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Abstract Beamed propulsion of a light sail based on radiation pressure benefits from a
passively self-stabilizing “beam riding” diffractive film. We describe the optomechanics of
a rigid non-spinning light sail that mitigates catastrophic sail walk-off and tumbling by use
of a flat axicon diffraction grating. A linear stability analysis and numerical integration of
the coupled translational and rotational equations of motion are examined. Stability is traded
against longitudinal acceleration. The examined system achieves 90% of the theoretical
longitudinal force limit and stability against a relative sail translation up to 30% of the sail
radius when the payload is attached to a long boom.

1 Introduction

Optical momentum carried by light [1] may be redirected by means of reflection, diffrac-
tion, scattering, or absorption to achieve radiation pressure on a material body. The idea
of propelling a spacecraft to high velocities using solar radiations was first proposed in the
early Twentieth century by Tsiolkovsky [2]. With the advent of lasers in the 1960s, laser-
propelled sails reaching relativistic velocities for interstellar travel were proposed [3–13].
One of the many challenges associated with a laser-propelled light sail is the achievement
of “beam-riding,” i.e., the autonomous ability to remain in the beam path without tumbling
or sliding out. A decades-long approach considers shaped mirror structures [14–24]. The
ponderomotive (or gradient) force as used in optical tweezers [25] is currently negligible for
practical space systems. The proposed use of diffraction to impart optical momentum to a
body [26] provides an opportunity to decouple the sail shape from the momentum transfer
process, thereby affording a new degree of design latitude. For example, a one-dimensional
bi-grating has been explored to demonstrate the principle of self-stability [27,28]. The first
experimental verification of this principle, along with the measurements of parametric damp-
ing, was reported by Chu [29,30]. Furthermore, advancements in the design and fabrication
of diffractive films using metamaterial principles provide opportunities to engineer desired
optomechanical and other properties into the functionality of a sail [31–44]. In the near term
we envision the integration of diffractive light sail components on future solar sailing mis-
sions to help resolve engineering challenges [45] such as attitude control (see for example,
Near-Earth Asteroid Scout [46], Solar Polar Imager [47], and Solar Cruiser [48]).
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This report extends our one-dimensional theoretical investigations of a bi-grating to a
two-dimensional axicon grating sail. Section 2 describes the transfer of momentum from the
light beam to the sail, making use of sail and observer reference frames moving at small
relative velocities, so that the Doppler-shifted wavelength may be ignored. The equations of
motion for linear and angular degrees of freedom owing to optomechanical force and torque
are described in Sect. 3. A linear stability analysis is described in Sect. 4 where conditions
for stable light propulsion are described. Numerical solutions of the equations of motion are
presented in Sect. 5, including an analysis of motion in the stable regime. Important findings
are summarized in Sect. 6.

2 Photon momentum transfer to a diffractive sail

Let us consider a laser beam of characteristic radial width w incident upon a sail of radius a.
Radiation pressure applies a local force at all sail points, resulting in longitudinal acceleration
along the optical axis, lateral force, and torque. The minimum beam size, w0 (the waist), is
positioned at the origin of the observer coordinate system (X, Y, Z), as illustrated in Fig. 1,
and the beam propagates in the Z -direction (the optical axis). The electric field profile of a
monochromatic beam of wavelength λ and constant power P may be expressed [49]

E(X, Y, Z) = √
I0(Z) (w0/w(Z)) exp

(−(X2 + Y 2)/w(Z)2) exp (i�(r, z))

×exp (i (kZ Z − ωt)) (1)

where kZ = 2π/λ, ω = ck is the angular frequency, c is the speed of light, I0(Z) =
2P/πw2(Z) is the irradiance on the optical axis, w(Z) = w0

[
1 + (Z/Z0)

2
]1/2

is the
radial beam size, Z0 = πw2

0/λ is the diffraction length, �(r, z) = kz(X2 + Y 2)/2R(z) −
arctan(Z/Z0), and R(Z) = Z

[
1 + (Z0/Z)2

]
for a TEM00 Gaussian beam. Assuming the

beam is much larger than the wavelength (w0 >> λ), we ignore the transverse component
of the wave vector, kX = ∂�/∂X and kY = ∂�/∂Y , which are much smaller than kZ .
That is, the paraxial approximation is made such the incident wave vector may be expressed
�ki = (2π/λ)Ẑ .

We consider a sail comprised of a reflection grating that diffracts light toward the sail axis
when illuminated at normal incidence. That is, the sail functions as an optical axicon (see inset
of Fig. 1), having a periodic phase profile, �axicon(ρ

′ + �) = �axicon(ρ
′) = −2π(ρ′/�)

where ρ′ = (x ′2 + y′2)1/2. For analytical convenience we assume a single diffraction order,
noting that this analysis may be readily extended to include multiple reflection and trans-
mission orders. The axicon grating vector �K lies in the plane of the sail and points radially
toward the sail axis (see inset of Fig. 1).

The grating vector (see inset of Fig. 1) of the sail is directed radially inward from the
center of the sail and is expressed

�K = −(2π/�)
(
cos ψ x̂ ′ + sin ψ ŷ′) (2)

where � is the grating period and ψ is the polar angle measured counterclockwise from x̂ ′.
At normal incidence, the angle between Ẑ and ẑ is zero, i.e., the sail normal and incident
wave vector are perfectly aligned and the grating functions as a reflective axicon.

For an arbitrary attitude, the momentum imparted to the sail may be determined from the
difference of linear photon momenta before and after diffraction. This difference is quantified
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Fig. 1 Diffractive sail illuminated by a beam at incident angle βi,X and diffraction angle βm,X . Sail tilt axis
ζX = −βi,X . Attached payload of mass Mp with boom length Db . Laser beam origin (X, Y, Z) = (0, 0, 0).

Sail displacement �δ�δ�δ. Inset: magnified view of axicon phase with grating vector �K

by the photon momentum transfer efficiencies in the two reference frames:

�η′ =
(�k′

i − �k′
d

)
/ (2π/λ) (3a)

�η =
(�ki − �kd

)
/ (2π/λ) (3b)

where �k′
i (�ki ) is the incident wave vector in the sail frame (stationary frame) and �k′

d (�kd ) is
the diffracted wave vector in the sail frame (stationary frame). For example, if �kd = −�ki =
−(2π/λ)Ẑ then �η = 2Ẑ . We note that for a Doppler-free elastic process |�η′| = |�η|. For an
arbitrary sail attitude the method of Euler angles is used to relate the wave vectors in the two
reference frames (see “Appendix 1”). However, it is instructive to first consider a sail that is
tipped in a single direction as depicted in Fig. 1.

Let us therefore set ζY = ζZ = 0 and consider a rotation angle ζX about the X̂ axis. The
angle ζX represents the attitude of the sail normal (ẑ′) with respect to the beam axis (Ẑ ) and
is measured counterclockwise from Ẑ , i.e., ζX < 0 for the attitude of sail shown in Fig. 1.
The angle of incidence βi,x is measured counterclockwise from the sail normal such that
βi,x = −ζX and βi,x > 0 for the orientation shown in Fig. 1.

In the sail reference frame the incident wave vector may be expressed

�k′
i = (2π/λ)

(− sin βi,X ŷ′ + cos βi,X ẑ
′) = (2π/λ)

(
sin ζX ŷ′ + cos ζX ẑ′

)
(4)

The diffracted wave vector �k′
d is determined from the phase matching condition, whereby

the phase of the electric field tangential to the sail surface is continuous at the interface:

�k′
i · x̂ ′ = �k′

d · x̂ ′ + m �K · x̂ ′ (5a)

�k′
i · ŷ′ = �k′

d · ŷ′ + m �K · ŷ′ (5b)

where m is the integer-valued diffraction order. For a normally incident beam where �k′
i ·

(x̂ ′ + ŷ′) = 0 and �k′
d = −m �K , the beam is diffracted toward the sail axis as desired and

discussed below when m = −1.
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Let us express the components of the diffracted wave vector by use of a unit vector Â:

�k′
d = (2π/λ)

(
Ax ′ x̂ ′ + Ay′ ŷ′ + Az′ ẑ

′) (6)

where phase matching and elastic scattering (|�k′
i | = |�k′

d)| provide

Ax ′ = −(mλ/�) cos ψ (7a)

Ay′ = − sin βi,X − (mλ/�) sin ψ = sin ζX − (mλ/�) sin ψ (7b)

Az′ = ±(1 − A2
x ′ − A2

y′)1/2 (7c)

where the − (+) sign corresponds to a reflection (transmission) grating. To achieve efficient
acceleration along the beam axis we assume a reflection grating in this report.

Let us now describe diffraction in the stationary reference frame where �ki = (2π/λ)Ẑ
and

�kd = (2π/λ)(BX X̂ + BY Ŷ + BZ Ẑ) (8)

where the unit vector B̂ is the rotated version of Â:

BX = Ax ′ (9a)

BY = Ay′ cos βi,X + Az′ sin βi,X = Ay′ cos ζX − Az′ sin ζX (9b)

BZ = −Ay′ sin βi,X + Az′ cos βi,X = Ay′ sin ζX + Az′ cos ζX (9c)

General expressions relating rotated vectors Â and B̂ are described in “Appendix 2”.
We therefore find the components of the efficiency vectors:

ηx ′ = (mλ/�) cos ψ, ηX = −BX (10a)

ηy′ = (mλ/�) sin ψ, ηY = −BY (10b)

ηz′ = cos βi,X − Az′ = cos ζX − Az′ , ηZ = 1 − BZ (10c)

3 Optomechanics of a diffractive sail

The force and torque imparted to the sail produce both linear and angular displacements that
depend on initial conditions and other factors such as the beam power, sail shape, and the
spatial distribution of the grating vector. As depicted in Fig. 1 we assume a rigid circular sail
of radius a whose distribution in the sail reference frame F ′ may be expressed:

PF ′ = Circ

(√
x ′2 + y′2/a

)
(11)

where the function Circ(s) has a value of unity (zero) if |s| < 1(|s| > 1). A payload of mass
Mp is attached to the sail of mass Ms by means of a rigid boom of mass Mb and length Db

and negligible thickness. A positive (negative) value of Db corresponds to a non-exposed
(exposed) payload. For convenience we assume Ms = Mp such that the center of mass
coincides with the mid-point of the boom. For this configuration the principal moment of
inertia is Jx ′ = Jy′ = Msa2/4+MsD2

b/4+MpD2
b/4 and Jz′ = Ma2/2 such that the sailcraft

has a diagonal inertia tensor J = diag(Jx ′ , Jy′ , Jz′).
An observer standing next to a stationary laser system will observe the sail moving through

space in the F = (X, Y, Z) coordinate system, where the reference frame F is described by
a right-handed set of unit vectors {X̂ , Ŷ , Ẑ} and origin O . We wish to predict the position,
velocity, and attitude of the sail in that inertial reference frame. However, radiation pressure
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exerted on the sail is more readily described in the non-inertial reference frame of the sail,F ′,
with right-handed coordinate system (x ′, y′, z′) and origin O ′ (see Fig. 1). In a homogeneous
coordinate system (see “Appendix 3”), an arbitrary point in F

(
F ′) is expressed as a column

vector [X, Y, Z , 1]T ([x ′, y′, z′, 1]T )
, where the 4th component is a scaling factor set to unity.

Radiation pressure on a sail gives rise to forces and torques that may translate and rotate the
sail. The translation of the sail in the frame F may be described by the displacement vector
δδδ = [δX , δY , δZ ]. We represent the attitude of the sail in this frame in terms of ZYX sequence
of Euler angles {ζZ , ζY , ζX } (see “Appendix 1”). For an arbitrary rotation and translation the
relationship between the two frames of reference may be expressed

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ = H

⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cY cZ cY sZ −sY δX
sX sY cZ − cX sZ sX sY sZ + cXcZ sXcY δY
cX sY cZ + sX sZ cX sY sZ − sXcZ cXcY δZ

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦ (12)

where H is the Homogeneous transformation matrix described in “Appendix 3”, and the
elements containing factors of cX,Y,Z = cos ζX,Y,Z and sX,Y,Z = sin ζX,Y,Z belong to the
rotation matrix described in “Appendix 1”.

The net radiation pressure force in the stationary reference frame is found by integrating
over the local force elements:

�Fnet = (1/c)

∞∫∫

−∞
I PF cos φ �η dX dY = M �̈δδδ (13)

where PF ′ is transformed into the reference frame F by the expression PF = H−1PF ′ ,
φ is the angle between the sail normal and the incident wave vector (i.e., cos φ = Ẑ · ẑ′),
I = |E(X, Y, Z)|2 is the beam irradiance described in Eq. (1), c is the speed of light, and we
have applied Newton’s second law to the right-hand side where M = Ms + Mp + Mb is the
total light sail mass.

Unlike the net force, the net torque �N ′
net measured about the center of mass of the sail is

calculated in the sail reference frame F ′ and may be found by integration:

�N ′
net = (1/c)

∞∫∫

−∞
I PF ′ cos φ �r ′ × �η′ dx ′dy′ (14)

where �r ′ = x ′ x̂ ′ + y′ ŷ′ − (Db/2)ẑ′ is the moment arm. Euler’s equations for rotational
degrees of freedom may be expressed

Nnet,x ′ = Jx ′�̇x ′ + (Jz′ − Jy′)�y′�z′

Nnet,y′ = Jy′�̇y′ + (Jx ′ − Jz′)�z′�x ′

Nnet,z′ = Jz′�̇z′ + (Jy′ − Jx ′)�x ′�y′

(15)

where the angular velocity of the sail measured in the reference frame F ′ is related to the
time rate of change of Euler angles (see “Appendix 1”).

�̇�′ = (ζ̇X − sX ζ̇Z ) x̂ ′ + (cX ζ̇Y + cY sX ζ̇Z ) ŷ′ + (−sX ζ̇Y + cY cX ζ̇Z ) ẑ′ (16)

and where the dot symbol represents the time derivative. The displacement, velocity, attitude,
and angular velocity of the sail may be found by simultaneously solving coupled equations,
Eqs. (13)–(16).
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4 Linear stability analysis of a diffractive sail

From a practical point of view we desire the sail to accelerate in the Ẑ direction, while
otherwise at an equilibrium position centered on the beam and an equilibrium attitude with
the sail axis parallel to the optical axis. To determine whether a given set of system parameters
satisfies this requirement, linear stability analysis is applied [50]. Let us define a state vector:
q = [δX , δY , ζX , ζY , δ̇X , δ̇Y , �̇X , �̇Y ]T . The linearized equations of motion for translation
and rotation may be expressed:

q̇ = �0q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

δ̇X
δ̇Y
�̇X

�̇Y

δ̈X
δ̈Y
�̈X

�̈Y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
�1 �2 0 0 0 0 0 0
�3 �4 0 0 0 0 0 0
0 0 �5 �6 0 0 0 0
0 0 �7 �8 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

q0

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

δX
δY
ζX
ζY
δ̇X
δ̇Y
�̇X

�̇Y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(17)

where �0 is calculated at the equilibrium state q0 = 0:

�1 = 1

M

∂(FX/F0)

∂δX

∣∣∣∣
q0

, �2 = 1

M

∂(FX/F0)

∂ζY

∣∣∣∣
q0

, �3 = 1

Jy′

∂(Ny′/N0)

∂δX

∣∣∣∣
q0

,

�4 = 1

Jy′

∂(Ny′/N0)

∂ζY

∣∣∣∣
q0

,

�5 = 1

M

∂(FY /F0)

∂δY

∣∣∣∣
q0

, �6 = 1

M

∂(FY /F0)

∂ζX

∣∣∣∣
q0

, �7 = 1

Jx ′
∂(Nx ′/N0)

∂δY

∣∣∣∣
q0

,

�8 = 1

Jx ′
∂(Nx ′/N0)

∂ζX

∣∣∣∣
q0

(18)

By calculating the eigenvalues of the Jacobian of �0, we determine complex frequencies that
correspond to state solutions having the time-dependent form exp(γa,bt), where real values
of γa,b provide exponential damping or gain, and imaginary values provide oscillations. Four
complex frequencies are found which satisfy:

γa = ±
√

1

2

(
�1 + �4 ±

√
(�1 − �4)2 + 4�2�3

)
≡ γa,r + iωa (19a)

γb = ±
√

1

2

(
�5 + �8 ±

√
(�5 − �8)2 + 4�6�7

)
≡ γb,r + iωb (19b)

where γa,r , γb,r , ωa , ωb are real values. The conditions for linear stability are γa,r ≤ 0 and
γb,r ≤ 0, i.e., exponential growth is prohibited. For γa,r = γb,r = 0 as found below, the sail
oscillates about the equilibrium point with four characteristic periods that depend on system
parameters such as the grating period, the size of the sail, the beam size and power, and the
moment of inertia of the light sail. What is more, for the symmetric system considered in this
report �1 = �5 < 0, �4 = �8 = 0, and �2�3 = �6�7 < 0, �2

1 > 4|�2�3| and we therefore
find two degenerate frequencies: a high frequency ωh and a low frequency ωl satisfying

ω2
h = (1/2)(ω2

0 + �2) (20a)

ω2
l = (1/2)(ω2

0 − �2) (20b)
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Table 1 List of parameters and
values

Parameters Value

Light Sail

Grating period, � 1.6µm

Diffraction order, m −1

Radius, a 1.0 m

Mass, Ms 0.50 g

Payload mass, Mp 0.50 g

Boom length, Db 15.0 m

Boom mass, Mb 0.17 g

Total mass, M 1.17 g

Moments of inertia, J ′
x , J

′
y 0.06 kg m−2

Moments of inertia, J ′
z 0.25 g m−2

Radius of gyration, Rg 7.13 m

Laser beam

Power, P0 10 kW

Gaussian beam waist, w0 0.5 m

Wavelength, λ 1.0 µm

Diffraction length, Z0 0.79 × 106m

System

�1 = �5 −0.04 kg−1m−1

�2 = �6 0.05 kg−1rad−1

�3 = �7 −0.005 kg−1m−3

�4 = �8 0 kg−1m−2rad−1

ω0 0.2 rad/s

� 0.157 rad/s

ωl 0.087 rad/s

ωh 0.18 rad/s

Th 35 s

Tl 72 s

Initial conditions (t = 0):

Displacement, (δX , δy) (0.1 m, −0.1 m)

Attitude, (ζX , ζY ) (1◦,−1◦)

Linear velocity, (δ̇X , δ̇Y ) (0,0)

Angular velocity, (�̇X , �̇Y ) (0,0)

where ω2
0 = �1 + �4 = �5 + �8 and �2 = ((�1 − �4)

2 + 4�2�3)
1/2 = ((�5 − �8)

2 +
4�6�7)

1/2. Therefore we expect the system to display two oscillation modes when excited
close to equilibrium.

5 Numerical solutions

Closed-form solutions of the system equations of motion generally do not exist, and therefore,
numerical integration methods must be applied. For a representative non-optimized case we
examined a laser-sail system having parameters listed in Table 1. We assumed a beam power
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Fig. 2 Normalized components of a, c, e force and b, d, f torque as a function of transverse displacement,
δX,Y , and attitude, ζX,Y , where F0 = 2P0/c and N0 = F0Db/2

of P0 = 10[kW] (as was used in microwave beam-rider experiments [17,18]) illuminating a
sail of radius a = 1[m], with the beam waist w0 = 0.5[m] under-filling the sail.

We numerically computed Eqs. (13)–(16) for different initial values of linear and angular
displacement, plotting the results in Fig. 2. The linear nature of the force and torque near-
equilibrium is clearly evident in Fig. 2 for the range |δX,Y /a| < 0.5 and |ζX,Y | < 2.5◦.
We also observe that the force along the beam axis reaches roughly 90% of the maximum
theoretical value of 2P0/c. Furthermore, the value of the roll torque N ′

z is zero, and thus the
system does not acquire angular momentum about the sail axis. Changing only the angle ζX
(ζY ) at equilibrium we also find that the torque N ′

Y (N ′
X ) is zero valued.

A perspective of the net force exerted on the sail at equilibrium is depicted in Fig. 3a
where local transverse components of force are displayed, resulting in no net transverse
force. Similarly, the net torque exerted on the sail at equilibrium is depicted in Fig. 3b where
local transverse components of torque, are displayed, resulting in no net transverse torque.
If the sail is displaced from equilibrium to the right, as in Fig. 3c the net force drives the sail
to the left. In Fig. 3d the net torque is in the −Ŷ direction.

Values of the slopes at the equilibrium points are obtained from Fig. 2, which along with
the mass and moments of inertia in Table 1 allow us to determine the values of � j (see
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Fig. 3 Local forces and torques exerted on an non-tilted axicon sail when the sail and optical axis are a, b
co-linear, and c, d displaced. c The net force drives the sail toward the beam axis (X, Y ) = (0, 0)

Eq. (18)). Inserting � j into Eq. (20) we find ωh = 0.18[rad/s] and ωl = 0.087[rad/s], with
respective oscillation periods Th = 35[s] and Tl = 72[s]. For a higher power laser beam P̃
we expect proportionally more optomechanical energy to be pumped into the system [28],
resulting in higher squared values of frequency and lower squared values of the oscillation
periods, T̃h,l . Therefore

T̃h,l = (P0/P̃)1/2Th,l (21)

For example, if P = 1 [GW] the periods are expected to decrease to Th = 11 [ms] and
Tl = 228 [ms].

Solutions of the equations of motion for a given set of initial conditions were numerically
solved by use of the fourth-order Runge–Kutta method. An example that illustrates stable
motion for small perturbations from equilibrium is shown in Fig. 4 for the system initially
at rest and displaced: δX/a = −δY /a = 0.1 and ζX = −ζY = 1◦. The phase diagrams
correspond to an elapsed time of t = 780Th = 27,400 [s]. During this time the sail acquires
a speed of �vZ = 1.4 [km/s] and traverses a distance of �Z = 19 × 106 [km] = 25Z0,
assuming the beam size is controlled, so that it does not overfill the sail. As expected from
our linear stability analysis, the system remains stable under this condition. The acceleration
aZ = 0.51[m/s2] may be increased in proportion to the laser power, thereby providing
values of �vZ that are relevant for orbit-changing maneuvers, although the high oscillation
frequencies (see above) may become mechanically intolerable if not damped.

An examination of Fig. 5 indicates that force and torque are nonlinearly related to linear
and angular displacements for |δX,Y /a| � 0.5 and |ζX,Y | � 2.5◦. Below these bounds the
system may be characterized by linear and torsional spring models with stiffness values equal
to the slopes in Fig. 2. Close to the nonlinear bounds the springs become soft and less able
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Fig. 4 Phase plot for oscillations a, b along transverse direction and c, d in attitude about (X̂ , Ŷ ) is shown,
for an initial condition qqq = [0.1,−0.1, 1◦,−1◦, 0, 0, 0, 0]T and time t = 27,400 [s]

to provide a restoring force or torque. Beyond these bounds the system is driven away from
equilibrium. To explore how the departure from linear behavior affects the range of stable
motion for the system described in Table 1 we varied the initial conditions across the range
δX,Y ∈ [−a, a], or ζX,Y ∈ [−10◦, 10◦], with δ̇X,Y = �̇X,Y = 0. We then numerically
integrated the coupled equations of motion, categorized the observed motion as stable or
unstable, and summarized the results in the stability maps shown in Fig. 5. The stable range
of linear displacement (assuming ζX,Y = δ̇X,Y = �̇X,Y = 0 at t = 0 indicates a stability zone
defined by δ2

X + δ2
Y ≤ (0.3a)2 where the radius 0.3a is significantly smaller than the bound

δX,Y = 0.5a. We attribute this smaller zone to the weak force stiffness at 0.3a and coupling
to motion in other degrees of freedom that do not provide an attraction to equilibrium. A
linear zone boundary was found when varying both δX and ζY (with other state parameters
equal to zero), and is shown in Fig. 5b. An examination of Fig. 5b indicates that the force at
ζY = 6◦ is equal and opposite to the force at δX = 0.3a, suggesting both a reason and an
equivalence for the stability boundaries at δX = 0.3a and ζY = 6◦. The same zone boundary
relation was found when varying δY and ζX . According to Fig. 5c the system stability is more
robust to simultaneous displacements along and rotations about a common axis. Finally, we
explore an example where variations of the boom length and beam size affect stability. In
this example, we selected the initial condition: δX = −δY = 0.1a and ζX = −ζY = 1◦. As
shown in Fig. 5d the system is generally more stable for long boom lengths, but for a given
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Fig. 5 Regions of optomechanical stability for a relative linear displacement δX /a versus δY /a, b orthogonal
linear displacement and attitude axes, δX /a versus ζY (or δY /a versus ζX ), c parallel linear displacement and
attitude axes, δX /a versus ζX (or δY versus ζY ) and d relative laser beam width versus relative boom length
w0/a versus Db/a

beam size there is a minimum boom length below which the system is unstable. For example,
if the beam radius equals half the sail radius, w0 = a/2, as listed in Table 1, we predict
a minimum boom length of Db = 10a. In comparison we made our numerical studies in
Section 3 for a boom length of Db = 15a, well into the stable regime. We also predict that
stable motion may be achieved when the beam overfills the sail (i.e., w0 > a), but only if
the boom length is made significantly larger than the sail radius. For example if w0 = a,
stability requires Db > 28a.

6 Summary

Diffraction-based light sails provide a design flexibility that is not afforded by reflective sails.
This is attributed to the controlled redirection of light by an engineered diffractive surface
rather than a deformed reflective surface. We have described the optomechanics of a rigid
non-spinning laser-driven sail comprised of a reflective axicon diffraction grating and a pay-
load attached to a boom. A single diffraction order is assumed, producing diffraction toward
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the optical axis. Such diffraction affords passive stability while also providing longitudinal
acceleration along the beam axis. Our example exhibited 90% of the maximum theoretical
value of force along the optical axis, with the 10% deficit sacrificed to achieve beam-riding
stability against transverse perturbations as large as 30% of the sail radius and attitude per-
turbations as large as 6◦. Numerical methods were used to integrate the coupled equations of
motion, allowing us to illustrate stable oscillations and to map regions of stable and unstable
motion. A linear stability analysis predicted as many as four modes of oscillation, reducing
to two degenerate frequencies for our symmetric structure. Both the attitude and transverse
motion exhibited the two frequencies. The squared frequency was found to increase linearly
with beam power. Our optomechanical model may be readily extended to include complex
diffractive structures, complex beam shapes, modulated beam power, and a spinning sail.
The model requires further work to include the Doppler effect [51], mechanical compliance,
and center-of-mass center-of-pressure offsets. Advanced features that may be integrated into
the diffractive sail include active attitude control [31,45,52].
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Appendix 1: Euler angles

LetF = {X̂ , Ŷ , Ẑ} represent the reference frame of a stationary coordinate system andF ′ =
{x̂, ŷ, ẑ} represent a rotated reference frame. The two frames of reference with orthonormal
coordinate systems can be aligned by three consecutive rotations given by Euler angles
ζζζ ∈ {ζZ , ζY , ζX }. As per Euler theorem, two consecutive rotations have to be made about
different axis. We make use of the ZY X Euler angle sequence with rotation matrices:

ξZ =
⎛

⎝
cZ sZ 0

−sZ cZ 0
0 0 0

⎞

⎠ , ξY =
⎛

⎝
cY 0 −sY
0 1 0
sY 0 cY

⎞

⎠ , ξX =
⎛

⎝
1 0 0
0 cX sX
0 −sX cX

⎞

⎠ (22)

where ξ j is the rotation about j-th axis by angle ζ j and c j = cos ζ j and s j = sin ζ j , and
j = X , Y , or Z , with the singularity restriction ζY ∈ (−π/2, π/2) and ζX,Z ∈ (0, 2π). The
rotated frame may be expressed F ′ = ξξξF where

ξξξ = ξX ξY ξZ =

⎡

⎢⎢
⎣

cY cZ cY sZ −sY
sX sY cZ − cX sZ sX sY sZ + cXcZ sXcY
cX sY cZ + sX sZ cX sY sZ − sXcZ cXcY

⎤

⎥⎥
⎦ (23)
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Conversely we may write F = ξξξ−1F ′ where

ξξξ−1 = ξξξ T =
⎡

⎣
cY cZ sX sY cZ − cX sZ cX sY cZ + sX sZ
cY sZ sX sY sZ + cXcZ cX sY sZ − sXcZ
−sY sXcY cXcY

⎤

⎦ (24)

The angular velocity ��� depends on the time rate of change of Euler angles ζ̇̇ζ̇ζ =
[ζ̇X , ζ̇Y , ζ̇Z ]T where ζ̇ j = dζ j/dt . For the ZY X sequence of Euler angles, the angular
velocity in the two frames may be expressed [53]:

���′ = ��� =
⎛

⎝
1 0 −sx
0 cX cY sX
0 −sX cY cX

⎞

⎠

⎛

⎝
ζ̇X
ζ̇Y
ζ̇Z

⎞

⎠ (25)

and the angular velocity vectors are expressed

����′ = (ζX − sX ζZ )x̂ ′ + (cxζY + cY sX ζZ )ŷ′ + (−sxζY + cY cX ζZ )ẑ′ (26a)
���� = (ζX − sX ζZ )X̂ + (cxζY + cY sX ζZ )Ŷ + (−sxζY + cY cX ζZ )Ẑ (26b)

Appendix 2: Rotation of diffraction efficiency vectors

For an arbitrarily orientated sail with respect to a stationary frame, the incident beam, grating
vector, and diffracted beam are expressed:

�ki = (2π/λ)Ẑ and �k′
i = (2π/λ)(−sY x̂ ′ + sXcY ŷ′ + cXcY ẑ′) (27a)

�K = −(2π/�)(cos ψ x̂ ′ + sin ψ ŷ′) (27b)
�k′
d = (2π/λ)(Ax ′ x̂ ′ + Ay′ ŷ′ + Az′ ẑ

′) (27c)

where

Ax ′ = ki,x ′ − mKx ′ = −sY − (mλ/�) cos ψ (28a)

Ay′ = ki,y′ − mKy′ = sXcY − (mλ/�) sin ψ (28b)

Az′ = kd,z′ = ±
√

1 − A2
x ′ − A2

y′ (28c)

In the stationary frame, the diffracted beam components are expressed

�kd = (2π/λ)(BX X̂ + BY Ŷ + BZ Ẑ) (29)

where
⎡

⎣
BX

BY

BZ

⎤

⎦ =
⎡

⎣
cY cZ sX sY cZ − cX sZ cX sY cZ + sX sZ
cY sZ sX sY sZ + cXcZ cX sY sZ − sXcZ
−sY sXcY cXcY

⎤

⎦

⎡

⎣
Ax ′
Ay′
Az′

⎤

⎦ = ξξξ T

⎡

⎣
Ax ′
Ay′
Az′

⎤

⎦ (30)

The photon momentum transfer efficiency imparted to the sail may be expressed

�η′ =
(�k′

i − �k′
d

)
/(2π/λ) and �η =

(�ki − �kd
)

/(2π/λ) (31)
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or

ηx ′ =
(�k′

i − �k′
d

)
/(2π/λ) = (−sY − Ax ′) (32a)

ηy′ =
(�k′

i − �k′
d

)
/(2π/λ) = (sXcY − Ay′) (32b)

ηz′ =
(�k′

i − �k′
d

)
/(2π/λ) = (cXcY − Az′) (32c)

and

ηx =
(�ki − �kd

)
/(2π/λ) = −BX (33a)

ηy =
(�ki − �kd

)
/(2π/λ) = −BY (33b)

ηz =
(�ki − �kd

)
/(2π/λ) = 1 − BZ (33c)

Appendix 3: Homogeneous coordinates

Let [X, Y, Z ]T be the Cartesian coordinates of a point in a reference frame F with origin
O and a right-handed basis {X̂ , Ŷ , Ẑ}. The homogeneous coordinates of the point may be
expressed [54]

F = [X, Y, Z , 1]T (34)

Similarly, a second frame F ′ with origin O ′ and right-handed basis {x̂ ′, ŷ′, ẑ′} is expressed

F ′ = [x ′, y′, z′, 1]T (35)

A displacement δδδ = [δX , δY , δZ ]T and rotation ξξξ of F ′ with respect to F may be written as
a matrix operation:

F ′ = HF or

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

[
ξξξ δδδ

0 0 0 1

]
⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

cY cZ cY sZ −sY δX
sX sY cZ − cX sZ sX sY sZ + cXcZ sXcY δY
cX sY cZ + sX sZ cX sY sZ − sXcZ cXcY δZ

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦ (36)

where H is the homogeneous transformation matrix [55] and ZYX sequence of Euler angles
is assumed to calculate the rotation matrix ξξξ (see Eq. (23)). The inverse mapping from F ′
to F may be expressed:

F = H−1F ′ or

⎡

⎢⎢
⎣

X
Y
Z
1

⎤

⎥⎥
⎦ = H−1

⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ =

[
ξξξT −ξξξ Tδδδ

0 0 0 1

]
⎡

⎢⎢
⎣

x ′
y′
z′
1

⎤

⎥⎥
⎦ (37)
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where H−1 is expressed

H−1 =

⎡

⎢⎢
⎣

cY cZ sX sY cZ − cX sZ cX sY cZ + sX sZ −(cY cZ )δX − (sX sY cZ − cX sZ )δY − (cX sY cZ + sX sZ )δZ

cY sZ sX sY sZ + cX cZ cX sY sZ − sX cZ −(cY sZ )δX − (sX sY sZ + cX cZ )δY − (cX sY sZ − sX cZ )δZ
−sY sX cY cX cY −(−sY )δX − (sX cY )δY − (cX cY )δZ

0 0 0 1

⎤

⎥⎥
⎦

(38)
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