Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2007, Article ID 57234, 10 pages
doi:10.1155/2007/57234

Research Article

Adaptive Motion Estimation Processor for

Autonomous Video Devices

INTRODUCTION

T. Dias, S. Momcilovic, N. Roma, and L. Sousa
INESC-ID/IST/ISEL, Rua Alves Redol 9, 1000-029 Lisboa, Portugal
Received 1 June 2006; Revised 21 November 2006; Accepted 6 March 2007
Recommended by Marco Mattavelli

Motion estimation is the most demanding operation of a video encoder, corresponding to at least 80% of the overall computational
cost. As a consequence, with the proliferation of autonomous and portable handheld devices that support digital video coding,
data-adaptive motion estimation algorithms have been required to dynamically configure the search pattern not only to avoid
unnecessary computations and memory accesses but also to save energy. This paper proposes an application-specific instruction
set processor (ASIP) to implement data-adaptive motion estimation algorithms that is characterized by a specialized datapath and
a minimum and optimized instruction set. Due to its low-power nature, this architecture is highly suitable to develop motion
estimators for portable, mobile, and battery-supplied devices. Based on the proposed architecture and the considered adaptive
algorithms, several motion estimators were synthesized both for a Virtex-II Pro XC2VP30 FPGA from Xilinx, integrated within
an ML310 development platform, and using a StdCell library based on a 0.18 yum CMOS process. Experimental results show that
the proposed architecture is able to estimate motion vectors in real time for QCIF and CIF video sequences with a very low-power
consumption. Moreover, it is also able to adapt the operation to the available energy level in runtime. By adjusting the search
pattern and setting up a more convenient operating frequency, it can change the power consumption in the interval between
1.6 mW and 15 mW.

Copyright © 2007 T. Dias et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

step search (3SS) [5], the four-step search (4SS) [6], and the

Motion estimation (ME) is one of the most important op-
erations in video encoding to exploit temporal redundancies
in sequences of images. However, it is also the most com-
putationally costly part of a video codec. Despite that, most
of the actual video coding standards apply the block match-
ing (BM) ME technique on reference blocks and search areas
of variable size [1]. Nevertheless, although the BM approach
simplifies the ME operation by considering the same trans-
lation movement for the whole block, real-time ME with
power consumption constraints is usually only achievable
with specialized VLSI processors [2]. In fact, depending on
the adopted search algorithm, up to 80% of the operations
required to implement a MPEG-4 video encoder are devoted
to ME, even when large search ranges are not considered [3].

The full-search block-matching (FSBM) [4] method has
been, for several years, the most adopted method to develop
VLSI motion estimators, due to its regularity and data in-
dependency. In the 90s, several nonoptimal but faster search
block-matching algorithms were proposed, such as the three-

diamond search (DS) [7]. However, these algorithms have
been mainly applied in pure software implementations, bet-
ter suited to support data-dependency and irregular search
patterns, which usually result in complex and inefficient
hardware designs, with high power consumption.

The recent demand for the development of portable and
autonomous communication and personal assistant devices
imposes additional requirements and constraints to encode
video in real time but with low power consumption, main-
taining a high signal-to-noise ratio for a given bitrate. Re-
cently, the FSBM method was adapted to design low-power
architectures based on a =1 full-search engine that imple-
ments a fixed 3 X 3 square search window [8], by exploit-
ing the variations of input data to dynamically configure the
search-window size [9], or to guide the search pattern ac-
cording to the gradient-descent direction.

Moreover, new data-adaptive efficient algorithms have
also been proposed, but up until now only software im-
plementations have been presented. These algorithms avoid
unnecessary computations and memory accesses by taking

EURASIP Journal on Embedded Systems

advantage of temporal and spacial correlations, in order to
adapt and optimize the search patterns. These are the cases
of the motion vector field adaptive search technique (MV-
FAST), the enhanced predictive zonal search (EPZS) [10, 11],
and the fast adaptive motion estimation (FAME) [12]. In
these algorithms, the correlations are exploited by carrying
information about previously computed MVs and error val-
ues, in order to predict and adapt the current search space,
namely, the start search location, the search pattern, and the
search area size. These algorithms also comprise a limited
number of different states. Such states are selected according
to threshold values that are dynamically adjusted to adapt the
search procedure to the video sequence characteristics.

This paper proposes a new architecture and techniques
to implement efficient ME processors with low power con-
sumption. The proposed application-specific instruction set
processor (ASIP) platform was tailored to efficiently program
and implement a broad class of powerful, fast and adap-
tive ME search algorithms, using both the traditional fixed
block structure (16 x 16 pixels), adopted in H.261/H.263 and
MPEG-1/MPEG-2 video coding standards, or even variable-
block-size structures, adopted in H.264/AVC coding stan-
dards. Such flexibility was attained by developing a simple
and efficient microarchitecture to support a minimum and
specialized instruction set, composed by only eight different
instructions specifically defined for ME. In the core of this
architecture, a datapath has been specially designed around
a low-power arithmetic unit that efficiently computes the
sum of absolute differences (SAD) function. Furthermore,
the several control signals are generated by a quite simple and
hardwired control unit.

A set of software tools was also developed and made
available to program ME algorithms on the proposed ASIP,
namely, an assembler and a cycle-based accurate simulator.
Efficient and adaptive ME algorithms, that also take into ac-
count the amount of energy available in portable devices at
any given time instant, have been implemented and sim-
ulated for the proposed ASIP. The proposed architecture
was described in VHDL and synthesized for a Virtex-1I Pro
FPGA from Xilinx. An application-specific integrated circuit
(ASIC) was also designed, using a 0.18 yum CMOS process.
Experimental results show that the proposed ASIP is able to
encode video sequences in real time with very low power con-
sumption.

This paper is organized as follows. In Section 2, ME algo-
rithms are described and adaptive techniques are discussed.
Section 3 presents the instruction set and the microarchitec-
ture of the proposed ASIP. Section 4 describes the software
tools that were developed to program and simulate the op-
eration of the ASIP with cycle level accuracy, as well as other
implementation aspects. Experimental results are provided
in Section 5, where the efficiency of the proposed ASIP is
compared with the efficiency of other motion estimators. Fi-
nally, Section 6 concludes the paper.

2. ADAPTIVE MOTION ESTIMATION

Block matching algorithms (BMA) try to find the best match
for each macroblock (MB) in a reference frame, according to

a search algorithm and a given distortion measure. Several
search algorithms have been proposed in the last few years,
most of them using the SAD distortion measure, depicted in
(1), where Feyrr and Fprey denote the current and previously
coded frames, respectively,

SAD (v, vy)
(Ni—-1) (N>—1)
= Z Z |Fcurr(-x+m)y+n) (1)
m=0 n=0

— Fprev(x + v +m, y + v, + 1) |.

The well-known FSBM algorithm examines all possible
displaced candidates within the search area, providing the
optimal solution at the cost of a huge amount of computa-
tions. The faster BMAs reduce the search space by guiding the
search pattern according to general characteristics of the mo-
tion, as well as the computed values for distortion. These al-
gorithms can be grouped in two main classes: (i) algorithms
that treat each macroblock independently and search ac-
cording to predefined patterns, assuming that distortion de-
creases monotonically as the search moves in the best match
direction; (ii) algorithms that also exploit interblock correla-
tion to adapt the search patterns.

The 3SS, 4SS, and DS are well-known examples of fast
BMAs that use a square search pattern. Their main advantage
is their simplicity, being the a priori known possible sequence
of locations that can be used in the search procedure. The 3SS
algorithm examines nine distinctive locations at 9 X 9, 5 x 5,
and 3 x 3 pixel search windows. In 4SS, search windows have
5x5 pixels in the first three steps and 3 X 3 pixels in the fourth
step. If the minimal distortion point corresponds to the cen-
ter in any of the intermediate steps, this algorithm goes di-
rectly to the fourth and last step. On the other hand, the DS
algorithm performs the search within the limits of the search
area until the best matching is found in the center of the
search pattern. It applies two diamond-shaped patterns: large
diamond search paattern (LDSP), with 9 search points, and
small diamond search pattern (SDSP) with 5 search points.
The algorithm initially performs the LDSP, moving it in the
direction of a minimal distortion point until it is found in the
center of a large diamond. After that, the SDSP is performed
as a final step.

The other class of more powerful and adaptive fast BMAs
exploits interblock correlation, which can be in both the
space and time dimensions. With this approach, information
from adjacent MBs is potentially used to obtain a first predic-
tion of the motion vector (MV). The MVFAST and the FAME
are some examples of these algorithms.

The MVFAST is based on the DS algorithm, by adopting
both the LDSP and the SDSP along the search procedure (see
Figure 1). The initial central search point as well as the fol-
lowing search patterns are predicted using a set of adjacent
MBs, namely, the left, the top, and the top-right neighbor
MBs depicted in Figure 1(a). The selection between LDSP
and SDSP is performed based on the characteristics of the
motion in the considered neighbor MBs and on the values of
two thresholds, L1 and L2. As a consequence, the algorithm
performs as follows: (i) when the magnitude of the largest

T. Dias et al.

R R

(a)

FIGURE 1: MVFAST algorithm: (a) neighbor MBs considered as potential predictors; (b-c) large diamond patterns; (d) switch from large to

small diamond patterns; (e-f) small diamond patterns.

(a) (b)

(c) (d) (e)

FiGure 2: FAME algorithm: (a) neighbor MBs considered as potential predictors; (b) large diamond pattern; (c) elastic diamond pattern;
(d) small diamond pattern; (e) considered motion vector predictions: average value and central value.

MV of the three neighbor MBs is below a given threshold
L1, the algorithm adopts an SDSP, starting from the cen-
ter of the search area and moving the small diamond until
the minimum distortion is found in the center of the dia-
mond; (ii) when the largest MV is between L1 and L2, the
algorithm uses the same central point but applies the LDSP
until the minimal distortion block is found in the center; an
additional step is performed with the SDSP; (iii) when the
magnitude is greater than L2, the minimum distortion point
among the predictor MVs is chosen as the central point and
the algorithm performs the SDSP until the minimum distor-
tion point is found in the center.

Meanwhile, the predictive motion vector field adaptive
search technique (PMVFAST) algorithm has been proposed.
It incorporates a set of thresholds in the MVFAST to trade
higher speedup at the cost of memory size and memory
bandwidth. It computes the SAD of some highly probable
MVs and stops if the minimum SAD so far satisfies the stop-
ping criterion, performing a local search using some of the
techniques of MVFAST.

More recently, the FAME [12] algorithm was proposed,
claiming very accurate MVs that lead to a quality level very
close to the FSBM but with a significant speedup. The FAME
algorithm outperforms MVFAST by taking advantage of the
correlation between MVs in both the spatial (see Figures
2(b)-2(d)) and the temporal (see Figure 2(e)) domains, us-
ing adaptive thresholds and adaptive diamond-shape search
patterns to accelerate ME. To accomplish such objective, it
features an improved control to confine the search pattern
and avoid stationary regions.

When compared in terms of computational complexity,
all these algorithms are widely regarded as good candidates

for software implementations, due to their inherent irregular
processing nature. It is proved in this paper that by adopting
the proposed ASIP approach, it is possible to develop hard-
ware processors to efficiently implement not only any adap-
tive ME algorithm of this class, but also any other fast BMA.
In fact, the FSBM, 3SS, 4SS, DS, MVFAST, and FAME algo-
rithms have been implemented with the proposed ASIP, in
order to evaluate the performance of the processor.

3. ASIPINSTRUCTION SET AND
MICROARCHITECTURE

3.1. Instruction set

The instruction set architecture (ISA) of the proposed ASIP
was designed to meet the requirements of most ME algo-
rithms, including adaptive ones, but optimized for portable
and mobile platforms, where power consumption and im-
plementation area are mandatory constraints. Consequently,
such ISA is based on a register-register architecture and pro-
vides only a reduced number of different operations (eight)
that focus on the most widely executed instructions in ME
algorithms. This register-register approach was adopted due
to its simplicity and efficiency, allowing the design of simpler
and less hardware consuming circuits. On the other hand, it
offers increased efficiency due to its large number of general
purpose registers (GPRs), which provides a reduction of the
memory traffic and consequently a decrease in the program
execution time. The amount of registers that compose the
register file therefore results as a tradeoff between the imple-
mentation area, memory traffic, and the size of the program
memory. For the proposed ASIP, the register file consists of

4 EURASIP Journal on Embedded Systems

TaBLE 1: Instruction-set architecture of the proposed ASIP. Categories of instruction operators and operation codes.

Opcode| Mnemonic| Instruction category 15 14 13| 12| 11 | 10| 9| 8| 7| 6‘ 5| 4| 3’ 2| 1 | 0

000 LD Memory data transfer Opcode t —

001] Control Opcode cc | — | Address

010 MOVR Register data transfer Opcode Rd — | Rs

011 MOVC Register data transfer Opcode t Rd Constant

100 SADI16 Graphics Opcode — Rd Rsl Rs2

101 DIV2 Arithmetic Opcode — Rd Rs —

110 ADD Arithmetic Opcode — Rd Rsl Rs2

111 SUB Arithmetic Opcode — Rd Rs —

24 GPRs and eight special purpose registers (SPRs) capable of
storing one 16 bits word each. Such configuration optimizes
the ASIP efficiency since: (i) the amount of GPRs is enough
to allow the development of efficient, yet simple, programs
for most ME algorithms; (ii) the 16 bits data type covers all
the possible values assigned to variables in ME algorithms;
and (iii) the eight SPRs are efficiently used as configuration
parameters for the implemented ME algorithms and for data
I/O.

The operations supported by the proposed ISA are
grouped in four different categories of instructions, as can
be seen from Table 1, and were obtained as the result of the
analysis of the execution of several different ME algorithms
[10, 11, 13]. The encoding of the instructions into binary
representation was performed using 16 bits and a fixed for-
mat. For each instruction it is specified an opcode and up to
three operands, depending on the instruction category. Such
encoding scheme therefore provides minimum bit wasting
for instruction encoding and eases the decoding, thus allow-
ing a good tradeoff between the program size and the effi-
ciency of the architecture. In the following, it is presented a
brief description of all the operations of the proposed ISA.

3.1.1. Control operation

The jump control operation, J, introduces a change in the
control flow of a program, by updating the program counter
with an immediate value that corresponds to an effective ad-
dress. The instruction has a 2 bits condition field (cc) that
specifies the condition that must be verified for the jump to
be taken: always or in case the outcome of the last executed
arithmetic or graphics operation (SAD16) is negative, posi-
tive or zero. Not only is this instruction important for algo-
rithmic purposes, but also for improving code density, since
it allows a minimization of the number of instructions re-
quired to implement an ME algorithm and therefore a re-
duction of the required capacity of the program memory.

3.1.2. Register data transfer operations

The register data transfer operations allow the loading of data
into a GPR or SPR of the register file. Such data can be the
content of another register in the case of a simple move in-
struction, MOVR, or an immediate value for constant load-

ing, MOVC. Due to the adopted instruction coding format,
the immediate value is only 8 bits width, but a control field
(t) sets the loading of the 8 bits literal into the destination
register upper or lower byte.

3.1.3. Arithmetic operations

In what concerns the arithmetic operations, while the ADD
and SUB instructions support the computation of the coor-
dinates of the MBs and of the candidate blocks, as well as the
updating of control variables in loops, the DIV2 instruction
(integer division by two) allows, for example, to dynamically
adjust the search area size, which is most useful in adaptive
ME algorithms. Moreover, these three instructions also pro-
vide some extra information about its outcome that can be
used by the jump (J) instruction, to conditionally change the
control flow of a program.

3.1.4. Graphics operation

The SAD16 operation allows the computation of the SAD
similarity measure between an MB and a candidate block.
To do so, this operation computes the SAD value considering
two sets of sixteen pixels (the minimum amount of pixels for
an MB in the MPEG-4 video coding standard) and accumu-
lates the result to the contents of a GPRs. The computation of
a SAD value for a given (16 X 16)-pixel candidate MB there-
fore requires the execution of sixteen consecutive SAD16 op-
erations. To further improve the algorithm efficiency and re-
duce the program size, both the horizontal and vertical co-
ordinates of the line of pixels of the candidate block under
processing are also updated with the execution of this opera-
tion. Likewise the arithmetic operations, the outcome of this
operation also provides some extra information that can be
used by the jump (J) instruction to conditionally change the
control flow of a program.

3.1.5. Memory data transfer operation

The processor comprises two small and fast local memo-
ries, to store the pixels of the MB under processing and of
its corresponding search area. To improve the processor per-
formance, a memory data transfer operation (LD) was also
included, to load the pixel data into these memories. Such

T. Dias et al.

Instruction decoding

Zero

T I
DYIAN
'
5
D 123 IR/ SO BV SV IS >
s R4 R5 R6 R7 2
R20 | R2I | R22 | R23 S
] R*M %) 8 R24 | R25 | R26 | R27 19 Z %
(firmware) S R28 R29 R30 R31

FiGure 3: Architecture of the proposed ASIP.

operation is carried out by means of an address generation
unit (AGU), which generates the set of addresses of both
the corresponding internal memory as well as of the external
frame memory, that are required to transfer the pixel data.
The selection of the target memory is carried out by means
of a 1-bit control field, which is used to specify the type of
image area that is loaded into the local memory. As a con-
sequence, this operation is performed independently for the
data concerning a given MB and for the corresponding search
area.

3.2. Micro architecture

The proposed ISA is supported by a specially designed micro-
architecture, following strict power and area driven policies
to support its implementation in portable and mobile plat-
forms. This micro-architecture presents a modular structure
and is composed by simple and efficient units to optimize the
data processing, as it can be seen from Figure 3.

3.2.1. Control unit

The control unit is characterized by its low complexity, due
to the adopted fixed instruction encoding format and a care-
ful selection of the opcodes for each instruction. This not
only provided the implementation of a very simple and fast
hardwired decoding unit, which enables almost all instruc-
tions to complete in just one clock cycle, but also allowed the
implementation of effective power saving policies within the
processors functional units, such as clock gating and operat-
ing frequency adjustment. The former technique is applied
to control the switching activity at the function unit level, by
inhibiting input updates to functional units whose outputs
are not required for a given operation, while the latter ad-
justs the operating frequency according to the programmed
algorithm and the current available energy level.

3.2.2. Datapath

For more complex and specific operations, like the LD and
SADI16 instructions, the datapath also includes specialized
units to improve the efficiency of such operations: the AGU
and the SAD unit (SADU), respectively.

The LD operation is executed by a dedicated AGU op-
timized for ME, which is capable of fetching all the pix-
els for both an MB and an entire search area. To maximize
the efficiency of the data processing, this unit can work in
parallel with the remaining functional units of the micro-
architecture. Using such feature, programs can be optimized
by rescheduling the LD instructions to allow data fetching
from memory to occur simultaneously with the execution
of other parts of the program that do not depend on this
data. For implementations imposing strict constraints in the
power consumption, memory accesses can be further op-
timized by using efficient data reuse algorithms and extra
hardware structures [4, 14]. This not only significantly re-
duces the memory traffic to the external memory, but also
provides a considerable reduction in the power consumption
of the video encoding system.

The SADU can execute the SAD16 operation in up to six-
teen clock cycles and is capable of using the arithmetic and
logic unit (ALU) to update the coordinates of the candidate
block line of pixels. The number of clock cycles required for
the computation of a SAD value is imposed by the type of
architecture adopted to implement this unit, which depends
on the power consumption and implementation area con-
straints specified at design time. Thus, applications impos-
ing more severe constraints in power or area can use a serial
processing architecture, that reuses hardware but takes more
clock cycles to compute the SAD value, while others with-
out so strict requisites may use a parallel processing archi-
tecture that is able to compute the SAD value in only one
single clock cycle. Pipelined versions of the SADU are also
supported to allow better tradeoffs between the latency, the
power consumption, and the required implementation area,
thus providing increased flexibility for different implementa-
tions of the proposed ASIP.

Despite all these different alternatives in what concerns
the SADU architecture to meet the desired performance
level, the implemented SADU also adopted an innovative
and efficient arithmetic unit to compute the minimum SAD
distance [15] that allows the proposed processor to better
comply with the low-power constraints usually found in au-
tonomous and portable handheld devices. Such unit not only
avoids the usage of carry-propagate cells to compute and
compare the SAD metric, by adopting carry-free arithmetic,

6 EURASIP Journal on Embedded Systems
Accumulation unit
z - St GE
122 —|
2 | §* M computation Carry save adder Ct
- unit St?lte
Accumulator Best-match machine
D detection unit Update >
AccReg S Enj— Registers| MVs
D Clock enable
AccReg_C En|{—
<4
Clock
FIGURE 4: Low-power serial SADU block diagram.
of the best matching MVs to the video encoder. In addition,
\Lrstlen done it also provides the possibility to download the processor’s
Data firmware, that is, the compiled assembly code of the desired
Data ﬁ;) .
] ME algorithm.
Power-PC | ,4dr RAM ﬁzgﬁ Acl\(’)lrEP Since pixels for ME are usually represented using 8 bits
#oewe and MVs are estimated using pixels from the current and
E previous frames (each frame consists of 704 X 576 pixels in
gnt |req Bsiti;tltl‘.e:SY req req gnt the 4CIF image format), the interface with the external frame
81! memory was designed to allow 8 bits data transfers from a
ol 1 MB memory address space. Thus, the proposed interface

FiGure 5: Interface of the proposed ASIP.

but it also generates a “greater or equal” (GE) signal, issued
by the best-match detection unit (see Figure 4). This signal
is obtained from the partial values of the SAD measure, by
comparing the current metric value with the best one previ-
ously obtained. It can be used by the main state machine to
update the output register corresponding to the current MV.
Due to its null latency, this GE signal can also be used to apply
the set of power-saving techniques that have been proposed
in the last few years [16]. In fact, it is used as a control mech-
anism to avoid needless calculations in the computation of
the best match for a macroblock, by aborting the ME pro-
cedure as soon as the partial value of the distance metric for
the candidate block under processing exceeds the one already
computed for the current block [16]. Such computations can
be avoided by disabling all the logic and arithmetic units used
in the computation of the SAD metric, thus providing signif-
icant power saving ratios. On average, this technique allows
to avoid up to 50% of the required computations [16], giving
rise to a reduction of up to 75% of the overall power con-
sumption [15].

3.2.3. External interface

The proposed ASIP presents an external interface with a quite
reduced pin count, as shown in Figure 5, that allows an easy
embedding of the presented micro-architecture in both exist-
ing and future video encoders. Such interface was designed
not only to allow efficient data transfers from the external
frame memory, but also to efficiently export the coordinates

with such external memory bank is done using three I/O
ports: (i) a 20 bits output port that specifies the memory ad-
dress for the data transfers (addr); (ii) an 8 bits bidirectional
port for transferring the data (data); and (iii) a 1-bit output
port that sets whether it is a load or store operation (#oe_we).
Since the external frame memory is to be shared between the
video encoder and the ME circuit, the proposed ASIP inter-
face has two extra 1-bit control ports to implement the re-
quired handshake protocol with the bus master: the req port
allows requesting control of the bus to the bus master, while
the gnt port allows the bus master to grant such control.

To minimize the number of required I/O connections,
the coordinates of the best matching M Vs are also outputted
through the data port. Nevertheless, such operation requires
two distinct clock cycles for its completion: a first one to out-
put the low-order 8 bits of the MV coordinate and a second
one to output its high-order 8 bits. In addition, every time a
new value is outputted through the data port, the status of
the done output port is toggled, in order to signal the video
encoder that new data awaits to be read at the data port.

This port is also used to dynamically aquire the energy
level that is available to compute the motion estimation at
any instant (see Figure 5). Such level may be used by adaptive
algorithms to adjust the overall computational cost of the ME
procedure.

The processor’s firmware, corresponding to the compiled
assembly code of the considered ME algorithm, is also down-
loaded into the program RAM through the data port. To do
so, the processor must be in the programming mode, which
it enters whenever a high level is simultaneously set into the
rst and en input ports. In this operating mode, after having
acquired the bus ownership, the master processor supplies
memory addresses through the addr port and loads the cor-
responding instructions into the internal program RAM. The

T. Dias et al.

0042h 8lefh
0043h 8lefh
0044h 8lefh
0045h 8lefh
0046h eb21h
0047h 684bh
0048h 2041h
0049h 20c5h
004ah 20e4h
004bh

004bh c448h
004ch eb94h
004dh 6850h
004eh c338h
004fh 680eh
0050h

0050h 2091h
0051h e404h
0052h c558h
0053h eb95h
0054h 6858h
0055h 2170h

SAD16 R1, R14, R15
SAD16 R1, R14, R15
SAD16 R1, R14, R15
SAD16 R1, R14, R15
SUB R11, R2, R1
J.N NEXT_POS

MOVR R2, R1

MOVR R6, R5

MOVR R7, R4
NEXT_POS:

ADD R4, R4, R8

SUB R11, R9, R4
J.Z NEWLINE

ADD R3, R3, R8

J.U LOOP

NEWLINE:

MOVR R4, R17

SUB R4, RO, R4

ADD R5, R5, R8

SUB R11, R9, Rb
J.Z END

MOVR R11, R16
0056h c33bh ADD R3, R3, R11l
0057h 680eh J.U LOOP

0058h END:

FIGURE 6: Fraction of one of the output files obtained with the as-
sembly compiler.

processor exits this programming mode as soon as the last
memory position of the 1 kB program memory is filled in.
Once again, each 16 bits instruction takes two clock cycles to
be loaded into the program memory, which is organized in
the little-endian format.

4. SOFTWARE TOOLS

To support the development and implementation of ME al-
gorithms using the proposed ASIP, a set of software tools was
developed and made available, namely, an assembly compiler
and a cycle-based accurate simulator.

Since the proposed ASIP architecture and the considered
instruction set do not support subroutine calls nor make
use of an instruction/data stack, the implementation of the
compiler consists of a straightforward parsing of the assem-
bly instruction directives (as well as their register operands),
followed by a corresponding translation into the appropri-
ate opcodes, in order to translate the sequence of assembly
instructions into a series of 16 bits machine code words of
program data. The exception to this direct translation occurs
whenever a jump instruction has to be compiled. A two-step
strategy was adopted to compile these control flow instruc-
tions, in order to determine the target address of each jump
invoked within the program.

In Figure 6 it is presented a fraction of one of the out-
put files (code.lst) that are generated during this translation

process. This file presents three different sorts of informa-
tion, disposed in three columns (see Figure 6). While the first
column presents the effective address of each instruction (or
label), the second column presents the instruction code of
the assembly directive presented in the third column. In the
illustrated case, it is presented a fraction of an implementa-
tion of the FSBM algorithm (used as reference in the consid-
ered algorithm comparisons). As it can be seen in Figure 6,
the resulting SAD value, accumulated in R1 register after a
sequence of 16 SAD16 instructions (one for each row of the
macroblock), is compared with the best SAD value (stored in
R2) that was found in previous computations. Depending on
the difference between these values, the current SAD value, as
well as the corresponding MV coordinates (R5, R4), will be
stored in R2, R6, and R7 registers, in order to be considered
in the next searching locations. In the remaining instruc-
tions, the MV coordinates are incremented and it is checked
if the last column and line of the considered search area were
already reached, respectively.

The implementation and evaluation of the ME algo-
rithms were supported by implementing an accurate simula-
tor of the proposed ASIP. It provides important information
about: the number of clock cycles required to carry out the
ME of a given macroblock, the amount of memory space re-
quired to store the program code, the obtained motion vector
and corresponding SAD value, and so forth.

5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

To assess the performance provided by the proposed ASIP,
the microarchitecture core was implemented by using the de-
scribed serial processing architecture for the SADU module
(see Figure 4) and a simplified AGU that does not allow data
reusage. This microarchitecture was described using both be-
havioral and fully structural parameterizable IEEE-VHDL.
The ASIP was firstly implemented in a FPGA device, in order
to proof the concept. Later, an ASIC was specifically designed
in order to evaluate the efficiency of the proposed architec-
ture and of the corresponding ISA for motion estimation.

The performance of the proposed ASIP was evaluated by
implementing several ME algorithms, such as the FSBM, the
4SS, the DS, and the MVFAST and FAME adaptive ME al-
gorithms. These algorithms were programmed with the pro-
posed instruction set and the ASIP operation was simulated
by using the developed software tools (see Section 4). Such
simulation phase was fundamental to obtain the number of
clock cycles required to implement the algorithms, which im-
plicitly defines the minimum clock frequency for real-time
processing, as well as the size of the memory required to store
the programs.

Table 2 provides the average number of clock cycles per
pixel (CPP) required to implement the several considered al-
gorithms, using the following benchmark video sequences:
mobile, carphone, foreman, table tennis, bus, and bream. These
are well-known video sequences with quite different charac-
teristics, in terms of both movement and spacial detail. The
presented results were obtained for a search area with 16 X 16
candidate locations and for the first 20 frames of each video

EURASIP Journal on Embedded Systems

TaBLE 2: Required clock cycles to process each pixel considering sev-
eral different algorithms and video sequences.

TaBLE 5: Experimental results of the implementation of the video
encoder in the Xilinx ML310 development board.

Video seq. FSBM 4SS DS MVEFAST FAME Unit Slices LUTs BRAMs F (MHz)
Mobile 265 19 15 9 8 AMEP core 2052 14% 2289 8% 208 67.18
Carphone 265 21 18 13 9 Interface 207 1% 382 1% 0 156.20
Foreman 265 21 18 13 9

Table tennis 265 19 15 6

Bream 265 19 15 8 the MVFAST and FAME algorithms (744 x 16 bit). However,
Bus 265 24 21 18 8 since most of the portable communication systems already
Maximum 265 24 21 18 9 provide nonvolatile memories with significant capacity, the

TaBLE 3: Required operating frequencies to process QCIF and CIF
video sequences in real time.

Format FSBM 4SS DS MVFAST FAME
QCIF 200MHz 20MHz 18MHz 15MHz 8MHz
CIF 800MHz 75MHz 65MHz 55MHz 28 MHz

TaBLE 4: Code size of the proposed algorithms (words of 16 bits).

FSBM 4SS DS MVFAST FAME
365 460 744 917

Algorithm
Code size 56

sequence. Moreover, redundancy was eliminated in both the
4SS and the MVFAST algorithms, by avoiding the computa-
tion of SAD more than once for a single location.

The results presented in Table 2 evidence the huge reduc-
tion of the number of performed computations that can be
achieved when fast search algorithms are applied. The MV-
FAST and FAME adaptive algorithms allow to significantly
reduce the CPP even further, when compared with the 4SS
and the DS fast algorithms. By considering the maximum
value for the obtained CPPs (CPP),;) and a real-time frame
rate of 30 Hz for an H X W image format, the required mini-
mum operating frequency (¢) can be calculated for each class
of algorithms using (2),

¢ = (H x W) x CPPy x 30 Hz.)

By considering the quarter common intermediate format
(QCIF) and the common intermediate format (CIF) image
formats, as well as the values presented in Table 2 and (2), the
required minimum clock frequencies were computed and are
presented in Table 3. The obtained operating frequencies of
the proposed motion estimators for fast adaptive search algo-
rithms are significantly lower than the operating frequency of
the +£1 full-search-based processor presented in [8].

In Table 4, it is represented the size of the memory re-
quired to store the programs corresponding to the consid-
ered algorithms. As it can be seen, the adaptive algorithms
require significantly more memory for storing the program
than the 4SS. The memory requirements of the FAME algo-
rithm are even greater than the MVFAST, due to the need
to keep in memory more past information to achieve signif-
icantly better predictions. In fact, it requires approximately
13 times more memory than the FSBM. This is the price
to pay for the irregularity and also for the adaptability of

power consumption gain due to the reduction of the operat-
ing frequency can supersede this disadvantage.

5.1. FPGA implementation for proof of concept

To validate the functionality of the proposed ASIP in a
practical realization, a hybrid video encoder was developed
and implemented in a Xilinx ML310 development platform,
making use of a Virtex-II Pro XC2VP30 FPGA device from
Xilinx embedded in the board [17]. Besides all the imple-
mentation capabilities offered by such configurable device,
this platform also provides two Power-PC processors, sev-
eral block RAMs (BRAMs), and high speed on-chip bus-
communication links to enable the interconnection of the
Power-PC processors with the developed hardware circuits.

The prototyping video encoding system was imple-
mented by using these resources. It consists of the devel-
oped ASIP motion estimator, a software implementation of
an H.263 video encoder, built into the FPGA BRAMs and
running on a 100-300 MHz Power-PC 405D5 processor, and
of four BRAMs to implement the firmware RAM and the lo-
cal memory banks in the AGU of the proposed ASIP. Fur-
thermore, the Power-PC processor and the developed mo-
tion estimator were interconnected according to the interface
scheme described in Figure 5, using both the high-speed 64
bits processor local bus (PLB) and the general purpose 32
bits on-chip peripheral bus (OPB), where the Power-PC was
connected as the master device. Such interconnect buses are
used not only to exchange the control signals between the
Power-PC and the proposed ASIP, but also to send all the re-
quired data to the proposed motion estimator, namely, the
ME algorithm program code and the pixels for both the can-
didate and reference blocks. Moreover, a simple handshake
protocol is used in these data transfers to bridge the different
operating frequencies of the two processors.

The operating principle of the proposed prototyping hy-
brid video encoder consists only of three different tasks re-
lated to motion estimation: (i) configuration of the ME co-
processor, by downloading an ME algorithm and all the
configuration parameters (MB size, search area size, image
width, and image height) into the code memory and the SPRs
of the proposed ASIP; (ii) data transfers from the Power-PC
to the proposed ASIP, which occur on demand by the mo-
tion estimator and are used either to download the MB and
the search area pixels into the AGU local memories or to
supply additional information required by adaptive ME al-
gorithms, depending on the memory position addressed by

T. Dias et al. 9
TaBLE 6: Experimental results of the synthesized ASIP components 16 -
for the maximum frequencies and 0.18 yum CMOS technology. 14 1 s
A
Unit Area (um?) Max. freq. Power at max. freq. < 12 WISY >
AMEP core 128625 144MHz 48 mW "]
AGU 28889 154 MHz 49mwW g 0
£ 6 FAME
ALU 3496 481 MHz 13mW & A % 1
g 4SS
SADU 16961 275MHz 22mW -
2 o MVEAST
Best-match DU 9489 500 MHz 14 mW 0 FAME
0 10 20 30 40 50 60 70 80
TaBLE 7: Experimental results of the synthesized ASIP components Minimum frequency (MHz)
operating at 100 MHz and 0.18 yum CMOS technology.
= QCIF
Unit AGU ALU SADU BMDU AMEP core A CIF

19.96

Power (mW) | 829 192 3.40 1.26

TasLE 8: Estimated power consumption of the ASIP for different
frequencies and 0.18 yum CMOS technology.

Freq. (MHz) 8§ 15 18 20 28 55 65 75 100
Power (mW) 1.6 3 35 4 55 11 13 15 20

the ASIP; and (iii) data transfers from the proposed ASIP to
the Power-PC, that are used to output the coordinates of the
best-match MV and the corresponding SAD value, as well as
the current configuration parameters of the motion estima-
tor, since some adaptive ME algorithms change these values
during the video coding procedure.

Table 5 presents the experimental results that were ob-
tained with the implementation of the proposed video cod-
ing system in the Virtex-II Pro XC2VP30 FPGA device. Such
results show that by using the proposed ASIP, it is possi-
ble to estimate MVs in real time (30 fps) for the QCIF and
CIF image formats by using any fast or adaptive search algo-
rithms, except the 4SS for CIF images (see Table 3). More-
over, the minimum throughput achieved for the considered
algorithms (4SS) is about 2.8 Mpixels/s, corresponding to a
relative throughput per slice of about 1.36 kpixels/s/slice.

The operating frequency of the ASIP can be changed
in the FPGA by using the digital clock managers (DCMs).
In this case, the DCMs were used to configure setup pairs
of algorithms/formats-frequencies depicted in Table 3. How-
ever, in an ASIC implementation, an additional input is re-
quired in the ASIP in order to sense, at any time, the amount
of energy that is still available; and an extra programmable
divisor to adjust the clock frequency. The control of this dy-
namic adjustment can be done by the ASIP and the program-
ming of the divisor can be done through an extra output reg-
ister.

5.2. Standard-cell implementation

The proposed motion estimator was implemented using the
Synopsis synthesis tools and a high-performance StdCell li-
brary based on a 0.18 yum CMOS process from UMC [18].
The obtained experimental results concern an operating en-
vironment imposing typical operating conditions: T' = 25°C,
Vaa = 1.8V, the “suggested_20 k” wire load model, and some

FIGURE 7: Power consumption corresponding to each of the consid-
ered algorithms and image formats.

constraints that lead to an implementation with minimum
area. Typical case conditions have been considered for power
estimation, and prelayout netlist power dissipation results
are presented.

The first main conclusion that can be drawn from the
synthesis results presented in Tables 6, 7, and 8 is that the
power consumption of the proposed ASIP for ME with the
adaptive ME algorithms is very low. Operating at a frequency
of 8 MHz, it only consumes about 1.6 mW, which does not
imply any significant reduction of the life time of our ac-
tual batteries (typically 1500 mAh batteries). For the 4SS al-
gorithm, the operating frequency increases to about 20 MHz
but the power consumption is kept low, about 3.9 mW. The
setup corresponding to the FSBM algorithm for the CIF im-
age format was not fully synthesized, since the required op-
erating frequency is beyond the technology capabilities. The
maximum operating frequency obtained with this architec-
ture and with this technology is about 144 MHz, as it can be
seen in Table 6. Near this maximum frequency, which corre-
sponds to having the components of the processor operating
at 100 MHz, the power consumption becomes approximately
20 mW (see Table 7).

Tables 7 and 8 present the power consumption values
estimated for the required minimum operating frequencies.
Two main clusters of points can be identified in the plot of
Figure 7: the one for the QCIF and the one for the CIF for-
mat. The former format requires operating frequencies be-
low 25 MHz and the corresponding power consumption is
below 6 mW, while for the CIF format the operating fre-
quency is above 50 MHz and the power consumption is be-
tween 10 mW and 15 mW. The exception is the FAME algo-
rithm, for which the operating frequency (28 MHz) and the
power consumption (5.5mW) values for the CIF format are
closer to the QCIF values.

Common figures of merit for evaluating the energy and
the area efficiencies of the video encoders are the number
of Mpixels/s/W and the number of Mpixels/s/mm?. For the
designed VHDL motion estimator, the efficiency figures are,
on average, 23.7 Mpixels/s/mm? and 544 Mpixels/s/W. These

10

EURASIP Journal on Embedded Systems

values can be compared with the ones that were presented
for the motion estimator ASIP proposed in [19], after nor-
malizing the power consumption values to a common volt-
age level: 22 Mpixels/s/mm? and 323 Mpixels/s/W. Hence,
it can be concluded that the proposed motion estimator is
more efficient in terms of both power consumption and
implementation area. In fact, the improvements should be
even greater, since the proposed circuit was designed with a
0.18 yum CMOS technology, while the circuit in [19] was de-
signed with a 0.13 ym CMOS technology.

6. CONCLUSIONS

An innovative design flow to implement efficient motion es-
timators was presented here. Such approach is based on an
ASIP platform, characterized by a specialized datapath and
a minimum and optimized instruction set, that was spe-
cially developed to allow an efficient implementation of data-
adaptive ME algorithms. Moreover, it was also presented a
set of software tools that were developed and made available,
namely, an assembler compiler and a cycle-based accurate
simulator, to support the implementation of ME algorithms
using the proposed ASIP.

The performance of the proposed ASIP was evaluated by
implementing a hybrid video encoder using regular (FSBM),
irregular (4SS and DS), and adaptive (MVFAST and FAME)
ME algorithms using the developed software tools and a Xil-
inx ML310 prototyping environment, that includes a Virtex-
IT Pro XC2VP30 FPGA. In a later stage, the performance of
the developed microarchitecture was also assessed by synthe-
sizing it for an ASIC using a high-performance StdCell li-
brary based on a 0.18 ym CMOS process.

The presented experimental results proved that the pro-
posed ASIP is capable of estimating MVs in real time for the
QCIF image format for all the tested fast ME algorithms, run-
ning at relatively low operating frequencies. Furthermore,
the results also showed that the power consumption of the
proposed architecture is very low: near 1.6 mW for the adap-
tive FAME algorithm and around 4 mW for the remaining
irregular algorithms that were considered. Consequently, it
can be concluded that the low-power nature of the proposed
architecture and its high performance make it highly suit-
able for implementations in portable, mobile, and battery-
supplied devices.

REFERENCES

[1] E C. N. Pereira and T. Ebrahimi, The MPEG4 Book, Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2002.

[2] V. Bhaskaran and K. Konstantinides, Image and Video Com-

pression Standards: Algorithms and Architectures, Kluwer Aca-

demic Publishers, Boston, Mass, USA, 2nd edition, 1997.

P. Pirsch, N. Demassieux, and W. Gehrke, “VLSI architectures

for video compression—a survey,” Proceedings of the IEEE,

vol. 83, no. 2, pp. 220-246, 1995.

[4] T. Dias, N. Roma, and L. Sousa, “Efficient motion vector re-
finement architecture for sub-pixel motion estimation sys-
tems,” in Proceedings of IEEE Workshop on Signal Processing
Systems Design and Implementation (SIPS °05), pp. 313-318,
Athens, Greece, November 2005.

[3

[5] R.Li, B. Zeng, and M. L. Liou, “A new three-step search algo-
rithm for block motion estimation,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 4, no. 4, pp. 438—
442, 1994.

[6] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm
for fast block motion estimation,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 6, no. 3, pp. 313—
317, 1996.

[7] S. Zhu and K.-K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Transactions on
Image Processing, vol. 9, no. 2, pp. 287-290, 2000.

[8] S.-Y. Huang and W.-C. Tsai, “A simple and efficient block mo-
tion estimation algorithm based on full-search array architec-
ture,” Signal Processing: Image Communication, vol. 19, no. 10,
pp. 975-992, 2004.

[9] S. Saponara and L. Fanucci, “Data-adaptive motion estima-
tion algorithm and VLSI architecture design for low-power
video systems,” IEE Proceedings Computers ¢ Digital Tech-
niques, vol. 151, no. 1, pp. 51-59, 2004.

[10] A. M. Tourapis, O. C. Au, and M. L. Liou, “Predictive motion
vector field adaptive search technique (PMVFAST): enhanc-
ing block-based motion estimation,” in Proceedings of Visual
Communications and Image Processing (VCIP ’01), vol. 4310 of
Proceedings of SPIE, pp. 883—892, San Jose, Calif, USA, January
2001.

[11] A. M. Tourapis, “Enhanced predictive zonal search for single
and multiple frame motion estimation,” in Proceedings of Viual
Communications and Image Processing (VCIP °02), vol. 4671
of Proceedings of SPIE, pp. 1069—1079, San Jose, Calif, USA,
January 2002.

[12] I. Ahmad, W. Zheng, J. Luo, and M. Liou, “A fast adaptive mo-
tion estimation algorithm,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 16, no. 3, pp. 420-438, 2006.

[13] S. Momcilovic, T. Dias, N. Roma, and L. Sousa, “Applica-
tion specific instruction set processor for adaptive video mo-
tion estimation,” in Proceedings of the 9th Euromicro Con-
ference on Digital System Design: Architectures, Methods and
Tools (DSD ’06), pp. 160-167, Dubrovnik, Croatia, August-
September 2006.

[14] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and
memory bandwidth analysis for full-search block-matching
VLSI architecture,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 1, pp. 61-72, 2002.

[15] T.Dias, N. Roma, and L. Sousa, “Low power distance measure-

ment unit for real-time hardware motion estimators,” in Pro-

ceedings of International Workshop on Power and Timing Mod-

eling, Optimization and Simulation (PATMOS ’06), pp. 247—

255, Montpellier, France, September 2006.

L. Sousa and N. Roma, “Low-power array architectures for

motion estimation,” in Proceedings of IEEE International Work-

shop on Multimedia Signal Processing (MMSP °99), pp. 679—

684, Copenhagen, Denmark, September 1999.

[17] Xilinx Inc., “User Guide. v1.1.1.” ML310 User Guide for
Virtex-1I Pro Embedded Development Platform, October 2004.

[18] Virtual Silicon Technology Inc., “eSi-Route/11™ high perfor-
mance standard cell library (UMC 0.18um),” Tech. Rep. v2.4.,
November 2001.

[19] A. Beri¢, R. Sethuraman, H. Peters, J. van Meerbergen, G. de
Haan, and C. A. Pinto, “A 27 mW 1.1 mm? motion estimator
for picture-rate up-converter,” in Proceedings of the 17th In-
ternational Conference on VLSI Design (VLSI *04), vol. 17, pp.
1083-1088, Mumbai, India, January 2004.

(16

	Introduction
	Adaptive Motion Estimation
	ASIP instruction set and microarchitecture
	Instruction set
	Control operation
	Register data transfer operations
	Arithmetic operations
	Graphics operation
	Memory data transfer operation

	Micro architecture
	Control unit
	Datapath
	External interface

	Software tools
	Implementation and Experimental Results
	FPGA implementation for proof of concept
	Standard-cell implementation

	Conclusions
	REFERENCES

