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Abstract. Using nonequilibrium Langevin dynamics simulations of an
electrolyte with explicit solvent particles, we investigate the effect of
hydrodynamic interactions on the power spectrum of ionic nanopore
currents. At low frequency, we find a power-law dependence of the
power spectral density on the frequency, with an exponent depending
on the ion density. Surprisingly, however, the exponent is not affected
by the presence of the neutral solvent particles. We conclude that hy-
drodynamic interactions do not affect the shape of the power spectrum
in the frequency range studied.

Hydrodynamic interactions have a strong influence on the dynamics of Brownian
particles suspended in a solvent, producing self-organized states, nonlinear dynamics,
and synchronization [1–4]. Hydrodynamic interactions between objects decay slowly.
Similar to the electrostatic potential, the strength of the hydrodynamic interactions
in bulk is inversely proportional to the distance between the particles [5]. Moreover,
the effects of hydrodynamic interactions are extremely sensitive to geometric confine-
ment. Density perturbations in a fluid between stationary confining walls give rise
to a long-time tail in the velocity autocorrelation function of colloidal particles [6].
Experiments show that hydrodynamic interactions even become independent of the
distance between particles inside small pores [7]. These hydrodynamic effects have a
pronounced effect on the dynamics of larger molecules, such as DNA, translocating
through a nanopore [8,9]. Whereas the effect of hydrodynamic interactions on
colloidal particles and polymer dynamics has attracted a lot of attention over the
past decades, the effect of hydrodynamic interactions on ion dynamics remains largely
unexplored.
The combination of experimental measurement and molecular modeling of the

power spectral density constitutes a promising technique to study ion motion in un-
precedented detail [10]. For example, the power spectrum can be used to study the
microscopic properties of nanofluidic systems, such as the adsorption of molecules on
the walls of a nanometer-scale cavity [11]. Recently, we showed that ion correlations
at high particle density produce a power-law spectrum at low frequency, with an
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exponent depending on the ion density [12]. Experiments show that the power spec-
trum of the ionic nanopore current S(ω), with ω = 2πf being the frequency, typically
follows a power law S(ω) ∝ 1/ωα with α ≈ 1, which is referred to as pink noise, or
1/f noise [13–15]. The appearance of pink noise in nanopore current measurements
is ubiquitous; it is found in a variety of systems, from protein channels and flexible
synthetic pores [16–18], to solid-state conical pores [19]. The molecular origin of the
low-frequency pink noise has been debated for decades [20–22]. However, theoretical
analysis of the power spectrum including the multi-body interactions between the
ions and the effect of hydrodynamics remains challenging. Therefore, although
hydrodynamic interactions are usually present in experimental studies, their effects
on the frequency dependence of the power spectral density are unknown. The situa-
tion has changed with the recent advance of fast and versatile molecular simulation
techniques, which now allow a systematic computational investigation.
In this manuscript, we present a Langevin dynamics simulation study of the ionic

current through a nanometer-scale pore filled with an electrolyte, using the Espresso
molecular dynamics package [23]. The electrolyte is modeled by ions in an explicit
solvent. For the solvent, we use a coarse-grained description of neutral, nonpolar
Lennard-Jones particles. To systematically study the effect of hydrodynamic interac-
tions, we vary the density of both the ions and the solvent particles independently. We
calculate the power spectral density of the ion current and compare the results with
simulations without solvent and with a linearized mean-field theory of ion currents
without hydrodynamic interactions. Whereas an increase in the ion density directly
causes a power-law behavior of the power spectrum at low frequency, introducing
hydrodynamic interactions by increasing the solvent density does not have the same
effect.

1 Simulation model

We use the simulation package Espresso [23] to set up Langevin dynamics simulations
of a nanopore filled with a mixture of monovalent positive and negative ions and
neutral solvent particles (Fig. 1). The Langevin equation for particle i is expressed as

mi
∂ui

∂t
= −

∑

j �=i
∇Vij + F i − γui + ξi, (1)

where ξi(t) is the stochastic force satisfying 〈ξi(t) · ξj(t′)〉 = 6kBTγδijδ(t − t′), ui
and mi = 1 kBTτ

2/ Å2 denote the velocity and the mass, respectively, and F i is an
external force applied to the particle. The thermal energy equals kBT and we use
γ = 1 kBTτ/Å

2. By using an equal and arbitrary mass for all particles, mi is in-
corporated in the time scale τ . Interactions between pairs of particles are modeled
by the sum of a Coulomb and a Weeks-Chandler-Andersen (shifted Lennard-Jones)
potential Vij (rij),

Vij = lBkBT
QiQj

rij
+ 4εij

[(
σij

rij

)12
−
(
σij

rij

)6]
+ εij , (2)

where rij denotes the distance between particles i and j, Qi is the charge of particle
i in units of the elementary charge e and lB = e

2/(4πεε0kBT ) is the Bjerrum length.
The Lennard-Jones radius is given by σij and εij represents the interaction strength.

The Lennard-Jones interaction is truncated at rij =2
1
6σij for all combinations of i,j.
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Fig. 1. (a) Simulation snapshot of the membrane with the pore of radius R. Ions and solvent
are not shown. (b) Side view of the simulation box with ions shown in blue and red, and
solvent particles in grey. (c) Schematic drawing of the nanopore, with either x2⊥ = x

2
⊥1+x

2
⊥2

(cylindrical coordinates, Eq. (20)) or x⊥ = x⊥1 = x⊥2 (cartesian coordinates, Eq. (19)).

The electric field on the ions is represented by a force applied inside the pore in the
x‖ direction, which is the direction along the length L of the pore (Fig. 1),

F i =

{
QiE‖ if 0 < x‖ < L

0 otherwise.
(3)

The electric field is varied between E‖=0.3 and 1.6 kBT/(eÅ).
The simulations are performed in a cylindrical nanopore with a radius ranging

from 19 Å to 30 Å, permeating a rigid membrane with a width of W =96 Å and a
length L=48 Å (Fig. 1). We use an increasing solvent density of Cs= {5.5 · 10−4,
2.1 · 10−3, 5.5 · 10−3} Å−3, each of which is well below the bulk freezing density of the
Weeks-Chandler-Andersen fluid model. Compared to the molecular density of water,
the maximum density corresponds to a coarse-grained force field where each particle
represents approximately 6 water molecules. A smooth surface induces a crystalline
order in the fluid, over a range depending on the molecular properties of the liq-
uid [24]. For a fluid consisting of identical Lennard-Jones spheres, the induced order
propagates over a distance larger than our simulation box. Therefore, to prevent crys-
tallization of the Lennard-Jones fluid, we perturb the uniform membrane surface by
randomly removing half of the particles from the outer layer. The membrane parti-
cles are frozen, and for the membrane-ion, membrane-solvent, ion-solvent, ion-ion and
solvent-solvent interactions we use εij =2 kBT and σij =4.7 Å. For the membrane and
solvent particles we use Qi=0, and for the ions we useQi=±1. The ion concentration
is varied according to Ci= {5.5 · 10−5, 5.5 · 10−4, 1.0 · 10−3, 2.1 · 10−3} Å−3.
When the motion of particle i perturbs the surrounding solvent, the hydrodynamic

signal diffuses at a rate governed by the kinematic viscosity ν. For hydrodynamic
interactions to occur, this viscous momentum must diffuse much faster than the par-
ticle itself. The relation is governed by the Schmidt number Sc= ν/D, with D being
the diffusion coefficient of the solvent particles. To verify that the coarse-grained
solvent particles produce hydrodynamic interactions in the strongly confined envi-
ronment of the nanopore, we simulate a pressure difference across the length of the
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Fig. 2. (a) The connected black dots represent the tangential flow velocity u‖ as a function
of the radial position x⊥ in response to an applied pressure gradient, and the solid blue line is
the fitted Poiseuille flow profile (Eq. (4)). (b) The bulk compressibility κ as a function of the
solvent concentration Cs. The experimental compressibility of water at room temperature is
shown as a reference. The inset shows the pressure p as a function of Cs.

channel by applying a constant force to all particles inside a pore filled with pure sol-
vent. We calculate the fluid velocity as a function of the radial coordinate, averaged
across the length of the channel. The flow of ions in a slit-like cylindrical channel
forms a Hagen-Poiseuille flow profile with a finite slip length b,

u‖ = −
F‖
4miν

[
R2 + 2bR− x2⊥

]
, (4)

with R being the radius of the pore, F‖Cs=∇‖p being the pressure gradient across
the length of the pore, which in our case is derived from the uniform applied
force F‖=0.8 kBT/Å on the solvent particles inside the pore, which have mass
mi=1 kBTτ

2/Å2 and number density Cs. We show the velocity profile in
Fig. 2(a) for the lowest solvent density Cs=5.5 · 10−4 Å−3. The fit of Eq. (4) yields
ν=900 Å2/τ , which in combination with D=1 Å2/τ yields Sc=900. As the Schmidt
number at higher solvent densities is even higher, all our simulations satisfy the con-
dition for hydrodynamic interactions.
Apart from propagation by viscous momentum diffusion, hydrodynamic interac-

tions are transmitted by sound wave propagation. In an incompressible fluid, the
sound velocity is infinite, and the viscous momentum diffusion is solely responsible
for the time evolution of the hydrodynamic interactions. The compressibility of our
model solvent is finite, however, depending on the solvent density Cs, which might
have implications for the hydrodynamic interactions [25]. We calculate the isothermal
compressibility from the pressure p as a function of solvent density Cs in separate
bulk simulations using κT =(d ln(Cs)/dp)T , with p being the pressure, see Fig. 2(b).
The compressibility is varied over two orders of magnitude as we change the solvent
density. Nevertheless, the compressibility of water, equal to κT =2 Å

3/(kBT ), is still
a factor 5 below the compressibility of our highest-density solution. We quantify the
effect of the compressibility by calculating the sound velocity us=

√
γ/ (miCsκT ),

with γ being the heat capacity ratio, which is of order γ ∼ 1 in a liquid. The
sound velocity increases drastically when we change the solvent density in our simu-
lations, from us=3 Å/τ at the lowest density to us=239 Å/τ at the highest density.
The importance of the compressibility effects is estimated from the Mach number
Ma=

√
kBT/mi/us, where the estimate of the thermal velocity

√
kBT/mi is being

used as the typical velocity of the particles. As Ma is well below 1 in all our
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simulations, the compressibility is not expected to have a large effect on the hy-
drodynamic properties [25].
The stochastic force ξ in the Langevin dynamics simulations provides a truncation

length beyond which ξ exceeds the force due to hydrodynamic interactions [25]. Quan-
tification is complicated, because the truncation length depends on the magnitude of
the force from which the hydrodynamic interactions originate. As the interparticle
forces in the system reach very high values, however, a part of the long-ranged
hydrodynamic interactions will be preserved.

2 Linearized mean-field theory

We derive a theoretical description of the noise spectrum of the ionic current follow-
ing our previous analysis [12]. The expression for the power spectral density S(ω) is
derived for monovalent ions in implicit water. Therefore, the following derivation does
not include the effect of hydrodynamic interactions. Comparison with the simulation
results allows us to study the effect that the hydrodynamic interactions in the simu-
lations have on the power spectral density. Ion-ion correlations, which are responsible
for the low-frequency power-law increase of the power spectrum at high ion density
[12], are also absent from this theoretical model. We consider a system consisting of a
cylindrical nanopore of length L and radius R connecting two reservoirs (Fig. 1), and
calculate the flux density J±(x, t) of positive and negative ions inside the nanopore,
with x denoting the position in three dimensions and t denoting the time. The ion
concentrations C± (x, t) are governed by the continuity equation,

∂C±

∂t
+∇ · J± = 0. (5)

The corresponding flux densities J± (x, t) are given by the Nernst-Planck equation,

J± = −D±∇C± ∓D±C± eE
kBT

+ η±, (6)

where E (x, t) is the applied electric field, e denotes the elementary charge, and
η±(x, t) denotes the thermal noise that accounts for fluctuations in the environment;
most importantly the effect of the implicit water on the ion dynamics. From here,
we switch to index notation where α, β, and γ correspond to the three components
of our coordinate system. To simplify the notation, we assume D+ = D−=D and
η+x, t = η−x, t = ηx, t. After applying a standard Fourier transform to Eqs. (5) and
(6), we find

J̃±α =
3∑

β=1

[
− iD
ω
qαqβ J̃

±
β ∓

D eEα

ω kBT
qβ J̃

±
β − η̃α

]
, (7)

with .̃.. denoting the Fourier transform, q being the wave vector, and ω being the
frequency. Rewriting Eq. (7) leads to

η̃α = −
3∑

β=1

J̃±β Mαβ , (8)

where Mαβ q, ω denote the matrix components

Mαβ = δαβ +
iD

ω
qαqβ ± D eEα

ω kBT
qβ . (9)
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Combining Eqs. (8) and (9) and solving for J̃±γ , we find

J̃±γ =
1

det(M)

⎡

⎣
3∑

β=1

[
iD

ω
qγqβ η̃β ± D eEγ

ω kBT
qβ η̃β

]

− η̃γ
3∑

β=1

[
1

3
+
iD

ω
qβqβ ± D eEβ

ω kBT
qβ

]⎤

⎦ , (10)

with det(M) denoting the determinant of M . Within the geometry of the pore, there
is one parallel (‖) direction, and two equivalent perpendicular (⊥1, ⊥2) directions,
see Fig. 1(a). The electric field is nonzero only in parallel direction E=(0, 0, E‖).
Therefore, the flux in the parallel direction becomes

J̃±‖ =
iD
ω

[
q⊥1q‖η̃⊥1 + q⊥2q‖η̃⊥2 + q2⊥1η̃‖ + q

2
⊥2η̃‖

]

1 + iD
ω

[
q2‖ + q

2
⊥1 + q

2
⊥2
]± D eE‖

ω kBT
q‖

+
∓D eE‖
ω kBT

[
q⊥1η̃⊥1 + q⊥2η̃⊥2

]
+ η̃‖

1 + iD
ω

[
q2‖ + q

2
⊥1 + q

2
⊥2
]± D eE‖

ω kBT
q‖
, (11)

with q⊥1 and q⊥2 being the two independent wave vectors in the plane of the mem-
brane. As the random force is applied to every individual particle, the power spectrum
of the thermal noise in our implicit-solvent model is proportional to the ion concen-
tration inside the pore,

〈ηγ (x, t) ηβ(x′, t′)〉 = 2DCV δγβδ(x− x′)δ(t− t′)

〈η̃γ(q, ω)η̃β(q′, ω′)〉 = 2DCV δγβ(2π)4δ(q + q′)δ(ω + ω′),
(12)

with CV = 〈N〉/(πR2L) being the average number of ions per unit volume in the pore,
which is proportional to the bulk ion concentration Ci, but depends nontrivially on
the radius R, the length L, the electric field, and the interionic interaction potential.
Introducing short-hand notation, we derive from Eqs. (11)–(12)

〈|J̃+‖ − J̃−‖ |2〉 ≡
∫ ∫ ∫ dq′⊥1dq′⊥2dq′‖

(2π)3

∫
dω′

2π

[
〈[J̃+‖ (q, ω)− J̃−‖ (q, ω)

][
J̃+‖ (q

′, ω′)− J̃−‖ (q′, ω′)
]〉
]

(13)

=
8DCV

[
eE‖
kT

]2[
ω2

D2
+
(
q2⊥1 + q

2
⊥2
)2 ]
q2

(
(q2)

2
+
[
eE‖
kT

]2
q2‖− ω2

D2

)2
+ 4 ω

2

D2
(q2)

2
,

with q2 = q2⊥1 + q
2
⊥2 + q

2
‖.

The two-sided power spectral density S (ω) of the current I‖ (t) defined on the
domain 0 < t < T is given by the limit of T →∞ of

S (ω) =
1

T
〈|Ĩ‖ (ω) |2〉 = 1

T
〈Ĩ‖ (ω) Ĩ‖ (−ω)〉, (14)
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which can be written as

S (ω) =
1

T

∫

T

dt

∫

T

dt′ e−iω(t−t
′) 〈I‖ (t) I‖ (t′)〉. (15)

We rewrite I‖(t) as the integral of the current density J+‖ (x, t)− J−‖ (x, t) at a given
position in the direction of x‖ over the lateral surface area A of the pore,

S (ω) =
1

T

∫

T

dt

∫

T

dt′ e−iω(t−t
′)

∫∫

A

dx⊥1dx⊥2
∫
dx‖
∫∫

A

dx′⊥1dx
′
⊥2

∫
dx′‖δ(x‖)δ(x

′
‖)

〈[J+‖ (x, t)− J−‖ (x, t)
][
J+‖ (x

′, t′)− J−‖ (x′, t′)
]〉. (16)

Some mathematical manipulation yields in the limit T →∞,

S (ω) =

∫
dq⊥1
2π

∫
dq⊥2
2π

∫
dq‖
2π
Ã2〈|J̃+‖ − J̃−‖ |2〉

= 8

∫ ∫ πΛ−1

πR−1

dq⊥1dq⊥2
(2π)2

∫ πΛ−1

πL−1

dq‖
2π
Ã2 〈|J̃+‖ − J̃−‖ |2〉, (17)

with Λ being the small-scale cut-off length, introduced because of the finite particle
size. The Fourier-transformed area function in Eq. (17) is given by

Ã(q⊥1, q⊥2) =
∫∫

A

dx⊥1dx⊥2 e−i(q⊥1x⊥1+q⊥2x⊥2). (18)

The integral in Eq. (18) is performed over the lateral area A of the pore, which
is approximately circular. However, because our cylindrical direct space does not
map exactly to a cylindrical reciprocal space, we use two different approximations to
calculate the integral (Fig. 1(c)). First, integrating over a square of sides 2R gives

Ã(q⊥1, q⊥2) =
4 sin [q⊥1R] sin [q⊥2R]

q⊥1q⊥2
. (19)

Alternatively, integrating over a circle of radius R gives

Ã (q⊥) =
∫ 2π

0

dθ

∫ R

0

dx⊥ x⊥ e−iq⊥x⊥ cos(φ−θ)

= 2πR2
J1 [q⊥R]
q⊥R

.

(20)

with x⊥=
√
x2⊥1 + x

2
⊥2 and θ= arctan(x⊥2/x⊥1) being the cylindrical coordinates,

q⊥=
√
q2⊥1 + q

2
⊥2 and φ= arctan(q⊥2/q⊥1) being the polar coordinates in reciprocal

space, and J1 being the first order Bessel function of the first kind. The primary
difference between Eqs. (19) and (20) is the amplitude of the calculated noise spectrum
[12]. Contrary to the circular area, however, the square area can be mapped directly
to reciprocal space, enabling a straightforward evaluation of Eq. (17). Therefore, we
use Eq. (19) for all the curves in the present paper. Together with Eqs. (13) and (19),
Eq. (17) is solved numerically to get the linearized mean-field prediction of S(ω).
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Fig. 3. The power spectra of the ion current through pores with different solvent densities
Cs in units of the inverse time scale τ

−1. Solid black lines indicate the fit with S ∼ 1/ωa. We
use a fixed ion concentration Ci=5.5 × 10−4 Å−3, radius R=25 Å and an applied electric
field E‖=1.6 kBT/(eÅ).

3 Results and discussion

We calculate the power spectral density of the ion current in simulations with three
different solvent densities Cs (Fig. 3). At low solvent density, the curves exhibit a
transition around ω=0.1/τ , similar to the implicit solvent case [12]. With increasing
solvent density, the transition becomes less pronounced due to an increase in the high-
frequency noise level. Surprisingly, the increasing solvent density does not induce any
alteration of the power spectral density at low frequency, even for a tenfold increase
in solvent density.
We verify the effect of increasing ion concentration on the power spectral density

in the presence of hydrodynamic interactions (Fig. 4). The amplitude of the noise
increases with increasing ion concentration, and the transition frequency shifts to
slightly lower values. Most strikingly, however, is the change of the behavior at low
frequency. The power spectral density exhibits a power law, with an exponent that
increases sharply with increasing ion concentration. These results are similar to the
results found in simulations with implicit solvent [12]. However, as the curves in
Fig. 4 extend to higher ion concentrations than those treated previously, the new
results show that the increase in the exponent of the power law continues, reaching
a = 0.4 at an ion concentration of Ci=2 · 10−3 Å−3.
To test the effect of the hydrodynamic interactions, we fit the linearized mean field

theory, which does not take hydrodynamic interactions into account, to the curves in
Fig. 4. Apart from the low-frequency power-law dependence, which is caused by ion-
ion correlations [12], the simulated curves are well described by the implicit-solvent
model. Remarkably, it is not necessary to take hydrodynamic interactions into account
to describe the power spectrum of the ionic current through an electrolyte-filled pore.
At low frequency, we fit the exponent a of the power law S(ω) ∼ ω−a for the

curves shown in Figs. 3 and 4. We fit the noise spectra for log10 ω<−1.8 and dis-
card the lowest frequency data points because of their statistical uncertainty. The
exponent is shown in Fig. 5 as a function of ion concentration Ci for fixed solvent
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Fig. 4. The power spectral density S(ω) of the ionic current in units of the inverse of the time
scale τ , as a function of the frequency ω on a log-log scale, for different ion concentrations
Ci, in combination with a solvent density of Cs=5.5 × 10−4 Å−3. The solid colored lines
show the simulation results and the shaded region represents the standard deviation that we
get when applying a block-averaging method to improve the readability. The dashed lines
represent the fits derived from the linearized mean field theory (Eqs. (13), (17) and (19)),
with parameters taken from the simulations: applied electric field E‖=1.6 kBT/(eÅ), pore
radius R=25 Å, diffusion coefficient D=1 Å2/τ , and the small-scale cutoff length is set to
a value of the order of the ion size, Λ=2.5 Å, for all curves. The solid black lines indicate
the fit with S ∼ 1/ωa.
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Fig. 7. The power spectra of the ion current through pores with different radii
R=19, 25, 30 Å at equal solvent and ion concentrations of Ci=Cs=5.5× 10−4 Å−3, at dif-
ferent applied electric field strengths E‖=0.3, 0.8, 1.6 kBT/(eÅ). With increasing E‖, the
transition frequency shifts upward, and the background white noise decreases. With increas-
ing radius the slope at high frequency increases without any alteration of the power law at
low frequency. The dashed lines indicate the theory fit (Eq. (17)).

concentration (top panel) and as a function of solvent concentration Cs at fixed ion
concentration (bottom panel). Whereas the exponent increases sharply as a function
of the ion density, increasing the solvent concentration has no effect. Because the
charge is the only difference between an ion and a solvent particle, we conclude that
electrostatic interactions cause the increasing exponent. Hydrodynamic interactions,
despite having a similar long-ranged spatial dependence, do not have the same effect.

We perform an extra simulation without solvent particles (Cs=0), and compare
the power spectra of simulations with and without explicit solvent directly in Fig. 6.
Clearly, the curves have the same frequency dependence over the entire frequency
range, confirming the results of the preceding paragraphs.

Finally, we study the dependence of the power spectral density on the pore radius
R and the applied electric field E‖. In Fig. 7, we show that the linearized mean-field
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theory – derived for implicit solvent – captures the dependence on the pore radius and
the electric field without further fit parameters, for all values of R and E‖ studied.

4 Summary and conclusions

We present a systematic numerical investigation of the effects of hydrodynamic and
electrostatic interactions on the power spectral density of ionic currents in nanopores
using an explicit coarse-grained solvent. We find that an increase in ion concentra-
tion at fixed solvent density leads to a power-law behavior at low frequency with
an exponent increasing with ion density. The power-law frequency-dependence of the
power spectrum is in line with our previous findings in simulations with implicit
water, where the nonzero exponent was shown to be caused by ion-ion correla-
tions. The exponent reaches a = 0.4 at an ion concentration of Ci=2 · 10−3 Å−3.
Hydrodynamic interactions influence the power spectral density at high frequency.
In particular, the transition in the power spectral density becomes less pronounced
with increasing solvent density. At low frequency, however, the hydrodynamic inter-
actions have no effect, which is surprising in the view of the large influence of hydro-
dynamic interactions on the dynamics of colloids and polymers under confinement.
Note, however, that the solvent used in the present study has a higher compressibility
than water, and that the Langevin noise provides a truncation distance, which might
influence the hydrodynamic interactions. The linearized mean-field theory without
hydrodynamics, which has been derived in our previous work [12], can be used to
describe simulation results with hydrodynamic interactions equally well. Instead, in-
clusion of electrostatic ion-ion correlations is paramount to describe the low-frequency
power-law behavior as a function of ion density. Although a direct comparison with
experimental results is not yet feasible, we show that the combination of simulations
and analytical work provides a promising framework for the systematic investigation
of experimental noise spectra.
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