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strategy for the particular estimator.
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1. INTRODUCTION

Systems employing multiple transmit and receive antennas,
known as multiple-input multiple-output (MIMO) systems,
promise significant gains in channel capacity [1–3]. Together
with orthogonal frequency division multiplexing (OFDM),
MIMO-OFDM is selected for the wireless local area network
(WLAN) standard IEEE 802.11n [4], and for beyond 3rd
generation (B3G) mobile communication systems [5].

As multiple signals are transmitted from different trans-
mit antennas simultaneously, coherent detection requires ac-
curate channel estimates of all transmit antennas’ signals at
the receiver. The most common technique to obtain chan-
nel state information is via pilot-aided channel estimation
(PACE) where known training symbols termed pilots are
multiplexed with data. For PACE, channel estimates are ex-
clusively generated by means of pilot symbols, and these es-
timates are then processed for the detection of data sym-
bols as if they were the true channel response. A sophisti-
cated pilot design should strike a balance between the at-
tainable accuracy of the channel estimate and the resources
consumed by pilot symbols. An appropriate means to op-
timize this trade-off is to maximize the channel capacity of
pilot-aided schemes. As the training overhead grows propor-
tionally to the number of transmitted spatial streams [6], the
attainable capacity gains for MIMO-OFDM are traded with
the bandwidth and energy consumed by a growing number
of pilot symbols to estimate the MIMO channels.

A lower bound for the attainable capacity for multiple
antenna systems with pilot-aided channel estimation for the
block fading channel was derived in [7]. The capacity lower
bound was then used to optimize the energy allocation and
the fraction of resources consumed by pilots. The capac-
ity lower bound of [7] was extended to single carrier sys-
tems operating in frequency-selective channels [8–10], and
to spatially correlated MIMO channels [11]. Furthermore,
in [8, 12] the capacity achieving pilot design for MIMO-
OFDM over frequency-selective channels was studied. For
OFDM, pilot symbols inserted in the frequency domain (be-
fore OFDM modulation) sample the channel, allowing to re-
cover the channel response for data bearing subcarriers by
means of interpolation. This implies that, besides pilot over-
head and power allocation, also the placement of pilots is
to be optimized. It was found that equidistant placement of
pilot symbols not only minimizes the mean squared error
(MSE) of the channel estimates [13], but also maximizes the
capacity [8].

All previous work deriving the capacity for training-
based schemes for single-carrier [7–11] as well as for multi-
carrier systems [8, 12] considered time-invariant channels,
where the channel was assumed static for the block of trans-
mitted symbols. Furthermore, work on OFDM was limited
to perfect interpolation [8, 12]. That is, additive white Gaus-
sian noise (AWGN) is the only source of channel estimation
errors. This implies that, in the absence of noise channel es-
timates perfectly match the true channel response. However,
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Figure 1: MIMO-OFDM system employing NT transmit and NR receive antennas.

from the sampling theorem it is well known that an infinite
number of pilots is necessary for perfect interpolation [14].
In the context of OFDM, perfect interpolation is observed
only if the channel model is sample spaced [15], that is, all
channel taps are integer multiples of the sampling duration.
In practice, however, pilot sequences are finite while chan-
nel taps are nonsample spaced, ultimately leading to reduced
capacity bounds. Whereas in related work for OFDM only
time-invariant channels and perfect interpolation are consid-
ered, in this work real world problems are taken into account,
and a more realistic capacity bound is achieved.

Furthermore, previous work on maximizing the training
based capacity was exclusively dedicated to minimum mean
squared error (MMSE) channel estimation [7–12]. Applied
to PACE the MMSE criterion finds the best tradeoff between
the attainable interpolation accuracy and the mitigation of
noise [16]. While MMSE estimates are favorable in terms
of performance, knowledge of the 2nd order statistics is re-
quired for implementation, together with a computationally
expensive matrix inversion [16]. Unlike previous work, our
objective is not to find the optimum estimator that achieves
capacity, rather we aim to identify the optimum pilot design
that maximizes capacity for a given and possibly subopti-
mum estimator.

The present paper addresses the above mentioned limi-
tations of previous work; its main contributions are summa-
rized as follows.

(i) The work from [7], conducted for block fading chan-
nels, is extended to time-variant frequency-selective
channels. Assuming perfect interpolation and placing
pilot symbols with maximum possible distance in time
and frequency still satisfying the sampling theorem,
the capacity is shown to approach that for the block
fading channel, provided that the size of the block is
chosen according to the maximum pilot spacing im-
posed by the sampling theorem.

(ii) Previous work in [7, 8, 12] is extended to arbitrary
linear estimators. Capacity-achieving pilot design for
realizable, and possibly suboptimum, channel estima-
tion schemes is therefore possible, as for example,
interpolation by finite impulse response (FIR) filter-
ing [16–18], discrete Fourier transform (DFT) based

interpolation [19, 20], or linear interpolation [21].
We derive a closed form expression of the training
based-capacity for perfect interpolation, and propose a
semianalytical procedure for practical estimation tech-
niques.

(iii) For a particular class of estimators, namely FIR inter-
polation filters, we demonstrate that the pilot grid that
maximizes capacity is mostly independent of the cho-
sen channel model, as long as the maximum channel
delay and the maximum Doppler frequency are within
a certain range. This is an appealing property, as a so-
phisticated pilot design should be valid for an as wide
as possible range of channel conditions.

The remainder of this paper is structured as follows. In
Section 2, the system model is introduced. In Section 3, the
estimation error model is established and analyzed, whereas
bounds on the achievable capacity of the optimized pi-
lot design are derived in Section 4. Numerical examples in
Section 5 verify the developed framework in terms of pilot
boost and overhead, as well as number of transmit antennas.

2. SYSTEMMODEL

Consider a MIMO-OFDM system with NT transmit and NR

receive antennas as illustrated in Figure 1. We assume that NT

spatial streams are transmitted and that channel knowledge is
not available at the transmitter. Denote with Nc the number
of used subcarriers, and with L the number of OFDM sym-
bols per frame. OFDM modulation is performed by NDFT-
point (NDFT ≥ Nc) inverse DFT (IDFT), followed by inser-
tion of a cyclic prefix (CP) of NCP samples. Assuming perfect
orthogonality in time and frequency, the received signal of
subcarrier n of the �th OFDM symbol block and νth receive
antenna is given by

Y (ν)
n,� =

NT∑

μ=1

√
Ed

NT
X

(μ)
n,� H

(μ,ν)
n,� + Z(ν)

n,� ,

0 ≤ n < Nc, 0 ≤ � < L, 0 ≤ ν < NR.

(1)

In (1), X
(μ)
n,� , H

(μ,ν)
n,� , and Z(ν)

n,� , denote the normalized transmit-

ted symbol over transmit antenna μ with E{|X (μ)
n,� |2} = 1, the
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channel transfer function (CTF) between transmit antenna μ
and receive antenna ν, and AWGN at the νth receive antenna
with zero mean and variance N0, respectively. An energy per
transmitted data symbol of Ed/NT and a normalized average

channel gain, E{|H(μ,ν)
n,� |2} = σ

2
H = 1 is assumed.

The discrete CTF H
(μ,ν)
n,� , is obtained by sampling H(μ,ν)(f ,

t) at frequency f = n/T and time t = �Tsym, where Tsym

= (Nc + NCP)Tspl and T = NcTspl represent the OFDM
symbol duration with and without the cyclic prefix, and
Tspl is the sample duration. Considering a frequency selec-
tive time-variant channel, modeled by a tapped delay line
with Q0 nonzero taps with channel impulse response (CIR),

h(μ,ν)(τ, t)=∑ Q0
q=1h

(μ,ν)
q (t)δ(t−τ(μ,ν)

q ), the CTF is described by

H
(μ,ν)
n,� = H(μ,ν)

(
n

T
, �Tsym

)
=

Q0∑

q=1

h
(μ,ν)
q,� exp

(
− j2πτ

(μ,ν)
q

n

T

)
,

(2)

where h
(μ,ν)
q,� = h

(μ,ν)
q (�Tsym) denotes the complex valued

channel tap q, assumed to be constant over one OFDM sym-

bol block, with associated tap delay τ
(μ,ν)
q . Intersymbol inter-

ference is avoided by ensuring that NCPTspl ≥ τmax, where
τmax denotes the maximum delay of the CIR. Then an arbi-

trary CIR is supported for which all channel taps h
(μ,ν)
q,� are

contained within the range 0≤τ
(μ,ν)
q ≤τmax, and the received

signal is given by (1).
The 2nd-order statistics are determined by the two-

dimensional (2D) correlation function R(μ,ν)[Δn,Δ�] =
E{H(μ,ν)

n,� (H
(μ,ν)
n+Δn,�+Δ�

)∗}, composed of two independent cor-
relation functions in frequency and time, R(μ,ν)[Δn,Δ�] =
R

(μ,ν)
f [Δn]R

(μ,ν)
t [Δ�]. Both R

(μ,ν)
f [Δn] = E{H(μ,ν)

n,� (H
(μ,ν)
n+Δn,�)

∗}
and R

(μ,ν)
t [Δ�] = E{H(μ,ν)

n,� (H
(μ,ν)
n,�+Δ�

)∗} are strictly band-limi-

ted [18]. That is, the inverse Fourier transform of R
(μ,ν)
f [Δn]

described by the power delay profile is essentially nonzero
in the range [0, τmax], where τmax is the maximum channel

delay. Likewise, the Fourier transform of R
(μ,ν)
t [Δ�] describ-

ing time variations due to mobile velocities is given by the
Doppler power spectrum, nonzero within [− fD,max, fD,max],
where fD,max is the maximum Doppler frequency. No fur-
ther assumptions regarding the distribution of h(μ,ν)(τ, t) are
imposed. To this end, the CIR may possibly be nonsample

spaced, that is, tap delays τ
(μ,ν)
q in (2) may not be placed at

integer multiples of the sampling duration.
In order to recover the transmitted information, pilot

symbols are commonly used for channel estimation. Chan-
nel estimation schemes for MIMO-OFDM based on the least
squares (LS) and MMSE criterion are studied in [22, 23]
and [6, 24, 25], respectively. We assume that channel state
information about all NT × NR channels is required at the
receiver. To enable this, pilots belonging to different trans-
mit antennas are orthogonally separated in time and/or fre-
quency. Thus, the problem of MIMO-OFDM channel esti-
mation breaks down to estimating the channel of a single
antenna OFDM system. Note, there are other possibilities
to orthogonally separate the pilots, but they lead to higher

complexity and/or at least the same pilot overhead [6]. Fur-
thermore, pilots belonging to the same transmit antenna
are equidistantly spaced in time and frequency within the
OFDM frame [17]. This is motivated by the findings in [8],
where it is shown that equidistant placement of pilots min-
imizes the harmonic mean of the MSE of channel estimates
over all subcarriers and thus maximizes the capacity. Figure 2
illustrates the resulting placement of pilots for four spatial
streams, arranged in a rectangular shaped pattern. Extension
to other regular pilot patters, such as a diamond shaped grid
[26], is straightforward.

Resources are constraint to bandwidth and energy. Un-
like the orthogonally separated pilots, data symbols are spa-

tially multiplexed. One frame is assigned N
(μ)
p pilot and Nd

data symbols per spatial dimension which amounts to (cf.,
Figure 2)

NcL = Nd +
NT∑

μ=1

N
(μ)
p . (3)

The resulting pilot overhead of the μth antenna is defined by

Ω
(μ)
p = N

(μ)
p

NcL
. (4)

With an energy per transmitted data symbol of Ed/NT, the
total transmit energy over all NT antennas equals

Etot = EdNd +
NT∑

μ=1

E
(μ)
p N

(μ)
p , (5)

where E
(μ)
p is the energy per pilot symbol of the μth transmit

antenna.

The accuracy of the channel estimates may be improved

by a pilot boost S
(μ)
p . With an energy per transmitted pilot set

to E
(μ)
p = S

(μ)
p Ed, the signal-to-noise ratio (SNR) at the input

of the channel estimation unit is improved by a factor of S
(μ)
p .

On the other hand, the useful transmit energy of the payload
information is reduced, if the overall transmit energy in (5) is
kept constant. The energy dedicated to pilot symbols is deter-

mined by the pilot overhead per antenna Ω
(μ)
p , and the pilot

boost per antenna S
(μ)
p . Including the pilot overhead, the ra-

tio of the energy per symbol Ed of a system with pilots, to the
energy per symbol E0 of an equivalent system with the same
frame size Nc × L, same transmit energy Etot, but without pi-
lot symbols is

Ed

E0
= 1

1 +
∑ NT

μ=1 Ω
(μ)
p

(
S

(μ)
p − 1

) . (6)

The ratio Ed/E0 is a measure for the pilot insertion loss rela-
tive to a reference system assuming no overhead due to pilots.
Note, (6) is obtained exploiting (4), (5), and the constraint
Etot = NcLE0.

In the following, we assume that for each transmit an-
tenna the same number of pilot symbols and the same boost-

ing level are used, that is, Np = N
(μ)
p , Ωp=Ω

(μ)
p , and Sp=S

(μ)
p ,
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Figure 2: Example for placing orthogonal pilots over antenna-specific OFDM subframes, NT = 4, N (1)
p = N (2)

p = N (3)
p = N (4)

p = 6, and
Nd = 36.

μ={1, . . . ,NT}. Now, the total pilot overhead in (4) amounts
to NTΩp and (6) simplifies to

Ed

E0
= 1

1 + NTΩp
(
Sp − 1

) . (7)

3. ESTIMATION ERRORMODELING

The channel estimation unit outputs an estimate of the CTF,

H
(μ,ν)
n,� , denoted by Ĥ

(μ,ν)
n,� = wH ỹ

(μ,ν). Let Mf and Mt denote
the number of pilot symbols in frequency and time used to

generate Ĥ
(μ,ν)
n,� . The MtMf × 1 column vector ỹ

(μ,ν) contains
the received pilots from transmit antenna μ to receive an-
tenna ν. The MtMf × 1 column vector w represents an ar-
bitrary linear estimator.

3.1. Parametrization of theMSE

Channel estimation impairments are quantified by the MSE

of the estimation error ε
(μ,ν)
n,� = H

(μ,ν)
n,� − Ĥ

(μ,ν)
n,� . With the as-

sumption that all transmit and receive antennas are mutually
uncorrelated, the MSE is independent of μ and ν, denoted

by σ2
ε [n, �] = E[|ε(μ,ν)

n,� |2]. The MSE of an arbitrary 2D pilot-
aided scheme is given by

σ2
ε [n, �] = E

[∣∣ε(μ,ν)
n,�

∣∣2
]
= E

[∣∣H(μ,ν)
n,� − Ĥ

(μ,ν)
n,�

∣∣2
]

= E
[∣∣H(μ,ν)

n,�

∣∣2
]
− 2R

{
wHr

(μ,ν)
ỹH [n, �]

}
+ wHR

(μ,ν)
ỹ ỹ w.

(8)

The 2D correlation functions r
(μ,ν)
ỹH [n, �] = E{ ỹ (μ,ν)(H

(μ,ν)
n,� )∗}

and R
(μ,ν)
ỹ ỹ =E{ỹ (μ,ν)( ỹ (μ,ν))H} represent the cross-correlation

between ỹ
(μ,ν) and the desired response H

(μ,ν)
n,� , and the auto-

correlation matrix of the received pilots, ỹ (μ,ν), respectively,

[16]. The autocorrelation matrix is composed of R
(μ,ν)
ỹ ỹ =

R
(μ,ν)

h̃h̃
+ I/γp, where Rh̃h̃ = E{h̃(μ,ν)

(h̃
(μ,ν)

)H} is the autocor-
relation matrix of the CTF at pilot positions excluding the
AWGN term, and I denotes the identity matrix, all of di-
mension MfMt ×MfMt. With the pilot insertion loss of (7),
the SNR at pilot positions amounts to γp = SpEd/N0 =
γ0Sp/(1 +NTΩp(Sp− 1)), where γ0 = E0/N0 denotes the SNR
of a reference system assuming perfect channel knowledge
and no overhead due to pilots.

The MSE in (8) is dependent on n and �. In order to allow
for a tractable model, we choose to average the MSE over the
entire sequence, so σ2

ε[n, �]→σ
2
ε.

The channel estimates generated by a linear estimator w
can be decomposed into a signal and noise part, denoted by

Ĥ
(μ,ν)
n,� = wH h̃

(μ,ν)
+ wH z̃

(ν), where h̃
(μ,ν)

and z̃
(ν) account for

CTF and AWGN vectors at pilot positions. Likewise, the es-

timation error ε
(μ,ν)
n,� can be separated into an interpolation

error H
(μ,ν)
n,� − wH h̃

(μ,ν)
and a noise error wH z̃

(ν). Assuming

that CTF H
(μ,ν)
n,� and AWGN Z(ν)

n,� are uncorrelated, the MSE
also separates into a noise and interpolation error:

σ
2
ε = E

[∣∣H(μ,ν)
n,� −wH h̃

(μ,ν) −wH z̃
(ν)∣∣2

]

= E
[
|H(μ,ν)

n,� −wH h̃
(μ,ν)∣∣2

]
+ E
[∣∣wH z̃

(ν)∣∣2
]
.

(9)
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We note that this separation of the MSE is possible for any

linear estimator. The noise part σ
2
n = E[|wH z̃

(ν)|2] is in-
versely proportional to the SNR and is given by

σ
2
n =

wHw
γp

= 1
Gnγ0

·1 + NTΩp
(
Sp − 1

)

Sp
, (10)

where Gn = 1/(wHw) defines the estimator gain. According
to (8) the variance of the interpolation error is determined
by

σ
2
i = E

[∣∣H(μ,ν)
n,� −wH h̃

(μ,ν)∣∣2
]

= E
[∣∣H(μ,ν)

n,�

∣∣2
]
− 2R

{
wHr

(μ,ν)

h̃H

}
+ wHR

(μ,ν)

h̃h̃
w.

(11)

3.2. Equivalent systemmodel and effective SNR

In order to derive a model taking into account channel esti-
mation errors, we assume a receiver that processes the chan-

nel estimates Ĥ
(μ,ν)
n,� as if these were the true CTF. The effect

of channel estimation errors on the received signal in (1) is
described by the equivalent system model:

Υ
(μ,ν)
n,� =

NT∑
μ=1

√
Ed

NT
X

(μ)
n,�

�
H

(μ,ν)
n,� +

NT∑

μ=1

√
Ed

NT
X

(μ)
n,� ε

(μ,ν)
n,� + Z(ν)

n,�

︸ ︷︷ ︸
η

(μ,ν)
n,�

,

(12)

where η
(μ,ν)
n,� denotes the effective noise term with zero mean

and variance σ
2
η = N0 +Edσ

2
ε . Apart from the increased noise

term η
(μ,ν)
n,� , channel estimation impairments affect the equiv-

alent system model (12) by distortions in the signal part of
�
H

(μ,ν)
n,� = wH h̃

(μ,ν)
. The useful signal energy observed at the

receiver is given by

σ
2
�
H
= E

[∣∣wH h̃
(μ,ν)∣∣2

]
= wHRh̃h̃w. (13)

Now the effective SNR including channel estimation of the
equivalent system model (12) yields

γ = Ed

σ
2
�
H

σ
2
η

=
Edσ

2
�
H

N0 + Edσ
2
ε

. (14)

An important difference to the equivalent system model
devised by [7] is the definition of σ

2
�
H

in (13). In [7] the es-

timate Ĥ
(μ,ν)
n,� = wH ỹ

(μ,ν) replaces
�
H

(μ,ν)
n,� = wH h̃

(μ,ν)
in (12),

thus containing contributions from the CTF and noise, so
that σ2

Ĥ
= σ2

�
H

+ N0/Ed. Instead, our model with σ
2
�
H

in (13)

exclusively captures the signal part of the channel estimate.
As the model of [7] was tailored for an MMSE estimator with
σ2
Ĥ
= 1− σ

2
ε , meaningful results are produced. However, the

model of [7] implies that the noise term contained in σ2
Ĥ

con-
tributes to the useful signal energy of the effective SNR γ in
(14). This becomes problematic at low SNR, when the equiv-
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Figure 3: Parametrization of an MSE estimation curve.

alent system model is to be applied to other than MMSE es-
timators. For instance, consider an unbiased estimator with
wHRh̃h̃w = 1 and unitary estimator gain wHw = 1. Then
with the model of [7]: σ2

Ĥ
= 1 + N0/Ed, so for low SNR,

N0→∞, the effective SNR in (14) approaches γ = 1/2, which
is clearly a contradiction. On the other hand, by using (13)
we get σ

2
�
H
= 1 and γ→0 as N0→∞, so our model in (12)

produces meaningful results for low SNR. In any case, in the
high SNR regime with N0 � Ed both models converge and
we get σ

2
�
H
≈ σ

2
Ĥ .

Inserting (7) into the effective SNR γ in (14) and com-
puting the ratio γ0/γ quantifies the SNR degradation due to
channel estimation errors, given by

Δγ = γ0

γ
= 1

σ
2
�
H

(
1 + NTΩp

(
Sp − 1

)
+ σ

2
ε γ0

)
. (15)

Substituting the MSE σ
2
ε = σ

2
n + σ

2
i into (15), with σ

2
n being

expressed in the parametrized form of (10), the loss in SNR
due to channel estimation can be transformed to

Δγ = 1

σ
2
�
H

(
1 + NTΩp

(
Sp − 1

))·
(

1 +
1

GnSp

)
+

σ
2
i

σ
2
�
H

γ0.

(16)

In the following, a fixed estimator w is considered where
the estimator coefficients are computed once and are not
adapted for changing channel conditions. Then, according
to (16) the performance penalty due to channel estimation
is fully determined by two SNR independent parameters,
the estimator gain Gn and the interpolation error σ

2
i . On

the other hand, allowing for an SNR dependent estimator,
w = w(γ), the parameters Gn and σ

2
i would be strictly speak-

ing only valid for one particular SNR value γ. A prominent
example for an SNR dependent estimator is the MMSE esti-
mator, known as Wiener filter [27]. In this case, the SNR for
which Gn and σ

2
i lead to a maximum Δγ in (16) should be

used, so to maintain a certain performance under worst case
conditions.

The MSE of a fixed estimator w is plotted in Figure 3.
At low SNR, the MSE is dominated by the noise error σ

2
n.
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Hence, the MSE linearly decreases with the SNR. At high
SNR the MSE experiences an error floor caused by the SNR
independent interpolation error. A pilot boost is only effec-
tive to reduce the noise part of the MSE in (10), while the
interpolation error, σ

2
i in (11), remains unaffected. This is

shown in Figure 3, where a pilot boost shifts the MSE Sp dB
to the left.

4. CAPACITY ANALYSIS

The ergodic channel capacity that includes channel estima-
tion and pilot insertion losses when the channel is not known
at transmitter can be lower bounded by [7]

C ≥ (1−NTΩp
)
E
[

log 2 det
(
INR +

Hn,�HH
n,�

NT

γ0

Δγ

)]
, (17)

where INR is the NR × NR identity matrix and the CTF is de-
fined by

Hn,� =

⎛
⎜⎜⎜⎝

H(1,1)
n,� . . . H(NT,1)

n,�
...

. . .
...

H(1,NR)
n,� . . . H(NT,NR)

n,�

⎞
⎟⎟⎟⎠ . (18)

In (17), the expectation is taken over the frequency and time
dimension of Hn,� , that is, over indices n and �. The capacity
penalty due to the pilot-aided channel estimation is charac-
terized by two factors: the SNR loss due to estimation errors,
Δγ from (15) or (16), and the loss in spectral efficiency due to
resources consumed by pilot symbols, NTΩp. Inserting (16)
into (17) we obtain

C≥(1−NTΩp
)
E
[
log 2 det

(
INR+

Hn,�HH
n,�

NT

·
γ0σ

2
�
H(

1+NTΩp
(
Sp−1

))·(1+1/
(
GnSp

))
+σ

2
i γ0

)]
.

(19)

An important requirement for the capacity lower bound
to become tight is that the signal and noise terms in the
equivalent system model of (12) are uncorrelated [7]. Un-
fortunately, for arbitrary linear estimators w this may not

be the case, as the interpolation error H
(μ,ν)
n,� −

�
H

(μ,ν)
n,� , with

�
H

(μ,ν)
n,� = wH h̃

(μ,ν)
, introduces correlations between the effec-

tive noise term η
(μ,ν)
n,� and the CTF H

(μ,ν)
n,� . On the other hand,

the noise part of the estimation error wH z̃
(ν) is statistically

independent of both H
(μ,ν)
n,� and

�
H

(μ,ν)
n,� . Therefore, for perfect

interpolation (
�
H

(μ,ν)
n,� = H

(μ,ν)
n,� and σ

2
i = 0), the signal part

�
H

(μ,ν)
n,� and the effective noise term η

(μ,ν)
n,� in (12) become sta-

tistically independent. To this end, one condition for a tight

capacity bound is σ
2
n 	 σ

2
i , so to ensure that

�
H

(μ,ν)
n,� and η

(μ,ν)
n,�

are sufficiently decorrelated.
In the following, we focus on the problem of capacity

maximization. By doing so, we consider

(i) pilot boost Sp,

(ii) pilot overhead Ωp,
(iii) number of transmit antennas NT

as optimization parameters such that the capacity is maxi-
mized.

4.1. Optimumpilot boost

The effect of a pilot boost is twofold: first, the estimation er-
ror decreases; second, the energy dedicated to pilot symbols
increases. So, there clearly exists an optimum pilot boost Sp

which minimizes the loss in SNR due to channel estimation,
Δγ in (16), and thus maximizes the system capacity in (19).

The optimum pilot boost for the parametrized estima-
tion error model is obtained by differentiating Δγ from (16)
or C from (19) with respect to Sp and setting the result to
zero. This results in

Sp,opt =
√√√1−NTΩp

NTΩpGn
. (20)

The optimum pilot boost Sp,opt is seen to increase if less pi-
lots are used and/or less transmit antennas are used, but de-
creases with growing estimator gain, Gn. In any case, a pilot
boost is only effective to reduce the noise part of the MSE σ

2
n

in (10), while the interpolation error σ
2
i in (11) remains un-

affected. Hence, the attainable gains of a pilot boost diminish
with growing σ

2
i and SNR γ0, as deduced from Δγ in (16) or

C in (19), although the optimum pilot boost Sp,opt in (20) is

independent of both SNR and σ
2
i .

The loss in SNR for the optimally chosen pilot boost (20)
yields

Δγ
∣∣
Sp=Sp, opt

= 1

σ
2
�
H

(√
1−NTΩp +

√
NTΩp

Gn

)2

+
σ

2
i

σ
2
�
H

γ0,

(21)

whereas the capacity becomes

C
∣∣
Sp=Sp, opt

=(1−NTΩp
)
E

[
log 2 det

(
INR+

Hn,�HH
n,�

NT

·
γ0σ

2
�
H(√

1−NTΩp+
√
NTΩp/Gn

)2

+σ
2
i γ0

)]
.

(22)

As both Gn and σ
2
i depend on Ωp, an analytical solution for

Ωp that maximizes (22) is a task of formidable complexity
which is not pursued here. Instead, for the special case of
perfect interpolation (σ

2
i = 0), we derive the optimum pilot

overhead Ωp in closed form, whereas we propose a semiana-
lytical procedure for the general case.

4.2. Ideal lowpass interpolation filter (LPIF)

Motivated by previous work where it was shown that equidis-
tant placement of pilot symbols minimizes the MSE [13],
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−T/Df
0 T/Df

τ

1/(2TsymDt)

0
τ

−1/(2TsymDt)

fD

2 fD,w
τw

Figure 4: Filter transfer function of an ideal 2D low-pass interpolation filter.

as well as maximizes the capacity [8], we focus on channel
estimation by interpolation with equispaced pilots in time
and frequency. By using a scattered pilot grid the received
OFDM frame is sampled in two dimensions, with rate Df/T
and DtTsym in frequency and time, respectively.

An ideal lowpass interpolation filter (LPIF) is character-
ized by the 2D rectangular shaped filter transfer function

W
(
τ, fD

) =
∞∑

n=−∞

∞∑

�=−∞
wn,� e

− j2π(nτ/T+� fDTsym)

=

⎧
⎪⎨
⎪⎩

1 , 0 ≤ τ ≤ τw,
∣∣ fD

∣∣ ≤ fD,w,

0 , τw < τ ≤ T

Df
, fD,w <

∣∣ fD
∣∣ ≤ 1

2TsymDt
,

(23)

where wn,� denotes the filter coefficient of pilot subcar-
rier n and OFDM symbol �. The filter parameters τw and
fD,w specify the cut-off region of the filter. The transfor-
mation to the time (delay) and Doppler domains is de-
scribed by a discrete time Fourier transform (DTFT) [14],
between the variable pairs n→τ and �→ fD. Due to sampling,
W(τ, fD) is periodically repeated at intervals [0,T/Df] and
[−1/(2TsymDt), 1/(2TsymDt)]. This is illustrated in Figure 4
where the filter transfer function of an ideal LPIF is drawn
in the 2D plane.

Applied to PACE the LPIF is to be designed so that the

spectral components of the CTF H
(μ,ν)
n,� which are nonzero

within the range [0, τmax] and [− fD,max, fD,max] pass the fil-
ter undistorted, while spectral components outside this range
are blocked. Furthermore, the pilot spacings Df and Dt must
be sufficiently small to prevent spectral overlap between the
filter passband and its aliases. Hence, in order to reconstruct
the signal the sampling theorem requires that [18]

τmax ≤ τw <
T

Df
, fD,max ≤ fD,w <

1
2DtTsym

. (24)

The filter parameters τw and fD,w represent the maximum
assumed delay of the channel and the maximum assumed
Doppler frequency, according to worst case channel condi-
tions, as indicated in Figure 4.

Applied to the MSE analysis in Section 3.1, an ideal LPIF
has some appealing properties as follows.

(i) Provided that (24) is satisfied, the interpolation error
diminishes, σ2

i = 0; that is, the LPIF resembles perfect
interpolation. Consequently, the MSE is equivalent to

σ2
ε = σ2

n = wHw/γp in (10). Furthermore, the MSE be-
comes independent of the subcarrier and OFDM sym-
bol indices n and �. Hence, no deviation over n and �
is observed, σ2

ε [n, �] = σ2
ε . As opposed to the general

case of linear estimators in Section 3.1, averaging over
n and � is not required.

(ii) Due to perfect interpolation, the useful signal power in
(13) becomes σ2

�
H
= σ2

H = 1, that is, the LPIF produces

unbiased estimates.
(iii) As the number of filter coefficients in frequency and

time approach infinity, {Mf,Mt}→∞, the pilot over-
head becomes Ωp = 1/(DfDt).

(iv) In the high SNR regime, the performance of an ideal
LPIF asymptotically approaches the MMSE [28]. In
general, however, the MSE of the ideal LPIF is strictly
larger than the MMSE.

By invoking Parseval’s theorem [14], the MSE can be trans-
formed to

σ2
ε =

wHw
γp

= DfDtTsym

γpT

∫ T/Df

0

∫ 1/(2DtTsym)

−1/(2DtTsym)

∣∣W
(
τ, fD

)∣∣2
dτdfD.

(25)

The MSE, σ2
ε , is determined by the fraction of the AWGN

suppressed by the filter. Inserting (23) and solving (25) yields

σ2
ε =

1
γpGn

= 1
γpβfβt

= c2
w

γpΩp
(26)

with cw =
√

2τw fD,wTsym/T . The factors βf = T/(Dfτw) and
βt = 1/(2Dt fD,wTsym) are a measure for the amount of over-
sampling in frequency and time, with respect to minimum
sampling rates T/Df and 1/(2DtTsym), required by the sam-
pling theorem in (24). The MSE is inversely proportional to
the oversampling factors βf and βt, as well as the pilot over-
head Ωp = 1/(DfDt). Hence, increasing the pilot overhead
directly improves the MSE.

4.2.1. Capacity of PACE with perfect 2D interpolation

The expression for the MSE in (26) establishes a relation
between estimator gain and pilot overhead, Gn = Ωp/c2

w,
that allows to maximize the channel capacity in closed form.
Moreover, the effective signal and noise terms in the equiva-
lent system model (12) become statistically independent, en-
suring a tight capacity bound in (22).
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For an ideal LPIF, the optimum pilot boost (20) can be
conveniently expressed as

Sp,opt = cw

√
1−NTΩp
√
NTΩp

. (27)

Inserting Gn = Ωp/c2
w into (21) and after some algebraic

transformations the SNR loss for Sp = Sp,opt becomes

Δγ|Sp=Sp,opt =
(√

1−NTΩp + cw

√
NT

)2

. (28)

This means that Δγ|Sp=Sp,opt is minimized by the maximum
pilot overhead Ωp, that is, all transmitted symbols are dedi-
cated to pilots Ωp = 1/NT. However, in this case the capacity
becomes zero. In fact, the capacity is maximized by select-
ing the smallest pilot overhead Ωp,min which still satisfies the
sampling theorem

Cmax=(1−NTΩp,min)E

[
log 2 det

(
INR +

Hn,�HH
n,�

NT

· γ0(√
1−NTΩp,min + cw

√
NT

)2

)]
,

(29)

where Ωp,min = 1/(Df,maxDt,max) is attained by the maxi-
mum pilot spacings which satisfy (24), Df,max = 
T/τw� and
Dt,max = 
1/(2 fD,wTsym)�, where 
x� is the largest integer
equal or smaller than x. To prove (29) it can be easily checked
that Cmax is a monotonically decreasing function with respect
to Ωp, with the global maximum at Ωp = 0. Hence, (29) is
maximized by Ωp,min, since Δγ|Sp=Sp,opt is only valid for pilot
grids which satisfy the sampling theorem in (24).

By ignoring the rounding effects and thus approximating
Df,maxDt,max ≈ c2

w, we obtain Ωp,min ≈ c2
w, that is, the effects of

channel estimation errors for PACE are completely described
by Ωp,min. Interestingly, the estimator gain now approaches
unity, Gn = 1 and the SNR loss becomes

Δγmin =
(√

1−NTΩp,min +
√
NTΩp,min

)2

. (30)

Furthermore, (27) and (29) can be approximated by

Sp,opt =
√

1−NTΩp
√
NTΩp

, (31)

Cmax≈(1−NTΩp,min)E

[
log 2 det

(
INR +

Hn,�HH
n,�

NT

· γ0(√
1−NTΩp,min +

√
NTΩp,min

)2

)]
.

(32)

Finally, it turns out that the fraction of energy dedicated to
data relative to the overall transmit energy becomes

EdNd

E0NcL
= Ed

E0

(
1−NTΩp,min

)

≈
√

1−NTΩp,min
√

1−NTΩp,min +
√
NTΩp,min

,

(33)

where the ratio Ed/E0 is defined in (6). Interestingly, (30)
and (33) are equivalent to the results obtained for the
block fading channel (see [7, equation (34)]). Applied to
MIMO-OFDM, the block fading assumption translates to a
time/frequency area the channel is assumed constant. Then,
the same results apply given that the interval, the channel is
constant for the block fading assumption in [7], is replaced
by the maximum pilot spacing that satisfies the sampling the-
orem, Df,maxDt,max = 1/Ωp,min. This means that the capacity
lower bound of [7] is extended to the more general case of
time-variant frequency selective channels.

An interesting observation can be made by setting

NTΩp,min = 1
2
. (34)

By devoting half of the resources to pilot symbols we obtain
from (31) and (33), respectively,

Sp,opt = 1,
EdNd

E0NcL
= 1

2
. (35)

In case half of the frame is devoted to training purposes, in
order to maximize capacity, pilots should not be boosted, and
consequently half of the transmit energy is invested on pilots.
A similar conclusion is also provided in [7] assuming a block
fading channel.

4.2.2. Number of transmit antennas

Suppose that N ′
T out of the NT transmit antennas are used

for communication. Inserting N ′
T for NT in the capacity ex-

pression for MIMO-OFDM with optimum pilot grid,Cmax in
(32), the number of transmit antennas that maximizes chan-
nel capacity Cmax is given by [7, 29]

N ′
T = min

{
NT, NR,

1
2Ωp,min

}
. (36)

Several important conclusions with respect to the capacity
maximization in MIMO-OFDM can be drawn from (36).

(i) If NT = NR = 1/(2Ωp,min), from (34) and (35) it fol-
lows that pilots should not be boosted, that is, they
should be of equal energy as the data symbols..

(ii) The amount of training should not exceed half of the
OFDM frame.

(iii) The number of transmit and receive antennas should
be equal.

4.3. Semianalytical approach for pilot grid design

The optimal pilot grid that maximizes the channel capac-
ity is derived for an ideal LPIF in Section 4.2. For realizable
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estimators, we propose the following procedure to obtain the
optimum pilot grid.

(i) Specify the filter parameters τw and fD,w so that the
relation in (24) is satisfied.

(ii) Choose maximum possible pilot spacings and estima-
tor dimensions Mf and Mt, that maintain a certain in-
terpolation error σ

2
i . This determines the minimum

pilot overhead Ωp,min, and the estimator gain Gn = 1/
(wHw).

(iii) Determine the optimum pilot boost Sp,opt using (20).
(iv) Calculate the optimum number of transmit antennas

using (36).

Considering (i), in a well-designed OFDM system the maxi-
mum channel delay τmax should not exceed the cyclic prefix.
Therefore, it is reasonable to assume τw = TCP. In addition,
fD,w is set according to the maximum Doppler frequency ex-
pected in a certain propagation scenario.

Considering (ii), this condition is imposed to keep σ
2
i suf-

ficiently low. The impact of σ
2
i on the SNR penalty in (21)

becomes negligible if σ
2
i < εth/γw, where εth is a small posi-

tive constant and γw denotes the largest expected SNR. This
condition effectively enforces a sufficient degree of oversam-
pling. That is, Ωp,min is required to be larger than the theo-
retical minimum.

The condition on the interpolation error σ
2
i in step (ii)

serves another important requirement. The fact that σ
2
i is

negligible in the SNR region of interest ensures that the use-
ful signal part and the estimation error in the equivalent sig-
nal model in (12) become uncorrelated, so that the capacity
bound in (22) becomes tight.

Considering (iii), this step ensures that the capacity in
(22) is maximized, given that in step (ii) Ωp,min is appropri-

ately chosen, so that the interpolation error σ
2
i is sufficiently

small. As a formal proof appears difficult, we verify through
a numerical example in Section 5 that the proposed semian-
alytical procedure indeed maximizes capacity.

5. NUMERICAL RESULTS

An OFDM system with Nc = 512 subcarriers, and a cyclic
prefix of duration TCP = 64·Tspl, is employed. One frame
consists of L = 65 OFDM symbols, and it is assumed that
channel estimation is carried out, after all pilots of one frame
have been received. The signal bandwidth is 20 MHz, which
translates to a sampling duration of Tspl = 50 ns. This results
in an OFDM symbol duration of Tsym = 35.97 μs of which
the cyclic prefix is TCP = 3.2 μs. A high mobility scenario is
considered with velocities up to 300 km/h. At 5 GHz carrier
frequency this translates to a normalized maximum Doppler
frequency of fD,maxTsym ≤ 0.04.

Channel estimation unit

Since pilots belonging to different transmit antennas are or-
thogonally separated in time and/or frequency, the problem
of MIMO-OFDM channel estimation breaks down to esti-
mating the channel of a single antenna OFDM system. A cas-

Table 1: Power delay profile of WINNER channel model C2 [31].

Delay (ns) 0 5 135 160 215 260 385

Power (dB) −0.5 0 −3.4 −2.8 −4.6 −0.9 −6.7

Delay (ns) 400 530 540 650 670 720 750

Power (dB) −4.5 −9.0 −7.8 −7.4 −8.4 −11 −9.0

Delay (ns) 800 945 1035 1185 1390 1470

Power (dB) −5.1 −6.7 −12.1 −13.2 −13.7 −19.8

caded channel estimator consisting of two one-dimensional
(1D) estimators termed 2×1D PACE is implemented. 2×1D
PACE performs only slightly worse than optimal 2D PACE,
while being significantly less complex [16].

The estimator was implemented by a Wiener interpo-
lation filter (WIF) with model mismatch [16]. The filter
coefficients in frequency and time are generated assuming
a uniformly distributed power delay profile and Doppler
power spectrum, nonzero within the range [0, τw] and
[− fD,w, fD,w]. Furthermore, the average SNR at the filter in-
put, γw, is required, which should be equal or larger than ac-
tual average SNR, so γw ≥ γ0. To generate the filter coeffi-
cients, we set τw = TCP, fD,w = 0.04Tspl and γw = 30 dB.
With these parameters, the sampling theorem in (24) re-
quires for the pilot spacings in frequency and time Df < 8
and Dt ≤ 12.

The WIF with model mismatch is closely related to an
LPIF, and therefore inherits many of its properties—signals
with spectral components within the range [0, τw] and
[0, fD,max ] pass the filter undistorted, while spectral compo-
nents outside this range are blocked. In fact, it was shown in
[30] that for an infinite number of coefficients, {Mf,Mt}→∞,
the mismatched WIF approaches an ideal LPIF.

Results

The performance of a channel estimation unit generally de-
pends on the chosen channel model. On the other hand,
the optimum pilot grid and the associated channel estima-
tion unit is expected to operated in a wide variety of channel
conditions. Hence, it is important to test the performance
of the considered estimators for various channel models. In
Figure 5 the channel estimation MSE determined by (8) is
plotted for the pilot grid Df = 6, Dt = 8, and filter orders
Mf = 16, Mt = 9. The following channel models are consid-
ered:

Chn A: IST-WINNER channel model C2 for typical urban
propagation environments [31]; the power delay pro-
file (PDP) is shown in Table 1;

Chn B: flat fading channel with PDP ρ(τ) = δ(τ − TCP/2);
Chn C: 2-tap channel with PDP ρ(τ) = (δ(τ)+δ(τ−TCP))/2;
Chn D: uniformly distributed PDP nonzero within the range

[0,TCP]. This is the channel used to generate the WIF
coefficients, that is, the WIF is matched to Chn D.

For all models, the independent fading taps are generated us-
ing Jakes’ model [32] with fD,maxTsym = 0.033, correspond-
ing to a velocity of 250 km/h at 5 GHz carrier frequency. It
is seen in Figure 5 that the MSE is virtually independent
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Figure 5: MSE versus SNR of 2 × 1D-PACE for various channel
models, Df = 6, Dt = 8, Mf = 16, Mt = 9.

of the particular channel model, although the PDPs of the
considered channels cover an extensive range of possible
propagation scenarios. Note that Chn C is the worst-case
channel, since its two taps are placed at the closest position
with respect to the cutoff regions of the WIF (compare with
Figure 4). Likewise, Chn B is the best-case channel, as its sin-
gle tap is located right in the center of the filter passband.

The optimum pilot grid for the considered MIMO-
OFDM system is assembled in the following as discussed in
Section 4.3. All results are plotted for Chn A with normalized
maximum Doppler fD,maxTsym = 0.033. We note that results
in Figure 5 suggest that the identified optimum pilot grid is
valid for any channel model with τmax ≤ τw, fD,max ≤ fD,w

and γ0 ≤ γw.
From the set of allowable Df and Dt, the following candi-

date grids are selected: Df = {4, 6} and Dt = {4, 8}, which
translates to the oversampling factors βf = {2, 1.25} and
βt = {3, 1.5}. The filter order in time direction was set equal
to the number of pilots per frame, so Mt = {17, 9}. In fre-
quency direction, on the other hand, the number of pilots is
Nc/Df = 85 and 128, respectively, allowing for much higher
filter orders Mf.

Figure 6 shows the interpolation error σ
2
i (in Figure 6(a))

by computing (11) and the estimator gain Gn = 1/(wHw)
(in Figure 6(b)) against the filter order in frequency Mf for
Mt = {9, 17} and various pilot grids (parameters Df and Dt).
Provided that Mf ≥ 12 we observe that for all pilot grids,
γwσ

2
i < 0.1 with γ0 ≤ γw = 30 dB. Therefore, the impact of

σ
2
i on Δγ is negligible (less than 0.5 dB). By setting Mf = 16

in the following, none of the considered grids can be ruled
out at this point.

In Figure 7, the channel capacity versus pilot boost Sp of
an 8 × 8 MIMO-OFDM system with different pilot grids is
depicted at SNR γ0 = 10 dB. The plots are obtained by in-

serting σ
2
i and Gn = 1/(wHw) obtained in Figure 6 into the

capacity expression (19) assuming different pilot grids. It is
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Figure 6: Interpolation error σ
2
i and estimator gain Gn at an SNR

of γ0 = 30 dB against the filter order in frequency Mf.

4

6

8

10

12

14

16

18

20

22

24

C
h

an
n

el
ca

pa
ci

ty
(b

it
/s

/H
z)

−10 −5 0 5 10

Sp (dB)

Df = 6,Dt = 8,Mf = 16,Mt = 9
Df = 4,Dt = 8,Mf = 16,Mt = 9
Df = 6,Dt = 4,Mf = 16,Mt = 17
Df = 4,Dt = 4,Mf = 16,Mt = 17
Ideal LPIF, Ωp = c2

w

Figure 7: Capacity versus pilot boost for 8× 8 MIMO-OFDM sys-
tem with different pilot grids at an SNR of γ0 = 10 dB.
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Figure 8: Capacity versus pilot boost for N × N MIMO-OFDM
system for different number of antennas N , SNR γ0 = 10 dB, Df =
6, Dt = 8, Mf = 16, Mt = 9.
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Figure 9: Capacity versus number of transmit antennas NT for
MIMO-OFDM system with NR = 8 receive antennas, SNR γ0 =
10 dB, Df = 6, Dt = 8, Mf = 16, Mt = 9.

seen that the most bandwidth efficient grid (Df = 6,Dt = 8)
maximizes capacity. Furthermore, maximum capacity Cmax

for all grids is achieved for those Sp that satisfy (20). This plot
confirms the proposed semianalytical procedure described in
Section 4.3. As reference, the capacity assuming an ideal LPIF
is also plotted in Figure 7. A significant gap in capacity be-
tween the ideal LPIF relative to the realizable estimators is
visible. This is mainly due to the fact that a realizable filter
does not exhibit a rectangular filter transfer function. This
inevitably requires a higher pilot overhead and also reduces
the attainable estimator gain.

The channel capacity versus pilot boost, Sp, of an N ×N
MIMO-OFDM system with pilot grid Df = 6, Dt = 8, filter
orders Mf = 16, Mt = 9 and for different number of trans-

mit/receive antennas, N = NT = NR, is depicted in Figure 8.
Again, the SNR is set to γ0 = 10 dB. Maximum capacity is
achieved for NT = 21 yielding NTΩp ≈ 1/2 and Sp = 0 dB.
This confirms the analytical results from Section 4.2.2 as well
as the proposed semianalytical procedure from Section 4.3.
The significance of these results lie in the fact that results of
[7] are generalized to MIMO-OFDM operating in dynamic
channels and to arbitrary linear estimators.

The channel capacity versus the number of transmit an-
tennas NT of an NT × 8 MIMO-OFDM system for grid
Df = 6, Dt = 8, filter orders Mf = 16, Mt = 9, at SNR
γ0 = 10 dB is shown in Figure 9. The plots were generated
using the capacity expression in (22) including the optimum
pilot boost Sp,opt according to (20). As a reference, capacity
of the corresponding system assuming perfect channel esti-
mation and no loss due to pilots is shown. It can be observed
that for NT ≈ 8 maximum capacity is achieved, correspond-
ing to the conclusion from Section 4.2.2. For higher values
the reduction in available bandwidth due to the pilot inser-
tion dominates, lowering the achievable capacity.

6. CONCLUSIONS

In this paper, a framework for pilot grid design in MIMO-
OFDM was developed and used to determine the pilot spac-
ing and boost, so to maximize the capacity of the target
MIMO-OFDM system, including channel estimation errors
and pilot overhead. The analysis show that the previously
derived capacity lower bound for a block fading channel is
also valid for MIMO-OFDM over time-varying frequency-
selective channels. The derived bound applies to perfect in-
terpolation, which essentially requires infinitely long pilot se-
quences and filter coefficients. Furthermore, a semianalytical
procedure was proposed to maximize the capacity for realiz-
able and possibly suboptimum channel estimation schemes.
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