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inary part). A study of stationary points of SCMA reveals the absence of any undesirable local stationary points, which ensures a
perfect recovery of all signals and a global convergence of the algorithm. Taking advantage of the phase ambiguity in the solution
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algorithm presents a lower computational complexity compared to the constant modulus algorithm (CMA) without loss in per-
formances. Some numerical simulations are provided to illustrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

In the last decade, the interest in blind source separa-
tion (BSS) techniques has been important. The problem
of blind recovery of multiple independent and identically
distributed (i.i.d.) signals from their linear mixture in a
multiple-input multiple-output (MIMO) system arises in
many applications such as spatial division multiple access
(SDMA), multiuser communications (such as CDMA for
code division multiple access), and more recently Bell Labs
layered space-time (BLAST) [1–3]. The aim of blind sig-
nals separation is to retrieve source signals without the use
of a training sequence, which can be expensive or impos-
sible in some practical situations. Another interesting class
of blind methods is blind identification. Unlike blind source
separation, the aim of blind identification is to find an es-
timate of the MIMO channel matrix [4–6]. Once this es-
timate has been obtained, the source signals can be effi-
ciently recovered using MIMO detection methods, such as
maximum likelihood (ML) [7] and BLAST [8] detection
methods. The main difference between blind source sepa-
ration and blind identification is that in the first case, the
source signals are recovered directly from the observations,
whereas in the second case, a MIMO detection algorithm

is needed, which may increase complexity (complexity de-
pends on used methods). Note that, unlike BSS techniques,
ML detector is nonlinear but optimum and suffers from
high complexity. Sphere decoding [7] allows to reduce con-
siderably ML detector complexity. On the other hand, the
performance of MIMO detection methods depends strongly
on the quality of the channel estimate which results from
blind identification. In this paper, we consider the problem
of blind source separation of MIMO instantaneous chan-
nel.

In literature, the constant modulus of many communi-
cation signals, such as PSK and 4-QAM signals, is a widely
used property in blind source separation and blind equaliza-
tion. The initial idea can be traced back to Sato [9], Godard
[10], and Treichler et al. [11, 12]. The algorithms are known
as CMAs. The first application after blind equalization was
blind beamforming [13, 14] and more recently blind signals
separation [15, 16]. In the case of constant modulus signals,
CMA has proved reasonable performances and desired con-
vergence requirements. On the other hand, the CMA yields
a degraded performance for nonconstant modulus signals
such as the quadrature amplitude modulation (QAM) sig-
nals, because the CMA projects all signal points onto a single
modulus.
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In order to improve the performance of the CMA for
QAM signals, the so-called modified constant modulus algo-
rithm (MCMA) [17], known as MMA for multimodulus al-
gorithm, has been proposed [18–20]. This algorithm, instead
of minimizing the dispersion of the magnitude of the equal-
izer output, minimizes the dispersion of the real and imagi-
nary parts separately; hence the MMA cost function can be
considered as a sum of two one-dimensional cost functions.
The MMA provides much more flexibility than the CMA and
is better suited to take advantage of the symbol statistics re-
lated to certain types of signal constellations, such as non-
square and very dense constellations [18]. Please notice that
both CMA and MMA are two-dimensional (i.e., employ both
real and imaginary part of the equalizer outputs). Another
class of algorithm has been proposed recently and named
constant norm algorithm (CNA), whose CMA represents a
particular case [21, 22].

In this paper, we propose a simplified version of the CMA
cost function named simplified CMA (SCMA) and based
only on one dimension (either real or imaginary part), as
opposed to CMA. The major advantage of SCMA is its low
complexity compared to that of CMA and MMA. Because,
instead of using both real and imaginary parts as in CMA
and MMA, only one dimension, the real or imaginary part,
is considered in SCMA, which makes it very attractive for
practical implementation especially when complexity issue
arises such as in user’s side. We will demonstrate that only the
existing stationary points of the SCMA cost function corre-
spond to a perfect recovery of all source signals except for the
phase and permutation indeterminacy. We will show that the
phase rotation is not the same for QAM, 4-PSK, and P-PSK
(P ≥ 8). Moreover, in order to reduce the complexity further,
we will introduce a modified cross-correlation term by tak-
ing advantage of the phase ambiguity of the SCMA cost func-
tion for QAM constellations. An adaptive implementation by
means of the stochastic gradient algorithm (SGA) will be de-
scribed. A part of the results presented in this paper (QAM
case with its convergence analysis) was previously reported
in [23].

The remainder of the paper is organized as follows. In
Section 2, the problem formulation and assumptions are in-
troduced. In Section 3, we describe the SCMA criterion. The
convergence analysis of the proposed cost function is car-
ried out in Section 4. Section 5 introduces a modified cross-
correlation constraint for QAM constellations. In Section 6,
we present an adaptive implementation of the algorithm. Fi-
nally, Section 7 presents some numerical results.

2. PROBLEM FORMULATION

We consider a linear data model which takes the following
form:

y(n) = Ha(n) + b(n), (1)

where a(n) = [a1(n), . . . , aM(n)]T is the (M × 1) vector of
the source signals, H is the (N ×M) MIMO linear memory-
less channel, y(n) = [y1(n), . . . , yN (n)]T is the (N ×1) vector
of the received signals, and b(n) = [b1(n), . . . , bN (n)]T is the

(N×1) noise vector. M and N represent the number of trans-
mit and receive antennas, respectively.

In the case of the MIMO frequency selective channel
(convolutive model), the system can be reduced to the model
in (1) tanks to the linear prediction method presented in [5].
Afterwards, blind source separation methods can be applied.
The following assumptions are considered:

(1) H has full column rank M,
(2) the noise is additive white Gaussian independent from

the source signals,
(3) the source signals are independent and identically dis-

tributed (i.i.d), mutually independent E[aaH] = σ2
aIM ,

and drawn from QAM or PSK constellations.

Please notice that these assumptions are not very restrictive
and satisfied in BLAST scheme whose corresponding model
is given in (1). Moreover, throughout this paper by QAM
constellation we mean only square QAM constellation. In or-
der to recover the source signals, the received signal y(n) is
processed by an (N ×M) receiver matrix W = [w1, . . . ,wM].
Then, the receiver output can be written as

z(n) =WTy(n) =WTHa(n) + WTb(n)

= GTa(n) + ˜b(n),
(2)

where z(n) = [z1(n), . . . , zM(n)]T is the (M × 1) vector of
the receiver output, G = [g1, . . . , gM] = HTW is the (M ×
M) global system matrix, and ˜b(n) is the filtered noise at the
receiver output.

The purpose of blind source separation is to find the ma-
trix W such that z(n) = â(n) is an estimate of the source
signals.

Please note that in blind signals separation, the best that
can be done is to determineW up to a permutation and scalar
multiple [3]. In other words, W is said to be a separation
matrix if and only if

GT =WTH = PΛ, (3)

where P is a permutation matrix and Λ a nonsingular diago-
nal matrix.

Throughout this paper, we use small and capital boldface
letters to denote vectors and matrices, respectively. The sym-
bols (·)∗ and (·)T denote the complex conjugate and trans-
pose, respectively, (·)H is the Hermitian transpose, and Ip is
the (p × p) identity matrix.

3. THE PROPOSED CRITERION

Unlike the CMA algorithm [10], whose aim consists in con-
straining the modulus of the equalizer outputs to be on a cir-
cle (projection onto a circle), we suggest to project the equal-
izer outputs onto one dimension (either real or imaginary
part). To do so, we suggest to penalize the deviation of the
square of the real (imaginary) part of the equalizer outputs
from a constant.
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Figure 1: 16-QAM constellation. Left column: the constellations of the transmitted signals, middle column: the constellations of the received
signals (mixtures), right column: the constellations of the recovered signals.

For the �th equalizer, we suggest to optimize the follow-
ing criterion:

min
w�

J
(

w�
) = E

[

(

zR,�(n)2 − R
)2
]

, � = 1, . . . ,M, (4)

where zR,�(n) denotes the real part of the �th equalizer out-
put z�(n) = wT

� y(n) and R is the dispersion constant fixed
by assuming a perfect equalization with respect to the zero
forcing (ZF) solution, and is defined as

R = E
[

aR(n)4]

E
[

aR(n)2] , (5)

where aR(n) denotes the real part of the source signal a(n).
The term on the right side of the equality (4) prevents

the deviation of the square of the real part of the equalizer
outputs from a constant. The minimization of (4) allows
the recovery of only one signal at each equalizer output (see
proof in Section 4). But the algorithm minimization (4) does
not ensure the recovery of all source signals because it may
converge in order to recover the same source signal at many
outputs. In order to avoid this problem, we suggest to use
a cross-correlation term due to its computational simplicity.
Then (4) becomes

min
w�

J
(

w�
) = E

[

(

zR,�(n)2 − R
)2
]

+ α
�−1
∑

i=1

∣

∣r�i(n)
∣

∣

2
, � = 1, . . . ,M,

(6)

where α ∈ R+ is the mixing parameter and r�i(n) =
E[z�(n)z∗i (n)] is the cross-correlation between the �th and

the ith equalizer outputs and prevents the extraction of the
same signal at many outputs. Then the first term in (6) en-
sures the recovery of only one signal at each equalizer out-
put and the cross-correlation term ensures that each equal-
izer output is different from the other ones; this results in the
recovery of all source signals (see Section 4). In the following
sections, we name (6) the cross-correlation simplified CMA
(CC-SCMA) criterion. In (6) we could also use the imaginary
part thanks to the symmetry of the QAM and PSK constel-
lations. Since the analysis is the same for the imaginary part,
throughout this paper, we only consider the real part.

4. CONVERGENCE ANALYSIS

Theorem 1. Let M be i.i.d. and mutually independent signals
ai(n), i = 1, . . . ,M, which share the same statistical proper-
ties, are drawn from QAM or PSK constellations and are trans-
mitted via an (M × N) MIMO linear memoryless channel
and without the presence of noise. Provided that the weight-
ing factor α is chosen to satisfy α ≥ 2E[a4

R]/σ4
ad

2 (where
d = 1 for QAM and P-PSK (P ≥ 8) constellations and
d = √

2 for 4-PSK constellation), the algorithm in (6) will
converge to a setting that corresponds, in the absence of any
noise, to a perfect recovery of all transmitted signals, and the
only stable minima are the Dirac-type vector taking the fol-
lowing form: g� = [0, . . . , 0, d�e jφ� , 0, . . . , 0]T , where g� is
the �th column vector of G, d� is the amplitude, and φ� is
the phase rotation of the nonzero element. The pair (d� ,φ�) is
given by {1,modulo (π/2)}, {√2, modulo [(2k + 1)π/4]}, and
{1, arbitrary in [0, 2π]} for QAM, 4-PSK, and P-PSK (P ≥ 8)
constellations, respectively.
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Figure 2: 8-PSK constellation. Left column: the constellations of the transmitted signals, middle column: the constellations of the received
signals (mixtures), right column: the constellations of the recovered signals.

Proof. For simplicity, the analysis is restricted to noise-free
case, that is,

z(n) = GTa(n). (7)

Note that due to the assumed full column rank of H, all re-
sults in the G domain will translate to the W domain as well.
For convenience, the stationary points study will be carried
out in the G domain [24].

Considering (7), the cross-correlation term in (6) can be
simplified as

E
[

z�(n)z∗i (n)
] = E

[

wT
� Ha(n)wH

i H
∗a(n)∗

]

= gT� E
[

a(n)a(n)H
]

g∗i = σ2
ag

T
� g

∗
i = σ2

ag
H
i g� ,

(8)

where we use the fact that wT
i H = gTi .

Using (8) in (6), we get

J(g�) = E
[

(

zR,�(n)2 − R
)2
]

+ ασ4
a

�−1
∑

i=1

|gHi g�|2, � = 1, . . . ,M.
(9)

From (9), we first notice that the adaptation of each g� de-
pends only on g1, . . . , g�−1. Then, we can begin by the first
output, because g1 is optimized independently from all the
other vectors g2, . . . , gM . Hence, for the first equalizer, g1, we
have

min
g1

J(g1) = E
[

(

zR,1(n)2 − R
)2
]

. (10)

By developing (10), we get (for notation convenience, in the
following, we will omit the time index n)

J(g1) = E
[

z4
R,1

]− 2RE
[

z2
R,1

]

+ R2. (11)

Because the development is not the same for QAM, 4-PSK,
and P-PSK (P ≥ 8) constellations, we will enumerate the
proof of each case separately.

4.1. QAM case

After a straightforward development of the terms in (11)
with respect to statistical properties of QAM signals (see
Appendix A), (11) can be written as

J(g1) = E
[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)2

+ β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+ 2β
M
∑

k=1

g2
R,k1g

2
I ,k1 − E

[

a4
R

]

+ R2,

(12)

where

g1 =
[

g11, . . . , gM1
]T

,

gk1 = gR,k1 + jgI ,k1,

β = 3E2[a2
R

]− E
[

a4
R

] = −κaR > 0,

(13)

and κaR = E[a4
R]− 3E2[a2

R] represents the kurtosis of the real
parts of the symbols. It is always negative in the case of PSK
and QAM signals.
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Figure 3: 4-PSK constellation. Left column: the constellations of the transmitted signals, middle column: the constellations of the received
signals (mixtures), right column: the constellations of the recovered signals.
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The minimum of (11) can be found easily by replacing
the equalizer output in (12) by any of the transmitted signals,
it is given by

Jmin = E
[

(

a2
R − R

)2
]

= E
[

a4
R

]− 2RE
[

a2
R

]

+ R2. (14)

From (5), we have

RE
[

a2
R

] = E
[

a4
R

]

. (15)

Then

Jmin = −E
[

a4
R

]

+ R2. (16)

Comparing (12) and (16), we can write

J
(

g1
) = Jmin + β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+ E
[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)2

+ 2β
M
∑

k=1

g2
R,k1g

2
I ,k1.

(17)

Since β > 0 and that

( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

≥
M
∑

k=1

∣

∣gk1
∣

∣

4
, (18)

we have

β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

≥ 0. (19)

According to (19), J(g1) is composed only of positive terms.
Then, minimizing J(g1) is equivalent to finding g1, which
minimizes all terms simultaneously. One way to find the
minimum of (17) is to look for a solution that cancels the
gradients of each term separately. From (16), we know that
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Jmin is a constant (∂Jmin/∂g
∗
�1 = 0), hence we only deal with

the reminder terms. For that purpose, let us have

J
(

g1
) = Jmin + J1

(

g1
)

+ J2
(

g1
)

+ J3
(

g1
)

, (20)

where

J1
(

g1
) = β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

,

J2
(

g1
) = E

[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)2

,

J3
(

g1
) = 2β

M
∑

k=1

g2
R, k1g

2
I ,k1.

(21)

When we compute the derivatives of J1(g1), J2(g1), and J3(g1)
with respect to g∗�1, we find

∂J1
(

g1
)

∂g∗�1
= 2βg�1

( M
∑

k=1

∣

∣gk1
∣

∣

2 − ∣∣g�1
∣

∣

2
)

= 0

=⇒
M
∑

k=1,k �=�

∣

∣gk1
∣

∣

2 = 0,

(22)

∂J2
(

g1
)

∂g∗�1
= 2E

[

a4
R

]

g�1

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)

= 0

=⇒
M
∑

k=1

∣

∣gk1
∣

∣

2 = 1,

(23)

∂J3
(

g1
)

∂g∗�1
= 2β

(

gR,�1g
2
I ,�1 + jg2

R,�1gI ,�1
) = 0

=⇒ gR,�1=0 or gI ,�1=0 or gR,�1=gI ,�1=0.
(24)

Equation (22) implies that only one entry, g�1, of g1 is
nonzero and the others are zeros. Equation (23) indicates
that the modulus of this entry must be equal to one (|g�1|2 =
1). Finally, from (24) either the real part or the imaginary
part must be equal to zero. As a result of (23), the squared
modulus of the nonzero part is equal to one, that is, either
g2
R,�1 = 1 and g2

I ,�1 = 0 or g2
R,�1 = 0 and g2

I ,�1 = 1. Therefore,
the solution g�1 is either a pure real or a pure imaginary with
modulus equal to one, which corresponds to

g�1 = e jm1(π/2), (25)

where m1 is an arbitrary integer.
This solution shows that the minimization of J(g1)

forces the equalizer output to form a constellation that corre-
sponds to the source constellation with a modulo π/2 phase
rotation.

From (22), (23), (24), and (25), we can conclude that
the only stable minima for g1 take the following form:
g1 = [0, . . . , 0, e jm1(π/2), 0, . . . , 0]T , that is, only one entry is
nonzero, pure-real, or pure-imaginary with modulus equal
to one, which can be at any of the M positions and all the
other ones are zeros. This solution corresponds to the recov-

ery of only one source signal and cancels the others. For the
second equalizer g2, from (9), we have

J
(

g2
) = E

[

(

zR,2(n)2 − R
)2
]

+ ασ4
a

∣

∣gH1 g2
∣

∣

2
, (26)

this means that the adaptation of g2 depends on g1.
We examine the convergence of g2 once g1 has converged

to one signal, because the adaptation of g1 is realized inde-
pendently from the other gi. For the sake of simplicity, and
without loss of generality, we consider that g1 has converged
to the first signal, that is,

g1 =
[

de jϕ | 0, . . . , 0
]T

, d = 1, ϕ = m1
π

2
, (27)

then
∣

∣gH1 g2
∣

∣

2 = d2
∣

∣g12
∣

∣

2
. (28)

Using this and the result in Appendix A, J(g2) in (26) can be
expressed as follows:

J
(

g2
) = E

[

a4
R

]

( M
∑

k=1

∣

∣gk2
∣

∣

2 − 1

)2

+ β

[( M
∑

k=1

∣

∣gk2
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk2
∣

∣

4
]

+ 2β
M
∑

k=1

g2
R,k2g

2
I ,k2

− E
[

a4
R

]

+ R2 + ασ4
ad

2
∣

∣g12
∣

∣

2
.

(29)

If we differentiate (29) directly, with respect to g∗12, and then
cancel the operation result, we get

∂J
(

g2
)

∂g∗12
= 2E

[

a4
R

]

g12

( M
∑

k=1

∣

∣gk2
∣

∣

2 − 1

)

+ 2βg12

M
∑

k=2

∣

∣gk2
∣

∣

2

+ 2β
(

gR,12g
2
I ,12 + jg2

R,12gI ,12
)

+ ασ4
ad

2g12 = 0.
(30)

By canceling both real and imaginary parts of (30), we have

gR,12 = 0 or χ + 2βg2
I ,12 = 2E

[

a4
R

]− αd2σ4
a,

gI ,12 = 0 or χ + 2βg2
R,12 = 2E

[

a4
R

]− αd2σ4
a,

(31)

where χ = 2E[a4
R]
∑M

k=1|gk2|2 + 2β
∑M

k=2|gk2|2 ≥ 0.
However, since χ + 2βg2

I ,12 ≥ 0 and χ + 2βg2
I ,12 ≥ 0, the

theorem’s condition 2E[a4
R]−ασ4

ad
2 ≤ 0 requires that gR,12 =

0 and gI ,12 = 0, that is, g12 = 0.
Hence, g2 will take the form

g2 =
[

0 | gT2
]T

, (32)

which results in

gH1 g2 = 0. (33)

Therefore, (26) is reduced to

min
g2

J
(

g2

) = E
[

(

z2
R,2(n)− R

)2
]

, (34)
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where the second equalizer output z2 = gT2 a = gT2 a, with
a = [a2, . . . , aM]T .

Equation (34) has the same form as (10). Hence the
analysis is exactly the same as described previously. Con-
sequently, the stationary points of (34) will take the form
g2 = [0, . . . , 0, e jm2(π/2), 0, . . . , 0]T , which corresponds to g2 =
[0 | 0, . . . , 0, e jm2(π/2), 0, . . . , 0]T . Hence g2 will recover per-
fectly a different signal than the one already recovered by g1.
Without loss of generality, again, we assume that the sin-
gle nonzero element of g2 is in its second position, that is,
g2 = [0, e jm2(π/2), 0, . . . , 0]T .

If we continue in the same manner for each gi, we can see
that each gi converges to a setting, in which zeros have the
positions of the already recovered signals and its remaining
entries contain only one nonzero element; this corresponds
to the recovery of a different signal, and this process contin-
ues until all signals have been recovered.

On the basis of this analysis, we can conclude that the
minimization of the suggested cost function in the case of
QAM signals ensures a perfect recovery of all source signals
and that the recovered signals correspond to the source sig-
nals with a possible permutation and a modulo π/2 phase
rotation.

4.2. P-PSK case (P ≥ 8)

On the basis of the results in Appendix B, we have

J
(

g1
) = E

[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)2

+ β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

− E
[

a4
R

]

+ R2.

(35)

And from (16), Jmin = −E[a4
R] +R2 is a constant. If we cancel

the derivatives of the first and second terms on the right side
of (35), we obtain

M
∑

k=1

∣

∣gk1
∣

∣

2 = 1, (36)

M
∑

k=1,k �=�

∣

∣gk1
∣

∣

2 = 0. (37)

Therefore, (36) and (37) dictate that the solution must take
the form

g1 =
[

0, . . . , 0, e jφ� , 0, . . . , 0
]T

, (38)

where φ� ∈ [0, 2π] is an arbitrary phase in the �th position
of g1 which can be at any of the M possible positions.

The solution g1 has only one nonzero entry with a mod-
ulus equal to one, and all the other ones are zeros. This so-
lution corresponds to the recovery of only one source signal
and cancels the other ones. With regard to the other vectors,
the analysis is exactly the same as the one in the case of QAM
signals.

Then, we can say that the minimization of the SCMA cri-
terion, in the case of P-PSK (P ≥ 8) signals, ensures the re-
covery of all signals except for an arbitrary phase rotation for
each recovered signal.

4.3. 4-PSK case

On the basis of the results found in Appendix C, J(g1) can be
written as

J
(

g1
) = E2[a2

R

]

[

3

( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4

− 4
M
∑

k=1

∣

∣gk1
∣

∣

2 − 4
M
∑

k=1

g2
R,k1g

2
I ,k1

]

+ R2.

(39)

In order to find the stationary points of (39), we cancel its
derivative

∂J
(

g1
)

∂g∗�1
= E2[a2

R

]

[

6g�1

M
∑

k=1

∣

∣gk1
∣

∣

2 − 2g�1
∣

∣g�1
∣

∣

2 − 4g�1

− 4
(

gR,�1g
2
I ,�1 + jg2

R,�1gI ,�1
)

]

= 0.

(40)

By canceling both real and imaginary parts of (40), we have

3gR,�1

M
∑

k=1

∣

∣gk1
∣

∣

2 − gR,�1
∣

∣g�1
∣

∣

2 − 2gR,�1 − 2gR,�1g
2
I ,�1 = 0,

3gI ,�1

M
∑

k=1

∣

∣gk1
∣

∣

2 − gI ,�1
∣

∣g�1
∣

∣

2 − 2gI ,�1 − 2gI ,�1g
2
R,�1 = 0.

(41)

According to (41),

gR,�1 = gI ,�1. (42)

Then (41) can be reduced to

6
M
∑

k=1,k �=�
g2
R,k1 + 2g2

R,�1 − 2 = 0. (43)

Thus

g2
R,�1 = −3

M
∑

k=1,k �=�
g2
R,k1 + 1. (44)

Finally, we find

g2
R,�1 = −3(p − 1)g2

R,�1 + 1, (45)

where 1 ≤ p ≤ M is the number of nonzero elements in g1,
which gives

g2
R,�1 = g2

I ,�1 =

⎧

⎪

⎨

⎪

⎩

1
(3p − 2)

, if � ∈ Fp,

0, otherwise,
∀p = 1, . . . ,M,

(46)

where Fp is any p-element subset of {1, . . . ,M}.
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Now, we study separately the stationary points for each
value of p.

(i) p = 1: in this case, g1 has only one non zero entry,
with

gR,�1 = ±1, gI ,�1 = ±1, (47)

that is,

g�1 = c�e
jφ� , (48)

where c�=
√

2 and φ�=(2q + 1)(π/4), with q is an arbi-
trary integer. Therefore, g1=[0, . . . , 0, c�e jφ� , 0, . . . , 0]T

is the global minimum.

(ii) p ≥ 2: in this case, the solutions have at least two
nonzero elements in some positions of g1. All nonzero
elements have the same squared amplitude of 2/(3p −
2).

Let us consider the following perturbation:

g′1 = g1 + e, (49)

where e = [e1, . . . , eM]T is an (M × 1) vector whose norm
‖e‖2 = eHe can be made arbitrarily small and is chosen so
that its nonzero elements are only in positions where the cor-
responding elements of g1 are nonzero:

e� �=0 ⇐⇒ � ∈ Fp. (50)

Let this perturbation be orthogonal with g1, that is, eHg1 = 0.
Then, we have

∑

�∈Fp

∣

∣g′�1

∣

∣

2 =
∑

�∈Fp

∣

∣g�1
∣

∣

2
+
∑

�∈Fp

∣

∣e�
∣

∣

2
. (51)

We now define, as ε� , the difference between the squared
magnitudes of g′�1 and g�1, that is,

∣

∣g′�1

∣

∣

2 = ∣∣g�1
∣

∣

2
+ ε� , ε� ∈ R, ε� �=0 ⇐⇒ � ∈ Fp, (52)

where

∑

�∈Fp

ε� =
∑

�∈Fp

∣

∣e�
∣

∣

2
. (53)

We assume that

(

g′R,�1

)2 = g2
R,�1 +

ε�
2

,
(

g′I ,�1

)2 = g2
I ,�1 +

ε�
2
. (54)

By evaluating J(g′1), we find

J
(

g′1
) = E2[a2

R

]

[

3

(

∑

�∈Fp

∣

∣g�1
∣

∣

2
+ ε�

)2

−
∑

�∈Fp

(
∣

∣g�1
∣

∣

2
+ ε�

)2

− 4
∑

�∈Fp

(
∣

∣g�1
∣

∣

2
+ ε�

)

− 4
∑

�∈Fp

(

g2
R,�1 +

ε�
2

)

×
(

g2
I ,�1 +

ε�
2

)

]

+ R2,

J
(

g′1
) = E2[a2

R

]

[

3

(

∑

�∈Fp

∣

∣g�1
∣

∣

2
)2

−
∑

�∈Fp

∣

∣g�1
∣

∣

4

− 4
∑

�∈Fp

∣

∣g�1
∣

∣

2 − 4
∑

�∈Fp

g2
R,�1g

2
I ,�1

]

+ R2

+ E2[a2
R

]

[

6
∑

�∈Fp

∣

∣g�1
∣

∣

2 ∑

�∈Fp

ε� − 4
∑

�∈Fp

∣

∣g�1
∣

∣

2
ε�

− 4
∑

�∈Fp

ε� + 3

(

∑

�∈Fp

ε�

)2

− 2
∑

�∈Fp

ε2
�

]

.

(55)

Using (46) in (55), and after some simplifications, we get

J
(

g′1
) = J

(

g1
)

+ E2[a2
R

]

[

3

(

∑

�∈Fp

ε�

)2

− 2
∑

�∈Fp

ε2
�

]

. (56)

It exists ε� ∈ R, (� ∈ Fp) so that

3

(

∑

�∈Fp

ε�

)2

− 2
∑

�∈Fp

ε2
� < 0. (57)

Then, ∃ε� ∈ R, (� ∈ Fp) so that

J
(

g′1
)

< J
(

g1
)

. (58)

Hence, J(g1) cannot be a local minimum.
Now we consider another perturbation which takes the

form

g′�1 =
⎧

⎨

⎩

√

1 + ξg�1 if � ∈ Fp,

0 otherwise,
(59)

where ξ is a small positive constant.
By evaluating J(g′1), we obtain

J
(

g′1
) = E2[a2

R

]

[

3

(

∑

�∈Fp

(1 + ξ)
∣

∣g�1
∣

∣

2
)2

−
∑

�∈Fp

(1 + ξ)2∣
∣g�1

∣

∣

4 − 4
∑

�∈Fp

(1 + ξ)
∣

∣g�1
∣

∣

2

− 4
∑

�∈Fp

(1 + ξ)2g2
R,�1g

2
I ,�1

]

+ R2.

(60)
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Figure 5: MSE versus SNR of CC-SCMA, MCC-SCMA, and super-
vised MMSE.

Using (36) and after some simplifications, we get

J
(

g′1
) = J

(

g1
)

+
4ξ2p

3p − 2
E2[a2

R

]

. (61)

Therefore, we always have

J
(

g′1
)

> J
(

g1
)

, ∀p ∈ N+∗. (62)

Hence, g1 cannot be a local maximum.
Then, on the basis of (58) and (62), g1 is a saddle point

for p ≥ 2.
Therefore, the only stable minima correspond to p = 1.
We conclude that the only stable minima take the form

g1 = [0, . . . , 0, c�e jφ� , 0, . . . , 0]T , which ensure the extraction
of only one source signal and cancel the other ones. For the
remainder of the analysis, we proceed exactly as we did for
QAM signals.

Finally, in order to conclude this section, we can say that
the minimization of the cost function in (6) ensures the re-
covery of all source signals in the case of source signals drawn
from QAM or PSK constellations.

5. MODIFIED CROSS-CORRELATION TERM

In the previous section, we have seen that, in the case of
QAM constellation, the signals are recovered with modulo
π/2 phase rotation. By taking advantage of this result, we
suggest to use, instead of cross-correlation term in (6), the
following term:

�−1
∑

m=1

E2
[

zR,�(n)zR,m(n)
]

+ E2
[

zR,�(n)zI ,m(n)
]

, � = 1, . . . ,M.

(63)

Using (63) in (6), instead of the classical cross-correlation
term, the criterion becomes

J�(n) = E
[(

z2
R,�(n)− R

)2]

+ α
�−1
∑

m=1

(

E2[zR,�(n)zR,m(n)
]

+ E2[zR,�(n)zI ,m(n)
])

,

� = 1, . . . ,M.
(64)

Please note that in (64) the multiplications in cross-
correlation terms are not complexes, as opposed to (6) which
reduces complexity.

The cost function in (64) is named modified cross-
correlation SCMA (MCC-SCMA).

Remark 1. The new cross-correlation term could be also used
by the MMA algorithm, because it recovers QAM signals
with modulo π/2 phase rotation.

In the following section, the complexity of the modified
cross-correlation term will be discussed and compared with
the classical cross-correlation term.

6. IMPLEMENTATION AND COMPUTATIONAL
COMPLEXITY

6.1. Implementation

In order to implement (6) and (64), we suggest to use the
classical stochastic gradient algorithm (SGA) [25]. The gen-
eral form of the SGA is given by

W(n + 1) =W(n)− 1
2
μ∇W(J), (65)

where∇W(J) is the gradient of J with respect to W.

6.1.1. For CC-SCMA

The equalizer update equation at the nth iteration is written
as

w�(n + 1) = w�(n)− μe�(n)y∗(n), � = 1, . . . ,M, (66)

where the constant which arises from the differentiation of
(6) is absorbed within the step size μ. e�(n) is the instanta-
neous error e�(n) for the �th equalizer given by

e�(n) = (z2
R,�(n)− R

)

zR,�(n) +
α

2

�−1
∑

m=1

r̂�m(n)zm(n), (67)

where the scalar quantity r̂�m represents the estimate of r�m,
it can be recursively computed as [25]

r̂�m(n + 1) = λr̂�m(n) + (1− λ)z�(n)z∗m(n), (68)

where λ ∈ [0, 1] is a parameter that controls the length of the
effective data window in the estimation.

Please note that since E[r̂�m(n)] = E[z�(n)z∗m(n)], then
the estimator r̂�m(n) is unbiased.
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Table 1: Comparison of the algorithms complexity against weight
update.

Algorithm Multiplications Additions

CC-CMA 2M(3M + 4N + 1)− 2 4M(M + 2N − 1)

CC-SCMA 6M(M + N)− 2 M(4M + 6N − 5) + 1

MCC-SCMA 4M(M + N)− 1 2M(M + 2N − 1)

6.1.2. For MCC-SCMA

We have exactly the same equation as (66), but the instanta-
neous error signal of the �th equalizer is given by

e�(n) = (z2
R,�(n)− R

)

zR,�(n)

+
α

2

�−1
∑

m=1

[

r̂RR,�m(n)zR,m(n) + r̂RI ,�m(n)zI ,m(n)
]

,
(69)

where

r̂RR,�m(n + 1) = λr̂RR,�m(n) + (1− λ)zR,�(n)z∗R,m(n),

r̂RI ,�m(n + 1) = λr̂RI ,�m(n) + (1− λ)zR,�(n)z∗I ,m(n).
(70)

6.2. Complexity

We consider the computational complexity of (66) for one
iteration and for all equalizer outputs. With

(i) for CC-SCMA,

e�(n) = (zR,�(n)2 − R
)

zR,�(n) +
α

2

�−1
∑

m=1

r̂�m(n)zm(n); (71)

(ii) for MCC-SCMA (modified cross-correlation SCMA),

e�(n) = (zR,�(n)2 − R
)

zR,�(n)

+
α

2

�−1
∑

m=1

[

r̂RR,�m(n)zR,m(n) + r̂RI ,�m(n)zI ,m(n)
]

;

(72)

(iii) for CC-CMA (cross-correlation CMA)

e�(n) = (∣∣z�(n)
∣

∣

2 − R
)

z�(n) +
α

2

�−1
∑

m=1

r̂�m(n)zm(n). (73)

According to Table 1, the CC-SCMA presents a low com-
plexity compared to that of CC-CMA. On a more interest-
ing note, the results in Table 1 show that the use of modi-
fied cross-correlation term reduce significantly the complex-
ity. Please note that the number of operations is per iteration.

7. NUMERICAL RESULTS

Some numerical results are now presented in order to con-
firm the theoretical analysis derived in the previously sec-

tions. For that purpose, we use the signal to interference and
noise ratio (SINR) defined as

SINRk =
∣

∣gkk
∣

∣

2

∑

�,� �=k
∣

∣g�k
∣

∣

2
+ wT

k Rbw∗k
,

SINR = 1
M

M
∑

k=1

SINRk,

(74)

where SINRk is the signal-to-interference and noise ratio at
the kth output. gi j = hTi w j , where w j and hi are the jth and
ith column vector of matrices W and H, respectively. Rb =
E[bbH] = σ2

bIN is the noise covariance matrix. The source
signals are assumed to be of unit variance.

The SINR is estimated via the average of 1000 indepen-
dent trials. Each estimation is based on the following model.
The system inputs are independent, uniformly distributed
and drawn from 16-QAM, 4-PSK, and 8-PSK constellations.
We considered M transmit and N receive spatially decor-
related antennas. The channel matrix H is modeled by an
(N×M) matrix with independent and identically distributed
(i.i.d.), complex, zero-mean, Gaussian entries. We consid-
ered α = 1 (this value satisfy the theorem condition) and
λ = 0.97. The variance of noise is determined according to
the desired Signal-to-Noise Ratio (SNR).

Figures 1, 2, and 3 show the constellations of the source
signals, the received signals, and the receiver outputs (after
convergence) using the proposed algorithm for 16-QAM, 8-
PSK, and 4-PSK constellations, respectively. We have consid-
ered that SNR = 30 dB, M = 2, N = 2, and that μ = 5×10−3.
Please note that the constellations on Figures 1, 2, and 3 are
given before the phase ambiguity is removed (this ambiguity
can be solved easily by using differential decoding).

In Figure 1, we see that the algorithm recovers the 16-
QAM source signals, but up to a modulo π/2 phase rotation
which may be different for each output. Figure 2 shows that
the 8-PSK signals are recovered with an arbitrary phase ro-
tation. In Figure 3, the 4-PSK signals are recovered with a
(2k + 1)(π/4) phase rotation and an amplitude of

√
2. Theses

results are in accordance with the theoretical analysis given
in Section 4.

In order to compare the performances of CC-SCMA and
CC-CMA, the same implementation is considered for both
algorithms (see Section 6). We have considered M = 2, N =
3, SNR = 25 dB, and the step sizes were chosen so that the al-
gorithms have sensibly the same steady-state performances.
We have also used the supervised least-mean square algo-
rithm (LMS) as a reference.

Figure 4 represents the SINR performance plots for the
proposed approach and the CC-CMA algorithm. We observe
that the speed of convergence of the proposed approach is
very close to that of the CC-CMA. Hence, it represents a good
compromise between performance and complexity.

Figure 5 represents the mean-square error (MSE) ver-
sus SNR. In order to verify the effectiveness of the modified
cross-correlation term, we have considered M = 2, N = 3,
16-QAM, and μ = 0.02 for both algorithms. In this figure, the
supervised minimum mean square (MMSE) receiver serves
as reference. We observe that CC-SCMA and MCC-SCMA
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have almost the same behavior. So, in the case of QAM sig-
nals, it is preferable to use a modified cross-correlation term
because of its low complexity and of its similar performances
compared to the one of the classical cross-correlation term.

8. CONCLUSION

In this paper, we have proposed a new globally convergent
algorithm for the multiple-input multiple-output (MIMO)
adaptive blind separation of QAM and PSK signals. The cri-
terion is based on one dimension (either real or imaginary)
and consists in penalizing the deviation of the real (or the
imaginary) part from a constant. It was demonstrated that
the proposed approach is globally convergent to a setting that
recovers perfectly, in the absence of noise, all the source sig-
nals. A modification for the cross-correlation constraint in
the case of QAM constellation has been suggested. Our al-
gorithm has shown a low computational complexity com-
pared to that of CMA, especially when the modified cross-
correlation constraint is used, which makes it attractive for
implementation in practical applications. Simulation results
have shown that the suggested algorithm has a good perfor-
mance despite its lower complexity.

APPENDICES

A. QAM CASE

From (11),

J(g1) = E
[

z4
R,1

]− 2RE
[

z2
R,1

]

+ R2. (A.1)

We have

z1(n) = gT1 a(n), (A.2)

where

g1 =
[

g11, . . . , gM1
]T

, gk1 = gR,k1 + jgI ,k1,

a = [a1, . . . , aM
]T

, ak = aR,k + jaI ,k.
(A.3)

Then

zR,1(n) =
M
∑

k=1

(

gR,k1aR,k − gI ,k1aI ,k
)

. (A.4)

For i.i.d. and mutually independent source signals that
drawn from square QAM constellation, we have

E
[

aR
] = E

[

aI
] = 0,

E
[

amR
] = E

[

amI
]

, ∀m,

E
[

amR,ka
n
I ,�

] = E
[

amR,k

]

E
[

anI ,�
]

, ∀k, �,m,n,

E
[

amR,ka
n
R,�

] = E
[

amI ,ka
n
I ,�

] =
⎧

⎨

⎩

E
[

am+n
R

]

, if k = �,

E
[

amR
]

E
[

anR
]

, otherwise.
(A.5)

We have

E
[

z2
R,1

] = E

{[ M
∑

k=1

(

gR,k1aR,k − gI ,k1aI ,k
)

]2}

=
M
∑

k=1

M
∑

�=1

E
[(

gR,k1aR,k − gI ,k1aI ,k
)(

gR,�1aR,� − gI ,�1aI ,�
)]

=
M
∑

k=1

M
∑

�=1

(

gR,k1gR,�1E
[

aR,kaR,�
]− gR,k1gI ,�1E

[

aR,kaI ,�
]

−gI ,k1gR,�1E
[

aI ,kaR,�
])

+gI ,k1gI ,�1E
[

aI ,kaI ,�
]

.
(A.6)

Using (A.5), we obtain

E
[

z2
R,1

] = E
[

a2
R

]

M
∑

k=1

∣

∣gk1
∣

∣

2
. (A.7)

Similarly

E
[

z4
R,1

] = E

{[ M
∑

k=1

(

gR,k1aR,k − gI ,k1aI ,k
)

]4}

=
M
∑

k=1

M
∑

�=1

M
∑

m=1

M
∑

n=1

E
[(

gR,k1aR,k − gI ,k1aI ,k
)

× (gR,�1aR,� − gI ,�1aI ,�
)

× (gR,m1aR,m − gI ,m1aI ,m
)

× (gR,n1aR,n − gI ,n1aI ,n
)]

.

(A.8)

Developing (A.8) and using (A.5), we have the following
three cases:

(i) k = � = m = n:

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

(

g4
R,k1 + g4

I ,k1

)

+ 6E2[a2
R

]

M
∑

k=1

(

g2
R,k1g

2
I ,k1

)

;

(A.9)

(ii) k = � �=m = n:

E
[

z4
R,1

] = 3E2[a2
R

]

M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
; (A.10)

(iii) otherwise: (A.8) is equal to zero.

From (A.9) and (A.10), (A.8) becomes

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

(

g4
R,k1 + g4

I ,k1

)

+ 6E2[a2
R

]

M
∑

k=1

(

g2
R,k1g

2
I ,k1

)

+ 3E2[a2
R

]

M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
.

(A.11)



12 EURASIP Journal on Wireless Communications and Networking

Then

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

∣

∣gk1
∣

∣

4 − 2E
[

a4
R

]

M
∑

k=1

g2
R,k1g

2
I ,k1

+ 6E2[a2
R

]

M
∑

k=1

g2
R,k1g

2
I ,k1

+ 3E2[a2
R

]

M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
.

(A.12)

On the other hand, we have

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

=
M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
.

(A.13)

Substituting (A.13) into (A.12), we get

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

∣

∣gk1
∣

∣

4

+ 3E2[a2
R

]

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+ 2β
M
∑

k=1

g2
R,k1g

2
I ,k1,

(A.14)

where β = 3E2[a2
R]− E[a4

R].
Using (A.6) and (A.14) in (A.1), we obtain

J
(

g1
)

= E
[

a4
R

]

M
∑

k=1

∣

∣gk1
∣

∣

4
+ 3E2[a2

R

]

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+ 2β
M
∑

k=1

g2
R,k1g

2
I ,k1 − 2E

[

a2
R

]

M
∑

k=1

∣

∣gk1
∣

∣

2
+ R2

= E
[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

− E
[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

+ E
[

a4
R

]

M
∑

k=1

∣

∣gk1
∣

∣

4
+ 3E2[a2

R

]

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+2β
M
∑

k=1

g2
R,k1g

2
I ,k1−2E

[

a2
R

]

M
∑

k=1

∣

∣gk1
∣

∣

2
+R2 +E

[

a4
R

]−E[a4
R

]

.

(A.15)

Rearranging terms, we get

J
(

g1
) = E

[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2 − 1

)2

+ β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

+ 2β
M
∑

k=1

g2
R,k1g

2
I ,k1

− E
[

a4
R

]

+ R2.
(A.16)

Finally, we get (12).

B. P-PSK CASE (P ≥ 8)

In the case of P-PSK (P ≥ 8), (A.5) hold and moreover we
have

E
[

a2
R,ka

2
I ,�

] =

⎧

⎪

⎨

⎪

⎩

1
3
E
[

a4
R

]

if k = �,

E2
[

a2
R

]

otherwise.
(B.17)

Using (A.5) in (A.6),

E
[

z2
R,1

] = E
[

a2
R

]

M
∑

k=1

∣

∣gk1
∣

∣

2
. (B.18)

Using (A.5), and (B.17) in (A.8), we find

(i) k = � = m = n:

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

∣

∣gk1
∣

∣

4
; (B.19)

(ii) k = � �=m = n:

E
[

z4
R,1

] = 3E2
[

a2
R

]

M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
; (B.20)

(iii) otherwise: (A.8) is equal to zero.
Then

E
[

z4
R,1

] = E
[

a4
R

]

M
∑

k=1

(

g4
R,k1 + g4

I ,k1

)

+ 3E2[a2
R

]

M
∑

k=1

M
∑

�=1,� �=k

∣

∣gk1
∣

∣

2∣
∣g�1

∣

∣

2
.

(B.21)

By developing the above equation as in the QAM case, we get

J
(

g1
)=E

[

a4
R

]

( M
∑

k=1

∣

∣gk1
∣

∣

2−1

)2

+β

[( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4
]

− E
[

a4
R

]

+ R2.
(B.22)

C. 4-PSK CASE

For 4-PSK signals,

E
[

a2
R,ka

2
I ,�

] =
{

0 if k = �,

E2
[

a2
R

]

otherwise.
(C.23)

Considering (A.5), and (C.23), and proceeding in the same
way as in the case of P-PSK signals (P ≥ 8), we can easily
find

J
(

g1
) = E2[a2

R

]

[

3

( M
∑

k=1

∣

∣gk1
∣

∣

2
)2

−
M
∑

k=1

∣

∣gk1
∣

∣

4 − 4
M
∑

k=1

∣

∣gk1
∣

∣

2

− 4
M
∑

k=1

g2
R,k1g

2
I ,k1

]

+ R2.

(C.24)
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