbi-
trarily. Referencing the parameter to the middle of the ML-
PDA batch yields a track estimate which minimizes track er-
rors, but which also induces a time latency in the track esti-
mate. Referencing the parameter to the end of the ML-PDA
batch (i.e., the most recent time) yields larger estimation er-
rors, but without the time latency.

As with any tracking algorithm, in order for a track esti-
mate to have a finite covariance matrix the system must have
the property of observability; see, for example, [19].

3. ML-PDA EFFICIENCY IMPROVEMENTS

Because the ML-PDA algorithm is essentially a maximum-
likelihood method, the track estimate is the parameter value
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Figure 1: Representative LLR surface at a velocity maximizing the
center peak. This figure is repeated from [6].

which maximizes the ML-PDA LLR. The LLR is a highly non-
convex function which contains many (from several hundred
to over a thousand) local maxima. Additionally the LLR sur-
face contains large regions where the LLR is near its mini-
mum value and a near-zero gradient. Figure 1 illustrates the
complexity of the LLR surface by showing a small represen-
tative region of the parameter space over position with ve-
locity fixed, for a 4-dimensional parameter (two position di-
mensions, two velocity dimensions). The measurement space
consists of range, bearing, and range rate simulating an active
sonar problem.

Three methods to compute the LLR global maximum
have been reported in the literature. Prior researchers used
a multipass grid (MPG) search to find the LLR global max-
imum [14, 16]. The genetic search (GS) and directed sub-
space search (DSS) have been shown to perform better than
the MPG in terms of reduced computational complexity (av-
eraging an order of magnitude) and increased ability to dis-
tinguish the LLR global maximum (3 dB improved perfor-
mance) [6]. As these two methods are used in later simula-
tions, they are summarized below.

3.1. Genetic search

The GS is a stochastic search technique which is motivated
from evolutionary biology and “survival of the fittest.” While
this technique has seen little use in the tracking community,
it has been used effectively to solve many complex optimiza-
tion problems.

More fully described in [12], the genetic search mim-
ics biological evolution in that the ML-PDA parameter (de-
scribed by a binary bit string) is analogous to biological
DNA. Starting with a (randomized) population of param-
eter values, each population member is assigned a fitness
value based on the LLR evaluated at each population mem-
ber’s parameter. Population members, the parents of the cur-
rent generation, are selected for reproduction based on their
fitness value. The “fitter” population members (those with
higher LLR values) are more likely to reproduce with the

best members reproducing multiple times (i.e., bearing more
children).

Population members selected for reproduction are ran-
domly paired with other population members selected for
reproduction. With a given probability, the two parents will
produce two children which each share characteristics (pieces
of the parameter bit string) of each parent; otherwise the
children will be clones of the parents. Parents selected to re-
produce multiple times will be paired with different mates.

The children then become the parents of the next gen-
eration. As this process is propagated over generations, the
population becomes more fit and will eventually converge to
a single parameter which is then taken as the LLR global max-
imum.

The GS implemented in this paper2 is an “off the shelf”
implementation using the techniques from [12]. While there
are few theoretical results which guarantee the convergence
of the GS to the global maximum of an arbitrary function, by
tuning our algorithm for both speed of execution as well as
effectiveness at finding the global maximum of the ML-PDA
LLR, results, described more fully in [6], show improvement
in both speed of execution as well as effectiveness compared
to the MPG search.

3.2. Directed subspace search

The second method for maximizing the ML-PDA LLR is a
recently developed technique called the directed subspace
search. The DSS is motivated from the desire to use infor-
mation from measurement data to help guide the search for
the LLR global maximum. Grid searches and GSs are general
optimization tools that do not take advantage of the struc-
ture of the objective function to guide the search process. By
using the structure of the objective function to identify areas
in the parameter space that are more likely to contain local
or global maxima, a more efficient search is possible. Con-
sidering that in the active sonar application presented here,
about 70% of the LLR surface is at the floor value (mean-
ing

∑ Nw
i=1 log (1 − Pd) in (8)), bypassing these areas becomes

desirable.
First we observe that in many tracking applications the

measurement space is a subspace of the parameter space. In
the 3D measurement space described in this section (bear-
ing, range, range rate), one can map (bearing, range) to the
Cartesian parameter positions. Range rate is equivalent to ra-
dial velocity (referenced to the sensor), leaving tangential ve-
locity as a “free” parameter.

Next we observe that LLR maxima can only result from
the aggregation of one or more measurements in the Nw-
frame data set that closely fit a parameter xr . In regions of
the parameter space where no measurements influence the
LLR (i.e., where p(zi j | xr) ≈ 0∀i, j from (8)), the LLR will
be at the floor value. In regions of the parameter space where
only a single measurement influences the LLR, the LLR will

2 A more detailed description of the specific GS algorithm used can be
found in [6].
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Table 1: Directed subspace search algorithm.

Step Action

1 Set grid density for free parameter(s)

2 Map one measurement to parameter space

3 Using the measurement, compute LLR values
over grid of free parameter(s)

4 Repeat steps 2, 3 for all measurements in data set

5 Pass best result to local optimization routine

be at a local maximum. That is for the bearing, range, range
rate measurement, the LLR will be at a constant (local max-
imum) value for all values of tangential velocity. In areas of
the parameter space where two or more measurements influ-
ence the LLR, each measurement (bearing, range, range rate)
will lie in the vicinity of the local maximum produced by the
measurements.

Therefore, by mapping measurements to the parameter
space and searching only those regions of parameter space
where measurements exist and can contribute to an increase
in the LLR, one narrows down the parameter space of in-
terest and bypasses those regions where it is known (from
the lack of supporting measurements) that the LLR is near
the floor value. This effect produces the first advantage of the
DSS search over the MPG search or the GS—a reduced search
volume containing a subset of the full parameter space and
consequently improved computational efficiency.

The DSS search algorithm, outlined in Table 1, is de-
signed to search this reduced parameter space. In the DSS
search, we take each measurement in the Nw-frame data set,
map it to parameter space, and compute the LLR. Since this
mapping leaves one or more free parameters which can take
on any value for a given measurement, the LLR is computed
over a set of values defined by the measurement and a grid
of values of the free parameter(s). For example, using a mea-
surement space of bearing, range, range rate, one computes
the LLR at the bearing, range, range rate given by the mea-
surement over a grid of tangential velocities. This process
is repeated for every measurement in the measurement set.
Figure 2 illustrates the DSS search. Three measurements are
shown plotted in position subspace along with their corre-
sponding radial velocity vectors. The grid of tangential ve-
locity points is overlaid on each measurement. The LLR is
evaluated at each tangential velocity and for each measure-
ment.

Once the LLR is computed over the set of grid points of
the free parameter(s) for each measurement in the Nw-frame
data set, the parameter that gives the maximum LLR value is
taken and used to initialize a local optimization algorithm
(we use the Davidon-Fletcher-Powell algorithm [21]). The
reason a local optimization algorithm is needed is that while
the DSS grid search will return the local maximum from any
single-measurement maximum, it will only return parameter
values in the vicinity of local maxima caused by two or more
measurements, not the maximum itself. The final, converged
parameter from the local optimization algorithm is the DSS
estimate of the LLR global maximum.

0 200 400 600 800 1000

ξ (east position) (meters)

0

100

200

300

400

500

600

700

800

η
(n

or
th

po
si

ti
on

)
(m

et
er

s)

Measurement position
Measured radial velocity
Tangential velocity grid points

Figure 2: Three measurements (position, radial velocity) overlaid
with their respective DSS search grid points of tangential velocity.
Vectors represent velocities. Sensor is at origin.

4. ML-PDA TRACK VALIDATION

Since the ML-PDA track estimate is the location of the ML-
PDA LLR global maximum in the parameter space, ML-
PDA will always return a track estimate even when a target
is not present. Therefore, a reliable means of validating the
track estimate as target-originated is required. This becomes
a hypothesis testing problem—given the value of the LLR
global maximum, is this value more consistent with a “tar-
get present” (H1) or a “target absent” (H0) hypothesis?

According to the Neyman-Pearson lemma [17], the most
powerful test of H0 versus H1 is given by comparing the
likelihood ratio (or log-likelihood ratio) to a threshold. If a
valid track estimate exists, then by using ML principles, it is
given by the location of the LLR global maximum. Therefore,
the test becomes determining if the LLR global maximum is
more likely to have been formed from only noise-originated
measurements (H0) or target-plus noise-originated measure-
ments (H1). The threshold for this test is selected to maxi-
mize the power of the test, PDT (true track detection proba-
bility), at a given size or level of significance, PFT (false track
acceptance probability). Thus the threshold value, γ, is cho-
sen based on the statistics of the global LLR maximum under
H0,

γ = F−1
w

(
1− PFT

)
, (10)

where Fw(w) is the cumulative distribution function of the
LLR global maximum. If Fw(w) is known exactly, this hy-
pothesis test becomes the optimal test as it obeys all con-
ditions required by the Neyman-Pearson lemma. However,
since we do not a priori know this distribution, optimality of
this test is not guaranteed.



6 EURASIP Journal on Advances in Signal Processing

4.1. The LLR global maximumunderH0

Previous researchers assumed that the distribution of the
LLR global maximum under H0 was Gaussian based on the
central limit theorem (CLT) [14, 16]. More recently using ex-
treme value theory, the Gumbel distribution has been shown
to be both a better theoretical model and a closer match to
the empirical distribution obtained from Monte Carlo simu-
lations [7]. The theoretical analysis is summarized next.

The LLR global maximum can be viewed as the maxi-
mum from the set of all LLR local maxima. Define the ran-
dom variable y with cumulative distribution function (cdf)
Fy(y) to be the value of an LLR local maximum and the ran-
dom variable w with cdf Fw(w) to be the value of the LLR
global maximum. Then using the formula for the distribu-
tion of the maximum order statistic from a set of M LLR local
maxima (samples) [20],

Fw(w) = [Fy(w)
]M

. (11)

Implicit is the assumption that the LLR local maxima
are i.i.d. The independence assumption is not strictly valid
in that LLR local maxima which share measurements will
be correlated to some extent. However, it can be consid-
ered a good approximation because the maxima are gener-
ally well separated in the parameter space (see Figure 1) and
noise-related maxima will principally result from groupings
of a small number (one or two) of measurements. The small
number of measurements contributing to an LLR maximum
limits the correlation between maxima for a given measure-
ment data set. These assumptions remain valid over a wide
range of problem formulations and typical values of Pf a.

Further one can consider the pdf of the LLR local maxi-
mum to be a mixture distribution. Let the random variable y
represent the value of an LLR local maximum with pdf fy(y).
Each component of the mixture is distributed according to
f iy(y) with the superscript indicating the number of mea-
surements that associate to form the LLR local maximum.
The probability of an LLR local maximum consisting of i as-
sociated measurements is denoted pi. Theoretically i can take
on values from 1 to the total number of measurements in the
data set. The distribution fy(y) can therefore be expressed by

fy(y) =
∑

i

pi f
i
y(y). (12)

Absent conditioning on the number of measurements asso-
ciated with an LLR local maxima, the LLR local maxima can
be considered to be identically distributed according to the
mixture distribution described in (12).

EVT describes the asymptotic (large sample size) behav-
ior of the largest value from an i.i.d. sample of size M from
a distribution with a cdf Fy(y), and is well developed in the
statistical literature [10, 13]. Let

w = max
{
y1, y2, . . . , yM

}
. (13)

EVT states that if a limiting cdf of w exists as M→∞, then
that distribution must belong to one of three forms (Gum-
bel, Weibull, or Frechet). The distribution appropriate to a

specific application is based on the support of the underlying
distribution of Fy(y). The Gumbel cdf is the appropriate dis-
tribution in our application because the support of the distri-
bution of the LLR local maximum is restricted to 0 < y <∞,
and is of the form

Fw(w) = exp
{− exp

[− an
(
w − un

)]}
, (14)

where an and un are the scale and location parameters for the
distribution and which depend on the number of samples
used in (13).

The level of accuracy to which the Gumbel distribution
approximates the distribution of the LLR global maximum is
affected by two important issues.

(1) There is no guarantee that an asymptotic distribution
exists for the given fy(y). Specifically the structure of
fy(y) as a mixture distribution described by (12) may
preclude the existence of an asymptotic distribution.

(2) While the number of LLR local maxima is large, Fw(w)
may not have reached its asymptotic distribution. It
has been noted for example that while the maximum
from samples of an exponential distribution attains the
asymptotic distribution with a relatively small number
of samples (fast convergence), for a Gaussian distribu-
tion a much larger sample size is required to attain the
asymptotic distribution (slow convergence) [13].

4.2. Methods to estimate Fw(w)

Two methods were used in [7] to estimate the Gumbel dis-
tribution parameters, and to thereby estimate the distribu-
tion of the LLR global maximum—an offline method and a
real-time method. In the offline method used in the simula-
tions described later, the tracking problem is repeatedly sim-
ulated under H0 to obtain a set of LLR global maxima. Then
maximum likelihood techniques [13] are used to estimate the
Gumbel parameters.

This method has the advantage of yielding an optimal
(in the ML sense) estimate of the Gumbel distribution pa-
rameters, although as has been previously stated the Gum-
bel distribution is only an approximation to the true dis-
tribution of Fw(w). This approach may be impractical due
to the extensive offline simulations required. For a general-
purpose tracking system using this methodology, separate
sets of Gumbel distribution parameters must be estimated
for the full range of possible Pf a, target SNR, and Nw as well
as for variations in the boundaries and volumes of the mea-
surement and parameter spaces since each of these factors
affect either the number of local LLR maxima or the distri-
bution fy(y) or both. If the system were designed for a single
special purpose use, this method may be advantageous.

5. JOINTML-PDA

In this section, we derive the multitarget version of ML-
PDA, called joint ML-PDA (JMLPDA). The derivation of the
JMLPDA algorithm is similar to that of ML-PDA. In this sec-
tion, the JMLPDA formulation for obtaining the joint track
estimate of K = 2 targets is presented. JMLPDA can be
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further extended to jointly estimate any number of targets by
extending the JLLR framework in this section to K targets.

5.1. JMLPDA derivation

The assumptions from Section 2 used in ML-PDA are also
used in JMLPDA and are supplemented by the following ad-
ditional assumptions.

(1) K previously confirmed targets exist.
(2) At most one measurement per frame corresponds to

each target.
(3) A measurement cannot be associated to more than one

target.
(4) Measurements originating from different targets are

independent.
(5) Target originated measurement errors have the same

distribution for each target (i.e., are a function of the
sensor, not the target).

The parameter to be estimated is the kinematic state of
all targets at a given reference time

xr =
[

x1T
r · · · xKT

r

]T
, (15)

where xk
r is the kinematic state of the kth target whose target

motion model is described by

xk(i) = Fk
(

xk
r , i
)
. (16)

The measurement set is given by

(Z, a) = {(Zi, ai
)} = {(zi j , ai j

)}
,

i = 1, 2, . . . ,Nw frame number,

j = 1, 2, . . . ,mi measurement number,
(17)

where zi j consists of the kinematic measurement and ai j the
measurement amplitude. Amplitude refers to the envelope
output of the detector in a single resolution cell [18, 28].
Measurements with a single subscript refer to all measure-
ments in a single data frame. Measurements with two sub-
scripts identify a specific measurement.

Because the SNR of each target can be different, the mea-
surement amplitude likelihood ratio must be defined for
each target. The amplitude likelihood ratio for the kth tar-
get is now given by

ρki j =
p1
(
ai j | τ,Hk

)

p0
(
ai j | τ

) , (18)

where τ is the detector threshold (in each resolution cell) and
the pdf is conditioned on the amplitude exceeding τ and that
the measurement originates from the kth target (hypothesis
Hk).

A measurement, assuming it is target originated, is re-
lated to the kth target xk

r using the (possibly nonlinear) rela-
tion

z = Hk
(

xk
r , xs(i), i

)
+ wi, (19)

where wi is a zero-mean white Gaussian noise with covari-
ance matrix R and xs(i) is the sensor kinematic state such
that for a target originated measurement

p
(

zi j | xk
r

) = N
(

zi j ; Hk
(

xk
r , xs(i), i

)
, R
)
. (20)

In the case where K = 2 targets, the joint likelihood func-
tion, p(Zi, ai | xr), for a single frame of data is formed as the
weighted sum of four terms corresponding to the four possi-
ble target detection events. Let

L0
i = p

(
Zi, ai | xr , no target detections

)
,

L1
i = p

(
Zi, ai | xr , only target 1 detected

)
,

L2
i = p

(
Zi, ai | xr , only target 2 detected

)
,

L12
i = p

(
Zi, ai | xr , both targets detected

)
.

(21)

Then p(Zi, ai | xr) is given by

p
(

Zi, ai | xr
) = (1− P1

d

)(
1− P2

d

)
L0
i + P1

d

(
1− P2

d

)
L1
i

+
(
1− P1

d

)
P2
dL

2
i + P1

dP
2
dL

12
i ,

(22)

where Pk
d is the single frame detection probability of the kth

target.
The individual terms, Lki , are formed by associating a spe-

cific measurement to each detected target with all other mea-
surements considered as false detections and are given by

L0
i =

μ f

(
mi
)

Umi

mi∏

j=1

p0
(
ai j | τ

)
,

L1
i =

μ f

(
mi − 1

)

Umi−1mi

mi∏

j=1

p0
(
ai j | τ

) mi∑

j=1

p
(

zi j | x1
r

)
ρ1
i j ,

L2
i =

μ f

(
mi − 1

)

Umi−1mi

mi∏

j=1

p0
(
ai j | τ

) mi∑

j=1

p
(

zi j | x2
r

)
ρ2
i j ,

L12
i =

μ f

(
mi − 2

)

Umi−2mi
(
m1 − 1

)
mi∏

j=1

p0
(
ai j | τ

)

×
mi∑

j=1

mi∑

l=1
l /= j

p
(

zi j | x1
r

)
p
(

zil | x2
r

)
ρ1
i jρ

2
il .

(23)

The joint likelihood function considering all Nw frames
of data is the product of the single frame joint likelihood
functions

p
(

Z, a | xr
) =

Nw∏

i=1

p
(

Zi, ai | xr
)
. (24)

The joint log-likelihood ratio (JLLR) is obtained by divid-
ing (24) by the likelihood that all measurements are noise
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originated,
∏ Nw

i=1(1−P1
d)(1−P2

d)L0
i , and taking the logarithm

of the result yielding

Λ
(

Z, a | xr
) =

Nw∑

i=1

ln

[

1 +
P1
d

λ
(
1− P1

d

)
mi∑

j=1

p
(

zi j | x1
r

)
ρ1
i j

+
P2
d

λ
(
1− P2

d

)
mi∑

j=1

p
(

zi j | x2
r

)
ρ2
i j

+
P1
dP

2
d

λ2(1− P1
d

)(
1− P2

d

)

×
mi∑

j=1

mi∑

l=1
l /= j

p
(

zi j | x1
r

)
p
(

zil | x2
r

)
ρ1
i jρ

2
il

]

.

(25)

The global maximum of the JLLR defines the parameter
estimate, x̂r , and gives the track estimate of the two targets.
A separate test must be performed to determine if the track
estimates are the result of noise or target originated measure-
ments (a test for target existence).

The extension of JMLPDA to an arbitrary number of tar-
gets is straightforward in that one must extend (22) to be-
come the weighted sum of all possible target detection events
for the given number of targets. The number of terms in this
function, however, increases exponentially with the number
of targets, K , according to 2K . An additional consideration
is that one is maximizing the JLLR over 4K dimensions (as-
suming 4-dimensional state vector for each target). The com-
putational cost of maximizing this function therefore grows
with the number of targets. Some level of separation of the
4K-dimensional problem could be exploited in that for a
given frame of data in the batch, not all targets may be inter-
acting with each other. This would lead to a reduced compu-
tational complexity ranging from that of K four-dimensional
problems to one 4K-dimensional problem depending upon
the level of separation achieved. Based on these considera-
tions, application of JMLPDA to more than 3 targets may
not be practical. In this paper, we consider only the 2-target
JMLPDA case.

The JMLPDA algorithm also assumes that the number of
targets is known. In the context of a multitarget application,
this knowledge comes from the prior target state estimates.
The presence of a new (previously undetected) or spawned
target in the measurement set will cause JMLPDA to behave
in an unpredictable way but will generally not give accurate
track estimates. If the number of targets is fewer than that as-
sumed in JMLPDA (i.e., a target death event occurs), the tar-
get validation procedure will correctly not validate the track
estimate for the nonexistent target(s).

5.2. JMLPDA track validation

A procedure for JMLPDA track validation along the same
lines as ML-PDA track validation appears feasible. How-
ever, the computational complexity associated with JMLPDA
track estimates could make implementation difficult. Fur-
ther, one must account for all possible combinations of track
validation results for each target (e.g., target 1 valid/target

Table 2: JMLPDA track validation procedure.

Step Action

1 Find global JLLR maximum

2 Identify measurement-to-target associations for all targets

3 Select a target

4 Edit out measurements (using the complete measurement set)
associated with all other targets

5 Compute single-target LLR at selected target’s parameter
estimate

6 Validate estimate using the off-line track validation threshold

7 Repeat steps 3–6 for all targets

2 invalid). Therefore, for simplicity, we apply directly the
ML-PDA track validation technique to the JMLPDA track
estimates using an adjusted measurement data set described
next.

The procedure for obtaining JMLPDA track estimates is
summarized in Table 2. To perform track validation, one first
obtains the joint track estimates for each target using the
JMLPDA algorithm. Then based on the track estimates at
each frame in the batch, one obtains the posterior likelihood
that each measurement in the data set is associated with each
target, similar to the PDA approach [1]. From these associ-
ation probabilities, the measurement with the highest asso-
ciation probability is associated with each target. If multi-
ple targets share the same “most likely” measurement, the
measurement is associated to the target with the largest as-
sociation probability between the two targets (a greedy ap-
proach) and the remaining targets associate with their next
most likely measurement. As the posterior association prob-
abilities account for the possibility of associating none of the
measurements to a target, a measurement is associated to a
target only if the posterior association probability for that
measurement exceeds the posterior probability of associating
none of the measurements to the target.

Once these hard measurement-to-target associations are
made, to validate the track estimate for a single target the
measurement data set is modified by editing out those mea-
surements that are associated to all other targets. Then the
LLR is computed at the track estimate of the target under
test using the ML-PDA LLR of (8) and compared to the ML-
PDA track validation threshold. The ML-PDA track valida-
tion threshold is obtained using the procedure outlined in
Section 4. Thus the JMLPDA track validation problem is re-
formulated into an ML-PDA track validation problem.

6. MULTITARGETML-PDA

Multitarget ML-PDA is a tracking system which incorpo-
rates all phases of the tracking problem: track initiation, track
maintenance/update, and track termination functions and
uses the ML-PDA and JMLPDA algorithms for track update.
Figure 3 shows a flowchart of the actions taken by the track-
ing system upon receipt of a new frame of data. The following
subsections describe in more detail how the measurement
gating is carried out, the track validation for ML-PDA and
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Delete tracks that meet
track termination criteria

No

Valid
estimate

?

Yes Initiate
new track

Track estimate (MLPDA)

Form residual
measurement set

End for loop

Validate track estimate

MLPDA
track estimate

JMLPDA
track estimate

No Yes

Jointly
associable
measure-

ments
?

For each existing target

Apply gating, obtain

(Zk, ak) for each target

Form (Z, a) from most
recent Nw frames

Receive new data frame

Figure 3: Flowchart for one iteration of the MLPDA(MT) tracking
system.

JMLPDA track estimates, the formation of the residual mea-
surement set, and the track termination criteria.

6.1. Measurement gating

Measurement gating, or using a subset of the full mea-
surement set to obtain a track estimate for a single tar-
get, is a well-known technique in multitarget tracking (see,
e.g., [1, 4]). Since the JMLPDA algorithm is computation-
ally more complex than the ML-PDA algorithm (particularly
when the joint estimates of more than two targets is being
performed), use of measurement gating becomes vital. The
advantage lies in using JMLPDA only for those cases where
targets share gated measurements. Further, by reducing the
size of the measurement set computation time for the ML-
PDA algorithm is reduced as well.

In this application, a measurement gate is set up based
on the prior track estimate and its associated covariance us-

ing the Mahalanobis distance whereby measurements are in-
cluded which satisfy the relation

(
zi j − ẑi

)T
S−1
i

(
zi j − ẑi

) ≤ γ, (26)

where ẑi is the predicted measurement at frame i of the cur-
rent batch based on the last validated track estimate from the
ML-PDA or JMLPDA algorithm. Track estimates are propa-
gated forward in time as necessary according to the constant
velocity model. The Si term is the innovation covariance at
frame i and is given by

Si = HPiHT + R, (27)

where Pi is the covariance of the track estimate on the ith
frame of the current batch based on the last validated track
estimate and H is the measurement matrix where z = Hx,
assuming a linear measurement model. The limiting thresh-
old γ is set based on a desired probability of containing the
target-originated measurement within the gate volume (PG).

6.2. Track validation

Because ML-PDA and JMLPDA will always return a track es-
timate (the global maximum of the LLR or JLLR), one must
test the track estimate for validity. The ML-PDA track vali-
dation procedures are described in Section 4. JMLPDA track
validation procedures are described in Section 5.2.

6.3. Residualmeasurement set

Once track estimates are obtained for all targets currently
in track, a search for new targets must take place. JMLPDA
is unsuitable for this task since it requires knowledge of the
number of new targets. Therefore, ML-PDA is used.

In order to eliminate the effects of known targets on the
ML-PDA LLR, one must account for those measurements
that can be associated with known targets. To do this, one as-
sociates at most one measurement in each data frame to each
target using the same PDA approach described in Section 5.2
for track validation. The residual data set is then the origi-
nal data set with those measurements associated to known
targets edited out.

Using the residual data set the ML-PDA algorithm is ap-
plied and the resulting track estimate validated. If a new tar-
get is validated, its associated measurements are also edited
out to form a new residual data set and the process repeated
until the ML-PDA algorithm returns a track estimate that
fails the validation test. This technique assumes that new tar-
gets are well separated in which target-originated measure-
ments from one new target do not affect the LLR at the track
estimate for any other new target.

6.4. Track termination

If taken in isolation, the failure of ML-PDA to validate a
track estimate is sufficient to declare there is no track present.
However, this does not account for any prior knowledge that
a track had previously existed based on measurement data
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outside of the window of the current ML-PDA batch. When
tracking VLO contacts, in order to limit the false track ac-
ceptance rate, the true target acceptance rate (based on the
track validation threshold value) can be relatively low (in the
50–70% region) even when target detections are present in
the batch. Therefore, in the MLPDA (MT), we have elected
to incorporate an additional higher level track termination
test beyond the ML-PDA track validation.

Existing targets are tested for termination using an M/N
rule. A track is terminated if fewer than M validated track
estimates were obtained from the most recent N applica-
tions of MLPDA (MT) on that target. Based on the operating
characteristic of the ML-PDA algorithm, one can obtain the
probability of detecting a true track (PDT) using ML-PDA.
Then for given values of M and N , one can obtain the track
termination statistics (probability of correctly terminating a
track that is lost and the probability of incorrectly terminat-
ing a track that is still held). In making this calculation, one
must also account for the fact that PDT relates to independent
track estimates. When using a sliding window ML-PDA im-
plementation in which a new track estimate is obtained from
the most recent Nw frames of data, track estimates separated
by fewer than Nw frames are correlated in that they use com-
mon data frame(s).

6.5. ML-PDA (MT) performance

A 2-target crossing scenario was developed to test the per-
formance of the MLPDA (MT) tracking system. The surveil-
lance region consists of a 12 km-by-12 km square region (the
origin is located at the southwest corner) in which two tar-
gets are placed. Target 1 is initially located near the southwest
corner of the region moving northeast and target 2 is ini-
tially located near the northwest corner of the region moving
southeast. Target motion is constant velocity in an x-y plane.
Measurements consist of x-y position. The parameters for
this scenario are listed in Table 3. Figure 4 shows the target
trajectories and a representative single frame of clutter over
the surveillance region.

The simulations are intended to test the ability of the
MLPDA (MT) algorithm to maintain track when multiple
targets are present in the surveillance region. The ability of
the MLPDA (MT) to initiate new tracks and delete lost tracks
will be explored in future work. Monte Carlo simulations
were performed over a range of Pd and Pf a values, with 100
simulations conducted at each operating point. To establish
a performance comparison, each simulation was run using
the MLPDA (MT) algorithm and the probabilistic multiple
hypothesis tracker (PMHT) algorithm [24–26].

PMHT is a capable multiple target tracking algorithm
that uses data in a batch of Nw frames and computes the joint
track estimates at each frame of data using the expectation-
maximization (EM) algorithm [11] which returns the max-
imum a posteriori (MAP) estimate. The EM algorithm is a
general estimation technique for incomplete or missing data
problems and is guaranteed to converge to at least a local
maximum of the objective function. For PMHT the missing
data are the specific measurement-to-target associations. The

Table 3: Scenario parameters.

Parameter Value

Initial x1
r (in m and m/s) [2000 2000 5 5]T

Initial x2
r (in m and m/s) [2000 10000 −5 5]T

Target Pd 0.7/0.9

Target SNR 5–15 dB

False Alarm Density (λ) 4–20 × 10−7

False Alarm Rate (Pf a) 0.05–0.25

Avg. Number of False Alarms
(Surveillance Region)

57–285

Avg. Number of False Alarms
(Validation Gate)

0.33–1.64

Batch Size (Nw) 7 frames

R diag[1012 1012] m2

Sample Period (T) 20 sec

Scenario Duration 80 frames
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Figure 4: Simulation scenario showing target trajectories and a rep-
resentative frame of noise measurements, Pf a = .15.

specific version of PMHT used in the simulations is the ho-
mothetic PMHT [29].

In our implementation, the PMHT uses a continuous
white noise acceleration (CWNA) target motion model [2]
with the process noise spectral density set at values of 0.0125
and 0.05 m2/s3. The process noise spectral density was set
so that the tracker could accommodate small target velocity
changes on the order of 0.5 and 1.0 m/s over a sample inter-
val.

As we are comparing two distinctly different trackers, it
is worthwhile to highlight some of the key distinctions or ad-
vantages one tracker inherently has over the other and which
make direct comparisons more difficult.



Wayne Blanding et al. 11

4 6 8 10 12 14 16

SNR (dB)

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

in
tr

ac
k

at
si

m
u

la
ti

on
en

d

JMLPDA, Pd = 0.9
JMLPDA, Pd = 0.7

PMHT, Pd = 0.9
PMHT, Pd = 0.7

Figure 5: Percent of simulations, each tracker remained in track to
the end of the run.

(1) The simulations do not test the track initiation abil-
ity of each tracker. This is a key advantage to ML-
PDA in that it simultaneously performs track initia-
tion and track update functions. PMHT requires a sep-
arate track initiation module. In a heavy clutter envi-
ronment such as the ones examined in this paper, track
initiation becomes problematic for MHT-based track
initiation modules (including PMHT) due to the ex-
plosion of hypotheses resulting in the testing of tenta-
tive (unconfirmed) tracks which are mostly clutter.

(2) Since PMHT computes the MAP estimate (a Bayesian
tracker), it incorporates prior information on the tar-
get state into the current track estimate. Being a
maximum-likelihood tracker, ML-PDA and JMLPDA
do not take advantage of any prior information in
computing the current track estimate. Consequently,
for the same batch length (Nw) for each tracker, one
would expect PMHT to provide more accurate track
estimates than ML-PDA/JMLPDA.

(3) PMHT gets the best state estimate, x̂, at frame Nw sub-
ject to its assumptions. Due to ML-PDA/JMLPDA as-
sumptions, it fits the best constant velocity solution
to the entire batch. Consequently, ML-PDA/JMLPDA
position errors for the target are smallest in the middle
of the batch and largest at frame Nw.

(4) Because it incorporates process noise into its target
motion model, PMHT should perform better in sit-
uations where the target is maneuvering. ML-PDA has
a reduced capability to track maneuvering targets be-
cause its target motion model is deterministic. Since
the true target motion is constant-velocity, one would
expect (examining this factor in isolation) ML-PDA to
have reduced rms tracking errors and possibly a longer
mean track life.

Examining these factors in advance of the simulations,
it is unclear which tracker is expected to perform better—
ML-PDA or PMHT. Factors (2) and (3) above give PMHT
an advantage. Factor (4) gives ML-PDA an advantage. Factor
(1) was not exercised in the simulations.

These simulations analyze the ability of the MLPDA(MT)
and PMHT tracking systems to maintain track on the targets
as they cross. In addition to monitoring tracking errors over
time, statistics on the track life (time until the track diverges
from the target) are evaluated for each tracker. Each tracker
was provided with randomized initial target states with ac-
curacy similar to that of the steady-state tracker errors. The
initial covariance provided to the PMHT was artificially large
(making the initial track estimate uninformative). However,
once PMHT processed its first set of data, it used its own
track estimate covariance for subsequent batches thereby in-
cluding the effects of an informative prior for PMHT.

MLPDA (MT) does not use prior information except to
establish a measurement validation gate. However, MLPDA
(MT) does have the ability to accept or reject track esti-
mates based on track validation criteria. In the case where
the MLPDA (MT) track estimate is not validated, the current
track estimate and covariance reported by the algorithm is
the previous track estimate and covariance propagated for-
ward in time by applying the motion model equations.

The simulations yield the performance of the PMHT and
MLPDA (MT) algorithms in terms of their ability to keep
track of the targets without track divergence. A track esti-
mate was considered to have diverged from the target if the
combined rms position errors exceeded 800 m, equating to
a position error in each dimension exceeding 4 standard de-
viations. Additional statistics are provided to illustrate rms
errors over the course of the scenario.

Figure 5 shows the percent of simulations where a target
remained in track for the full 80 frames of the scenario for a
variety of Pd and SNR values for each tracker. Since the in-
track percentage for each target and a given tracker was ap-
proximately the same, the results for the two targets are com-
bined such that the in-track percentage is determined over
200 opportunities (100 simulations and 2 targets).

Figures 6–8 present results for the Pd = 0.9 and Pf a =
0.1 set of simulations plotted as a function of time so that
performance of each tracker can be observed. Figure 6 shows
the percent of simulations each tracker is in track of a target
over time. Figures 7 and 8 show the evolution of rms position
and velocity errors of each tracker over time. As before, the
results for the two targets are combined to yield 200 samples
(100 simulations and 2 targets) for each tracker.

In these simulations, MLPDA (MT) consistently outper-
forms PMHT in terms of in-track percentage. This can be at-
tributed to the ability of MLPDA (MT) to reject “bad” track
estimated through its validation criteria. An increased track
loss rate is observed for MLPDA (MT) when the targets are
interacting and JMLPDA is used to jointly estimate the target
tracks.

It can also be observed that the performance of MLPDA
(MT) is relatively independent of Pd in that performance
decreases approximately linearly with SNR along the same
line for the two Pd values shown in Figure 5. In contrast,
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Figure 6: Percent of simulations, each tracker is in track of each
target.
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Figure 7: Evolution of rms position errors over time for each
tracker and target.

PMHT performance improves significantly when the detec-
tor threshold is raised, simultaneously reducing the number
of clutter points and reducing target Pd. Further analysis is
required to fully quantify this effect.

When considering tracking over the full scenario,
changes in the PMHT process noise power spectral density
have a significant effect on PMHT’s ability to remain in track.
Simulations were conducted where the PMHT modeled pro-
cess noise was reduced from 0.05 to 0.0125 m2/s3. With the
reduced process noise, PMHT performance improved to the
point that for each Pd considered and at low clutter levels
PMHT in-track performance was superior to that of MLPDA
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Figure 8: Evolution of rms velocity errors over time for each tracker
and target.

(MT). As clutter increased, PMHT performance degraded
faster than that of MLPDA (MT) such that there was a clutter
lever beyond which MLPDA (MT) outperformed PMHT.

As a final comment, it is reemphasized that the strength
of ML-PDA and MLPDA (MT) lies in its ability to success-
fully track VLO targets. A consequence of this performance
is a higher computational complexity than most other track-
ing algorithms. When extended to the multitarget arena,
MLPDA (MT) will be limited in its ability to track large num-
bers of interacting targets. However, its computational com-
plexity in tracking noninterfering targets does remain linear
in target number.

Another situation where MLPDA(MT) may fail is in a
relatively common passive sonar problem wherein a high
SNR target lies in the same (or adjacent) resolution cell as
the VLO target of interest. In this case, since ML-PDA as-
sumes at most one measurement corresponds to the target,
ML-PDA will preferentially assign the measurement to the
stronger target, which has a higher Pd. In order to success-
fully track the weaker target, one would need to increase the
size of the ML-PDA batch to include frames where the in-
teraction is less. Analysis of this type of situation, including
guidelines on the adaptive sizing of the ML-PDA batch is a
subject of future research.

7. CONCLUSIONS

While ML-PDA has been demonstrated to be an effective
tracking algorithm when tracking VLO targets, no multitar-
get version of ML-PDA has been reported in the literature. In
this paper, we first described several recent advances in the
ML-PDA target tracking algorithm which make this tracker
feasible for implementation in real-time tracking systems.

Next, we extended the ML-PDA framework to jointly
track multiple targets using JMLPDA. Incorporating both
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ML-PDA and JMLPDA into a multitarget tracking system
yields the ML-PDA (MT) target tracking system. Compar-
isons were made with the PMHT using a 2-target cross-
ing scenario which showed that as clutter density increased,
ML-PDA performed better at maintaining track through the
problem than did PMHT.

More work remains in extending the comparison of
MLPDA (MT) to PMHT (or other multitarget algorithms)
to situations commonly found in passive sonar tracking as
well as to maneuvering targets.

ACKNOWLEDGMENT

This research was supported by the Office of Naval Research.

REFERENCES

[1] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor Tracking:
Principles and Techniques, YBS Publishing, Storrs, Conn, USA,
1995.

[2] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation, John Wiley & Sons,
New York, NY, USA, 2001.

[3] S. S. Blackman, Multiple-Target Tracking with Radar Applica-
tions, Artech House, Boston, Mass, USA, 1986.

[4] S. S. Blackman and R. Popoli, Design and Analysis of Modern
Tracking Systems, Artech House, Boston, Mass, USA, 1999.

[5] W. R. Blanding, P. K. Willett, Y. Bar-Shalom, and R. S. Lynch,
“Covert sonar tracking,” in Proceedings of IEEE Aerospace Con-
ference, pp. 2053–2062, Big Sky, Mont, USA, March 2005.

[6] W. R. Blanding, P. K. Willett, Y. Bar-Shalom, and R. S. Lynch,
“Directed subspace search ML-PDA with application to active
sonar tracking,” to appear in IEEE Transactions on Aerospace
and Electronic Systems.

[7] W. R. Blanding, P. K. Willett, and Y. Bar-Shalom, “Offline and
real-time methods for ML-PDA track validation,” IEEE Trans-
actions on Signal Processing, vol. 55, no. 5, part 2, pp. 1994–
2006, 2007.

[8] S. Buzzi, M. Lops, and L. Venturino, “Track-before-detect pro-
cedures for early detection of moving target from airborne
radars,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 41, no. 3, pp. 937–954, 2005.

[9] M. R. Chummun, Y. Bar-Shalom, and T. Kirubarajan, “Adap-
tive early-detection ML-PDA estimator for LO targets with EO
sensors,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 38, no. 2, pp. 694–707, 2002.

[10] H. A. David, Order Statistics, John Wiley & Sons, New York,
NY, USA, 1970.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum like-
lihood from incomplete data via the EM algorithm,” Journal of
the Royal Statistical Society B, vol. 39, no. 1, pp. 1–38, 1977.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Boston, Mass, USA,
1989.

[13] E. J. Gumbel, Statistics of Extremes, Columbia University Press,
New York, NY, USA, 1958.

[14] C. Jauffret and Y. Bar-Shalom, “Track formation with bearing
and frequency measurements in clutter,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 26, no. 6, pp. 999–1010,
1990.

[15] L. A. Johnston and V. Krishnamurthy, “Performance analy-
sis of a dynamic programming track before detect algorithm,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 38,
no. 1, pp. 228–242, 2002.

[16] T. Kirubarajan and Y. Bar-Shalom, “Low observable target
motion analysis using amplitude information,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 32, no. 4, pp.
1367–1384, 1996.

[17] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses,
Springer, New York, NY, USA, 3rd edition, 2005.

[18] D. Lerro and Y. Bar-Shalom, “Interacting multiple model
tracking with target amplitude feature,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 29, no. 2, pp. 494–509,
1993.

[19] S. C. Nardone and V. J. Aidala, “ Observability criteria for
bearings-only target motion analysis,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 17, no. 2, pp. 162–166,
1981.

[20] A. Papoulis and S. Pillai, Probability, Random Variables and
Stochastic Processes, McGraw-Hill, New York, NY, USA, 2002.

[21] W. Press, S. Teukolosky, W. Vetterling, and B. Flannery, Nu-
merical Recipes in C, Cambridge University Press, New York,
NY, USA, 1992.

[22] M. G. Rutten, B. Ristic, and N. J. Gordon, “A comparison of
particle filters for recursive track-before-detect,” in Proceed-
ings of the 8th International Conference on Information Fusion,
vol. 1, pp. 169–175, Philadelphia, Pa, USA, July 2005.

[23] L. D. Stone, C. A. Barlow, and T. L. Corwin, Bayesian Multiple
Target Tracking, Artech House, Boston, Mass, USA, 1999.

[24] R. L. Streit and T. E. Luginbuhl, “A probabilistic multi-
hypothesis tracking algorithm without enumeration and
pruning,” in Proceedings of the 6th Joint Data Fusion Sympo-
sium, Laurel, Md, USA, 1993.

[25] R. J. Streit and T. E. Luginbuhl, “Maximum likelihood method
for probabilistic multihypothesis tracking,” in Proceedings of
Signal and Data Processing of Small Targets, vol. 2235 of Pro-
ceedings of SPIE, pp. 394–405, Orlando, Fla, USA, April 1994.

[26] R. L. Streit and T. E. Luginbuhl, “Probabilistic multi-
hypothesis tracking,” Tech. Rep. NUWC-NPT Technical Re-
port 10,428, Naval Undersea Warfare Center, Newport, RI,
USA, February 1995.

[27] S. M. Tonbsen and Y. Bar-Shalom, “Maximum likelihood
track-before-detect with fluctuating target amplitude,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 34, no. 3,
pp. 796–809, 1998.

[28] H. L. Van Trees, Detection, Estimation, andModulation Theory,
Part III, John Wiley & Sons, New York, NY, USA, 2001.

[29] P. Willett, Y. Ruan, and R. Streit, “PMHT: problems and some
solutions,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 38, no. 3, pp. 738–754, 2002.

[30] P. Willett, S. Coraluppi, and W. Blanding, “Comparison of soft
and hard assignment ML trackers on multistatic data,” in Pro-
ceedings of IEEE Aerospace Conference, p. 12, Big Sky, Mont,
USA, March 2006.


	1. INTRODUCTION
	2. ML-PDA PROBLEM FORMULATION
	2.1. ML-PDA derivation

	3. ML-PDA EFFICIENCY IMPROVEMENTS
	3.1. Genetic search
	3.2. Directed subspace search

	4. ML-PDA TRACK VALIDATION
	4.1. The LLR global maximum under H0
	4.2. Methods to estimate

	5. JOINTML-PDA
	5.1. JMLPDA derivation
	5.2. JMLPDA track validation

	6. MULTITARGET ML-PDA
	6.1. Measurement gating
	6.2. Track validation
	6.3. Residual measurement set
	6.4. Track termination
	6.5. ML-PDA (MT) performance

	7. CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

