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Abstract A novel link between monotone metric tensors and actions of suitable extensions
of the unitary group on the manifold of faithful quantum states is presented here by means of
three illustrative examples related with the Bures–Helstrom metric tensor, the Wigner–Yanase
metric tensor, and the Bogoliubov–Kubo–Mori metric tensor.

1 Introduction

In this work, a preliminary analysis of the relation between monotone metric tensors on the
manifold of faithful quantum states and group actions of suitable extensions of the unitary
group is presented. In the context of Quantum Information Geometry of finite-dimensional
systems with Hilbert space H, the unitary group U(H) plays the role of universal symmetry
group for the class of the so-calledmonotone metric tensors on the space S+ of faithful states
(invertible density operators H) providing the quantum counterpart of the classical Fisher–
Rao metric tensor [35,40]. Specifically, the unitary group U(H) acts on quantum states (and
more generally on the whole space V of Hermitian operators on H) according to the standard
action

φ(U, ρ) ≡ φU(ρ) = U ρ U†, (1)

where ρ is a quantum state and U ∈ U(H), and φU represents an isometry of every monotone
metric tensor G because of the requirement of monotonicity under completely positive, trace-
preserving maps representing the quantum version of classical coarse graining [35,40]. From
the infinitesimal point of view, the action φ is described in terms of the fundamental vector
fields on S+ providing an anti-representation of the Lie algebra u(H) of the unitary group.
These vector fields, denoted by Xb with b an Hermitian operator on H (more on this in
Sect. 2), are Killing vector fields for all the monotone metric tensors because U(H) acts by
means of isometries.

Now, the Lie algebra u(H) is a Lie-subalgebra of the space B(H) of bounded linear
operators on H endowed with the Lie product given by the commutator [·, ·] between linear
operators. In particular, it turns out that B(H) (endowed with [·, ·]) is isomorphic to the Lie
algebra of the complexification of U(H), namely to the Lie algebra of the Lie group GL(H)

consisting of invertible linear operators on H. Furthermore, it is known [9,15,26,27] that
GL(H) acts on the manifold S+, and more generally on the whole space of quantum states
S , according to
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α(g, ρ) = g ρ g†

Tr(gρg†)
, (2)

where g ∈ GL(H). Clearly, if g ∈ U(H) ⊂ GL(H), we obtain again the standard action φ of
U(H) introduced above. The fundamental vector fields of α provide an anti-representation
of the Lie algebra of GL(H) that “contains” the fundamental vector fields Xb of the action φ

of U(H) together with some complementary vector fields, written as Ya with a an Hermitian
operator on H (more on this in Sect. 2), which do not close a Lie algebra on their own.

These complementary vector fields were shown to be essential ingredients in the geo-
metric formulation of the Gorini–Kossakowski–Lindblad–Sudarshan equation governing the
dynamical evolution of open quantum systems [10,13], while their role in the context of
Quantum Information geometry is not completely clear. As will be noted in Sect. 2, the Ya
are essentially the Symmetrized Logarithmic Derivative introduced by Helstrom [30–32].
Moreover, it will also be shown that the Ya are the gradient vector fields associated with the
expectation value functions of quantum observables (Hermitian operators on H) given by

fa(ρ) = Tr(ρ a) (3)

by means of the monotone metric tensor GBH known as the Bures–Helstrom metric tensor
[7,21,22,30,47].

Reading this instance backward, we can say that the gradient vector fields associated
with the fa by means of the Bures–Helstrom metric tensor, together with the Xb, provide
a representation of a Lie algebra “enlargement” of u(H), namely the Lie algebra of the
complexification GL(H) of U(H), and this representation integrates to the group action α of
GL(H) described above.

Since the Bures–Helstrom metric tensor GBH is only one of the (infinitely many) possible
quantum counterparts of the Fisher–Rao metric tensor, it is reasonable to ask if GBH is the only
metric tensor among the monotone ones for which such an instance is realized. Specifically,
given a monotone metric tensor G (Quantum Fisher–Rao metric tensor), the question is if the
gradient vector fields that it is possible to associated with the expectation value functions,
together with the universal Killing vector fields Xb, provide a representation of a Lie algebra
integrating to a group action. In the following sections, we will answer this question in the
affirmative by providing explicit examples.

It will be proved in Sect. 3 that the Xb together with the gradient vector fields, say Wa,
associated with the functions fa by means of the monotone metric tensor GWY known as the
Wigner–Yanase metric tensor [24,25,28,29] provide an anti-representation of the Lie algebra
of GL(H) integrating to the action Θ of GL(H) given by

Θ(g, ρ) =
(
g

√
ρ g†

)2

Tr
((

g
√

ρ g†
)2

) . (4)

This action is clearly different from α, but reduces to φ if unitary elements are considered.
The action Θ can be extended to the whole space of states S , and it is easy to see that the
orbits of this action are precisely the manifolds of quantum states with fixed rank, in analogy
with what happens for the action α. In particular, Θ preserves the manifold S1 ∼= CP(H) of
pure (rank-1) quantum states, and, since every pure state ρp satisfies ρ2

p = ρp , it is easy to
check that

Θ(g, ρp) = α(g, ρp) (5)

for every g ∈ GL(H), and every pure state ρp , while, in general, α is different from Θ on
mixed states.
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The fact that both actions α and Θ can be extended to (and agree on) the space S1 ∼=
CP(H) of pure quantum states is particularly interesting when it is noted that both the Bures–
Helstrom metric tensor and the Wigner–Yanase metric tensor belong to the particular subset
of monotone metric tensors admitting what is known as a “radial limit” to the space of pure
quantum states [41] which is (proportional to) the metric tensor onS1 ∼= CP(H) given by the
Fubini–Study metric tensor. This may suggest that the “radial limit” of the monotone metric
has something to do with the extension of the associated group action to the pure quantum
states (if the group action exists, of course).

In support to this intuition, it will be shown in Sect. 4 that there is at least one monotone
metric tensor which does not admit a “radial limit” and whose associated group action does
not extend to the space of pure states. Curiously, this monotone metric tensor is associated
with the action of an enlargement of U(H) different from GL(H), and connected with a
structure of Lie algebra on B(H) which is different from the standard one given by the
commutator. Specifically, the space B(H) may be endowed with a structure of Lie algebra
which is isomorphic to the Lie algebra of the cotangent Lie group T ∗U(H) ∼= U(H)�Ad∗ V
of the unitary group [2,3]. Here, V denote the space of Hermitian operators on H, and Ad∗
is the co-adjoint action of U(H) on V when the latter is identified with the dual of the Lie
algebra u(H) (more on this in Sect. 4). Up to now, and at the best of the author’s knowledge,
the role of T ∗U(H) in Quantum Information Geometry is yet to be properly understood, and,
as a preliminary step in this direction, in Sect. 4, it is proved that T ∗U(H) acts on S+ by
means of the action Ξ given by

Ξ((U, a), ρ) = eU ln(ρ)U†+a

Tr(eU ln(ρ)U†+a)
. (6)

This action reduces to the standard action φ when restricted to the unitary group U(H).
Moreover, it will be proved that the Xb together with the gradient vector fields associated
with the fa by means of the monotone metric tensor GBKM known as the Bogoliubov–Kubo–
Mori metric tensor [23,36,37,39,42], and denoted by Za, are the fundamental vector fields
for the action Ξ . The explicit expression of Ξ given above cannot be extended outside the
space S+ of faithful quantum states because the logarithm of a non-faithful (non-invertible)
quantum state is not defined. One may argue that this is not enough to conclude that Ξ

does not extend to the space of pure states because the expression of Ξ given above may
suitably change when a non-faithful state is considered. However, since the tangent vector at
ρ associated with the vector field Za is given by

Za(ρ) = d

dt

(
eln(ρ)+ta

Tr
(
eln(ρ)+ta

)

)

t=0

=
∫ 1

0
dλ

(
ρλ a ρ1−λ

) − Tr(ρ a) ρ , (7)

if we take ρ to be a pure state, then ρ = |ψ〉〈ψ | for some normalized vector in H, ρλ = ρ1−λ,
and it is easy to check that Za(ρ) = 0. This means that the infinitesimal version of the action
Ξ does not extend properly to the space of pure quantum states.

In Sect. 5, a brief discussion elucidates the future developments that may be followed
starting from the results presented here. In particular, it will be argued that the unitary invari-
ance satisfied by every monotone metric tensor G is powerful enough to impose a particular
constraint on the possible Lie algebra enlargement of u(H) which could be linked to G in
the way described above.

Finally, a note on the methodology followed in the rest of the work. For the sake of
simplicity, the case of not-normalized quantum states will be considered first, and the case
of normalized states will be discussed after. This will reduce to the minimum the complexity
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of the computations involved because the normalized case always requires the introduction
of a suitable denominator factor that brings in some additional computational complexity
without, however, changing the conceptual scheme of things.

2 Bures–Helstrom metric tensor

Let P+ ⊂ B(H) be the set of strictly positive operators on H. Elements in P+ can be
interpreted as not-normalized quantum states, and they form an homogeneous space of the
general linear group GL(H) with respect to the action [15,26,27]

α̃(g, ρ) := g ρ g† . (8)

The Lie algebra of GL(H) is the whole algebra B(H) of bounded linear operators on H
endowed with the canonical commutator operator. Since every element in B(H) can be
uniquely written as the sum of an Hermitian element a and a skew-Hermitian element ib,
where b is self-adjoint, the fundamental vector fields of α are indexed by couples (a,b).
These vector fields are written as Γ̃ab. Considering the smooth curve

gt = e
t
2 (a+ib), (9)

the tangent vector Γ̃ab(ρ) at ρ can easily be computed to be

Γ̃ab(ρ) = d

dt
(̃α(gt , ρ))t=0 = 1

2
(ρ a + a ρ) + 1

2i
(ρ b − b ρ) . (10)

We may decompose Γab according to

Γab = Ya + Xb, (11)

where the vector fields Ya and Xb are such that

Ya(ρ) := 1

2
(ρ a + a ρ) ≡ {ρ, a}

Xb(ρ) := 1

2i
(ρ b − b ρ) ≡ [[ρ, b]] .

(12)

The vector fields Xb provide an anti-representation of the Lie algebra u(H) of the unitary
group U(H) [15,26,27] integrating to the action φ of U(H) mentioned in the introduction
and given by Eq. (1). On the other hand, the vector fields Ya do not close a Lie algebra, and
may be thought of as complementary vector fields that are needed in order to enlarge the anti-
representation of u(H) to an anti-representation of the Lie algebra of the complexification
GL(H) of U(H). Moreover, it is worth noting that the tangent vector Ya(ρ) provides a
geometrical version of the Symmetric Logarithmic Derivative at ρ widely used in quantum
estimation theory and metrology [30–32,38,44,46].

It will now be proved that the vector field Ya is the gradient vector field associated with
the function fa given by

fa(ρ) = Tr(ρ a) (13)
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by means of the Bures–Helstrom metric tensor GBH on P+. The Bures–Helstrom metric
tensor GBH [7,21,22,30,47] may be extracted from the Bures distance

d2
B(ρ, σ ) = 2

(
Trρ + Trσ − 2Tr

(√√
ρ σ

√
ρ

))
(14)

according to the general procedure used in (Classical and Quantum) Information Geometry
and given by

(GBH(X, Y )) (ρ) = − d

dt

d

ds

(
d2
B

(
γ X
ρ (t), γ Y

ρ (s)
))

t,s=0
, (15)

where X and Y are arbitrary vector fields, and γ X
ρ (t) and γ Y

ρ (s) their integral curves starting
at ρ.

Remark 1 Note that, in the literature, the Bures–Helstrom metric tensor GBH is also called
“Quantum Fisher Metric” [8,33,43,50,51], while the Bures metric tensor GB is usually
defined to be the metric tensor associated with half the distance function in Eq. (14), and
it holds GBH = 4GB . Moreover, what will be proved below for the Bures–Helstrom metric
tensor GBH holds also for the Bures metric tensor GB provided we replace d2

B with 1
2 d2

B ,
and a with 2a in all the expressions. The choice made here of using GBH instead of GB is
essentially due to the fact that GBH may be thought of as the “natural” counterpart of the
Fisher–Rao metric tensor in the context of (finite-dimensional) von Neumann algebras as
explained in [20].

To actually prove that Ya is the gradient vector field associated with fa by means of GBH,
we have to prove that

GBH(X, Ya) = LX fa, (16)

where X is an arbitrary vector field and LX denote the Lie derivative with respect to X . We
start computing

(GBH(X, Ya)) (ρ) = 4
d

dt

d

ds
Tr

(√√
γ X
ρ (t)γYa

ρ (s)
√

γ X
ρ (t)

)

s,t=0

. (17)

To perform the computation, we define the strictly positive operator Cs,t , depending para-
metrically on s and t , given by

Cs,t :=
√

γ X
ρ (t)γYa

ρ (s)
√

γ X
ρ (t). (18)

Then, we perform a series expansion for
√
Cs,t around the identity matrix I obtaining

√
Cs,t =

∞∑

k=0

ck
(
Cs,t − I

)k

=
∞∑

k=0

ck
(√

γ X
ρ (t)γYa

ρ (s)
√

γ X
ρ (t) − I

)k
. (19)

Using the Leibniz rule and the cyclicity of the trace, the expression for the series expansion
of the derivative of a function, and the Leibniz rule again, we obtain

(GBH(X, Ya)) (ρ) = 4
d

dt

d

ds

∞∑

k=0

ck Tr
(
Cs,t − I

)k ∣∣∣
t,s=0
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= 4
d

ds

( ∞∑

k=1

ck kTr

(
(
Cs,0

)k−1 d

dt

(
Cs,t

)
t=0

))

s=0

= 2
d

ds

(
Tr

(
(
Cs,0

)− 1
2

d

dt

(
Cs,t

)
t=0

))

s=0

= 2Tr

(
ρ−1 d

ds

d

dt

(
Cs,t

)
s,t=0

)

+2Tr

(
d

ds

(
(
Cs,0

)− 1
2

)

s=0

d

dt

(
C0,t

)
t=0

)
(20)

Now, we recall the equality [45]

d

dt

(√
γ X
ρ (t)

)

t=0
= A−1√

ρ
(X (ρ)), (21)

where we introduced the superoperator A√
ρ(b) = √

ρ b + b
√

ρ. Accordingly, using the
Leibniz rule and Eq. (21), we have

d

dt

(
Cs,t

)
t=0 = d

dt

(√
γ X
ρ (t)γYa

ρ (s)
√

γ X
ρ (t)

)

t=0

= A−1√
ρ
(X (ρ))γYa

ρ (s)
√

ρ + √
ργYa

ρ (s)A−1√
ρ
(X (ρ)), (22)

which implies
d

dt

(
C0,t

)
t=0 = A−1√

ρ
(X (ρ))ρ

3
2 + ρ

3
2 A−1√

ρ
(X (ρ)), (23)

and we also have

d

ds

d

dt

(
Cs,t

)
s,t=0 = A−1√

ρ
(X (ρ))Ya(ρ)

√
ρ + √

ρYa(ρ)A−1√
ρ
(X (ρ)). (24)

Inserting Eq. (24) into Eq. (20), recalling that

Ya(ρ) = {ρ, a} = 1

2
(ρa + aρ) , (25)

and exploiting again the cyclicity of the trace, we obtain

(GBH(X, Ya)) (ρ) = Tr (a X (ρ)) + Tr
(
ρ− 1

2

(
A−1√

ρ
(X (ρ))ρa + aρA−1√

ρ
(X (ρ))

))

+ 2Tr

(
d

ds

((
Cs,0

)− 1
2

)

s=0

d

dt

(
C0,t

)
t=0

)
.

(26)

To perform the last derivative with respect to s, we exploit the identity [45]

d

ds

(
(
√

ρ γYa
ρ (s)

√
ρ)−

1
2

)

s=0
= −ρ− 1

2 A−1
ρ (Ya(ρ)) ρ− 1

2 , (27)

which becomes
d

ds

(
(
√

ρ γYa
ρ (s)

√
ρ)−

1
2

)

s=0
= −1

2
ρ− 1

2 a ρ− 1
2 (28)

because of Eq. (25). Inserting Eqs. (28) and (23) into Eq. (26), and exploiting once again the
cyclicity of the trace, we arrive at the final expression

(GBH(X, Ya)) (ρ) = Tr (a X (ρ)) (29)
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On the other hand, the Lie derivative LX fa is easily seen to be

(LX fa) (ρ) = d

dt
fa

(
γ X
ρ (t)

)

t=0

= d

dt
Tr

(
a γ X

ρ (t)
)

t=0

= Tr (a X (ρ)),

(30)

so that we have
GBH (X, Ya) = LX fa, (31)

and thus Ya is actually the gradient vector field associated with fa by means of the Bures–
Helstrom metric tensor GBH.

Normalized states

The normalized case is easily obtained from the not-normalized one. Indeed, letS+ denote the
manifold of faithful, normalized quantum states. This is the submanifold of P+ determined
by the (affine) constraint Trρ = 1 for every ρ ∈ S+. It is easily seen that the action α given
in Eq. (8) does not preserve S+ unless we restrict to the unitary group, which means that
the Xb’s are tangent to S+. However, it is possible to deform the action α̃ to an action α

preserving S+ by setting [9,10,15,27]

α(g, ρ) := α̃(g, ρ)

Tr(̃α(g, ρ))
= g ρ g†

Tr(g ρ g†)
. (32)

Then, we may proceed following the steps outlined before, thus obtaining the fundamental
vector fields

Γab = Ya + Xb, (33)

where the Xb’s are the vector fields generating the standard action of the unitary group, and
the Ya’s are given by

Ya(ρ) = d

dt

⎛

⎝ e
t
2 a ρ e

t
2 a

Tr
(

e
t
2 a ρ e

t
2 a

)

⎞

⎠

t=0

= {ρ, a} − Tr(ρa) ρ. (34)

The Bures–Helstrom metric tensor onS+ is the metric tensor associated with the pullback
to S+ (with respect to the canonical immersion) of the Bures distance in Eq. (14). With an
evident abuse of notation, we denote by d2

B the pullback to S+ of the Bures distance given
by

d2
B(ρ, σ ) = 4

(
1 − Tr

(√√
ρ σ

√
ρ

))
(35)

and by GBH the associated metric tensor on S+.
Then, the computations performed in the case of not-normalized states may be easily

adapted to prove that
GBH(X, Ya) = LX fa , (36)

for every vector field X on S+, and where fa is the pullback to S+ of the smooth function
fa on P+, with another evident abuse of notation. From this, we conclude that every vector
field Ya is the gradient vector field associated with the smooth function fa by means of the
Bures–Helstrom metric tensor GBH.
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3 Wigner–Yanase metric tensor

Let us consider the diffeomorphism ϕ : P+ −→ P+ given by

ϕ(ρ) := √
ρ, (37)

and its inverse
ϕ−1(ρ) = ρ2. (38)

By means of this diffeomorphism, we may define another action Θ̃ of GL(H) on P+ given
by

Θ̃(g, ρ) := ϕ−1 ◦ α̃g ◦ ϕ(ρ) = (
g

√
ρ g†)2

, (39)

where we have set α̃g(ρ) = α̃(g, ρ) with α̃ the action given in Eq. (8). Clearly, Θ̃ is different
from α̃ in general, but, if we take g = U in the unitary group, we have

Θ̃(U, ρ) = (
U

√
ρ U†)2 = U ρ U† = φ(U, ρ). (40)

Following the steps outlined in the previous section, it is easy to show that the fundamental
vector fields Ψ̃ab of Θ̃ decompose as

Ψ̃ab = Wa + Xb (41)

where the Xb’s are the vector fields generating the standard action of the unitary group, and
the Wa’s are given by

Wa(ρ) = d

dt

((
e

t
2 a

√
ρ e

t
2 a

)2
)

t=0
= {ρ, a} + √

ρ a
√

ρ. (42)

Furthermore, note that Wa = ϕ−1∗ Ya, that is, Wa is the pushforward of Ya by means of ϕ−1

(see proposition 4.2.4 in [1]).
We will now prove that every Wa is the gradient vector field associated with the smooth

function fa by means of the Wigner–Yanase metric tensor GWY [24,25,28,29]. The Wigner–
Yanase metric tensor GWY is the metric tensor associated with the Wigner–Yanase skew
information

SWY(ρ, σ ) = Trρ + Trσ − 2Tr
(√

ρ
√

σ
)
. (43)

Remark 2 Note that, in the literature, the Wigner–Yanase metric tensor GWY is usually
defined as the metric tensor associated with twice the divergence function in Eq. (43), and
what will be proved below can be easily adapted provided we replace SWY with 2SWY, and a
with 1

2a in all the expressions. The choice made here leads to the fact that the vector fields Wa

are the pushforward of the vector fields Ya by means of ϕ−1 (and similarly for the normalized
ones in the following subsection).

Just as we did for the Bures–Helstrom metric tensor in Sect. 2, we have to show that

GWY (X, Wa) = LX fa, (44)

where X is an arbitrary vector field and LX denote the Lie derivative with respect to X .
Therefore, we must compute

(GWY (X, Wa)) (ρ) = − d

dt

d

ds

(
DWY(γ X

ρ (t), γWa
ρ (s))

)

t,s=0

= 2
d

dt

d

ds

(
Tr

√
γ X
ρ (t)

√
γ
Wa
ρ (s)

)

t,s=0
(45)
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From Eq. (42), we immediately conclude that
√

γ
Wa
ρ (s) = e

s
2 a

√
ρ e

s
2 a , (46)

and recalling Eq. (21) we obtain

d

dt

(√
γ X
ρ (t)

)

t=0
= A−1√

ρ
(X (ρ)), (47)

where we introduced the superoperator A√
ρ(b) = √

ρ b + b
√

ρ. Consequently, we get

(GWY (X,Wa)) (ρ) = 2
d

dt

d

ds

(
Tr

√
γ X
ρ (t)

√
γ
Wa
ρ (s)

)

s,t=0

= 2
d

ds

(
Tr

(
A−1√

ρ
(X (ρ))

√
γ
Wa
ρ (s)

))

s=0

= Tr
(
A−1√

ρ
(X (ρ))

(
a

√
ρ + √

ρ a
))

= Tr
(
aA√

ρ

(
A−1√

ρ
(X (ρ))

))

= Tr(a X (ρ)). (48)

Therefore, recalling Eq. (30), we conclude that

GWY (X, Wa) = LX fa (49)

holds for all vector fields X as desired.

Normalized states

To tackle the normalized case, we mimick what has been done for the Bures–Helstrom metric
tensor in Sect. 2. Specifically, we define a normalized version of the action Θ̃ , given by

Θ(g, ρ) := Θ̃(g, ρ)

Tr(Θ̃(g, ρ))
=

(
g

√
ρ g†

)2

Tr
((

g
√

ρ g†
)2

) . (50)

Then, the fundamental vector fields Ψab of Θ are easily computed to be

Ψab = Wa + Xb (51)

where the Xb’s are the vector fields generating the standard action of the unitary group, and
the Wa’s are given by

Wa(ρ) = d

dt

⎛

⎜⎜
⎝

(
e

t
2 a

√
ρ e

t
2 a

)2

Tr

((
e

t
2 a

√
ρ e

t
2 a

)2
)

⎞

⎟⎟
⎠

t=0

= {ρ, a} + √
ρ a

√
ρ − 2Tr(ρa) ρ. (52)

Then, the Wigner–Yanase metric tensor on S+ is associated with the pullback to S+
(with respect to the canonical immersion) of the Wigner–Yanase skew information given in
Eq. (43). With an evident abuse of notation, we denote by SWY the pullback to S+ of the
Wigner–Yanase skew information given by

SWY(ρ, σ ) = 2
(
1 − Tr

(√
ρ

√
σ
))

(53)

and by GWY the associated metric tensor on S+.
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Just as for the Bures–Helstrom metric tensor, the computations performed in the not-
normalized case may be easily adapted to prove that

GWY(X, Wa) = LX fa, (54)

for every vector field X on S+, and where, with an evident abuse of notation, fa is the
pullback to S+ of the smooth function fa on P+. From this, we conclude that every vector
field Wa is the gradient vector field associated with the smooth function fa by means of the
Wigner–Yanase metric tensor GWY.

4 Bogoliubov–Kubo–Mori metric tensor

The manifold P+ is an open subset of the vector space V of Hermitian (self-adjoint) linear
operators on H. Moreover, every h ∈ V gives rise to an element in P+ by means of eh,
and every ρ ∈ P+ gives rise to an element in V by means of ln(ρ). Essentially, the map
ψ : P+ → V given by

ψ(ρ) := ln(ρ) (55)

is a diffeomorphism with inverse
ψ−1(h) = eh . (56)

Following what we have done for the Wigner–Yanase metric tensor, we can use ψ to transport
every group action on V to a group action on P+. In particular, V is a real Euclidean space
with respect to the (restriction of) the Hilbert–Schmidt product

〈h,k〉 = Tr(h k). (57)

Therefore, the Euclidean group acts on V as

AR,a(h) = R(h) + a, (58)

where R is an element of the orthogonal group and a ∈ V .
Quite interestingly, the unitary group may be realized as a subgroup of the orthogonal

group of V according to
RU(h) := UhU†. (59)

Indeed, it is easy to check that RU preserves the Euclidean product

〈RU (h), RU (k)〉 = 〈UhU†,UkU†〉 = 〈h,k〉. (60)

Consequently, the group U(H) �R V acts on P+ according to

Ξ̃((U, a), ρ) := ϕ−1 ◦ ARU,a ◦ ϕ(ρ) = eU ln(ρ)U†+a (61)

Now, if we consider a = 0, we have

Ξ((U, 0), ρ) = eU ln(ρ)U† =
∞∑

k=0

(
U ln(ρ)U†

)k

k! = U ρ U† = φ(U, ρ), (62)

and thus we obtain again the standard action φ of the unitary group on P+. The fundamental
vector fields Υ̃ab of Ξ̃ decompose as

Υ̃ab = Za + Xb (63)
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where the Xb’s are the vector fields generating the standard action of the unitary group, and
the Za’s are given by

Za(ρ) = d

dt

(
eln(ρ)+ta

)

t=0
=

∫ 1

0
dλ

(
ρλ a ρ1−λ

)
, (64)

where we used the well-known equality [45]

d

dt
eA(t) =

∫ 1

0
dλ

(
eλ A(t) d

dt
(A(t)) e(1−λ)A(t)

)
, (65)

which is valid for every smooth curve A(t) inside B(H) (remember that the canonical immer-
sion of P+ inside B(H) is smooth).

Remark 3 The Lie group U(H)�R V is diffeomorphic to the cotangent bundle of the unitary
group. Indeed, if G is any Lie group, the cotangent space T ∗G ∼= G × g∗ is endowed with
the structure of Lie group [2,3] according to

(g1, a1) · (g2, a2) := (g1g2, Ad∗
g1

(a2) + a1), (66)

where Ad∗ is the dual of the adjoint action of G on its Lie algebra g. The resulting Lie group
is also denoted by G �Ad∗ g∗ to emphasize the fact that the group structure is associated
with a semidirect product. Now, when G = U(H), its Lie algebra g is given by skew-adjoint
operators on H according to

ib 
→ U = eib, (67)

where b is an Hermitian operator. Then, we can identify the dual space g∗ with the vector
space V of Hermitian operators by means of the pairing

〈a, ib〉 := Tr(a b). (68)

Consequently, the coadjoint action reads

Ad∗
U(a) = UaU† = RU(a), (69)

where we used Eq. (59) in the last equality, and we conclude that U(H) �R V is actually
diffeomorphic to the Lie group T ∗U(H) ≡ U(H) �Ad∗ g∗ as claimed.

We will now prove that every Za is the gradient vector field associated with the smooth
function fa by means of the Bogoliubov–Kubo–Mori metric tensor GBKM [23,36,37,39,42].
The Bogoliubov–Kubo–Mori metric tensor GBKM is the metric tensor associated with the
von Neumann–Umegaki relative entropy [5,48,49]

SvNU (ρ, σ ) = Tr (ρ ln ρ − ρ ln σ) (70)

Just as we did for the Bures–Helstrom metric tensor and for the Wigner–Yanase metric
tensor, we have to show that

GBKM (X, Za) = LX fa, (71)

where X is an arbitrary vector field and LX denote the Lie derivative with respect to X .
Therefore, we compute

(GBKM (X,Za)) (ρ) = − d

dt

d

ds

(
SvNU (γ X

ρ (t), γZa
ρ (s))

)

t,s=0

= d

dt

d

ds

(
Trγ X

ρ (t) (ln(ρ) + sa)
)

t,s=0

= Tr (X (ρ) a) ,

(72)
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where we used the definition of SvNU given in Eq. (70), and the equality

γZa
ρ (s) = eln(ρ)+sa (73)

stemming from Eq. (64). Recalling Eq. (30), we conclude that

GBKM (X, Za) = LX fa (74)

holds for all vector fields X as desired.

Normalized states

Once again, the normalized case follows from the not-normalized one. Indeed, we just need
to define the normalized action Ξ of T ∗U(H) on S+ given by

Ξ((U, a), ρ) := Ξ̃(g, ρ)

Tr(Ξ̃(g, ρ))
= eU ln(ρ)U†+a

Tr(eU ln(ρ)U†+a)
. (75)

Then, the fundamental vector fields Υab of Ξ are easily computed to be

Υab = Za + Xb (76)

where the Xb’s are the vector fields generating the standard action of the unitary group, and
the Za’s are given by

Za(ρ) = d

dt

(
eln(ρ)+ta

Tr
(
eln(ρ)+ta

)

)

t=0

=
∫ 1

0
dλ

(
ρλ a ρ1−λ

) − Tr(ρ a) ρ . (77)

Remark 4 It is worth mentioning the recent work [4] where the finite transformations asso-
ciated with the vector fields Za are exploited in the definition of a Hilbert space structure on
S+.

Then, the Bogoliubov–Kubo–Mori metric tensor on S+ is associated with the pullback to
S+ (with respect to the canonical immersion) of the von Neumann–Umegaki relative entropy
given in Eq. (70). With an evident abuse of notation, we denote by SvNU the pullback to S+
of the von Neumann–Umegaki relative entropy given by

SvNU (ρ, σ ) = Tr (ρ ln ρ − ρ ln σ) (78)

and by GBKM the associated metric tensor on S+.
Once again, the computations performed in the not-normalized case may be easily adapted

to prove that
GBKM(X, Za) = LX fa , (79)

for every vector field X on S+, and where, with an evident abuse of notation, fa is the
pullback to S+ of the smooth function fa on P+. From this, we conclude that every vector
field Za is the gradient vector field associated with the smooth function fa by means of the
Bogoliubov–Kubo–Mori metric tensor GBKM.

5 Conclusions

The results of this work should be interpreted as a preliminary step toward a more general
analysis aimed at characterizing those monotone metric tensors on the manifold of faithful
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quantum states that are linked with group actions in the sense explained in the previous
sections. Indeed, the fact that three of the most used metric tensors in Quantum Information
Geometry like the Bures–Helstrom metric tensor, the Wigner–Yanase metric tensor, and the
Bogoliubov–Kubo–Mori metric tensor are related with group actions seems to point at a
more profound connection which is yet to be discovered. However, it is not yet known if this
link is just a mathematical curiosity, or if it has to do with some geometrical aspects of the
monotonicity property usually required in Quantum Information Theory.

At this purpose, it is not hard to see that the requirement of unitary invariance encoded
in the monotonicity property has a direct effect on the possible group actions considered as
will be now explained. It is clear that the Lie algebra of the suitable extension of U(H) we
can hope to link to a given monotone metric tensor G must be isomorphic, as a vector space,
to u(H) × V . Indeed, besides the fundamental vector fields Xb of the action of U(H) and
associated with elements in u(H), we have the complementary vector fields that must be the
gradient vector fields associated with the expectation value functions fa by means of G, and
the latters are clearly labelled by elements in the space V of Hermitian operators on H. Let
us write these vector fields generically as Va. By assumption, we must have

G(X, Va) = LX fa (80)

for every vector field X on S+. Then, we evaluate the Lie derivative of the function fc with
respect to the commutator [Xb, Va] to obtain

L[Xb,Va] fc = LXb

(LVa fc
) − LVa

(LXb fc
)

= LXb (G(Va, Vc)) − LVa

(
f i

2 [b,c]
)

= LXb (G(Va, Vc)) − G(Va, V i
2 [b,c]), (81)

where, in the second equality, we used the fact that

(LXb fc
)
(ρ) = d

dt

(
Tr(ei

t
2 b ρ e−i t2 b c)

)

t=0

= i

2
Tr([b, ρ], c) = i

2
Tr(ρ[b, c]) = f i

2 [b,c](ρ).

(82)

The unitary invariance of G implies that LXbG = 0, so that

L[Xb,Va] fc = G([Xb, Va], Vc) + G(Va, [Xb, Vc]) − G(Va, V i
2 [b,c])

= L[Xb,Va] fc + G(Va, [Xb, Vc]) − G(Va, V i
2 [b,c]), (83)

from which we conclude that

G(Va, [Xb, Vc] − V i
2 [b,c]) = 0 . (84)

Since the differentials of the fa form a basis of the module of one-forms on S+, and since
the Va are the gradient vector fields associated with the fa, we have that the Va form a basis
of the module of vector fields on S+, and thus the previous equation implies

[Xb, Vc] = V i
2 [b,c]. (85)

This means that the commutator between the Xb and the complementary vector fields is fixed
by the requirement of unitary invariance. Therefore, the Lie algebra structure on u(H) × V
must fulfill this additional constraint. Taking into account that u(H) must be realized as a Lie
subalgebra of u(H)×V , we conclude that the freedom we have in choosing the enlargement
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of u(H) is only in the Lie product between elements in the complementary space V . In
particular, for the Lie algebra of GL(H) considered in Sects. 2 and 3, this bracket gives
back an element in u(H), while, for the Lie algebra of T ∗U(H) considered in Sect. 4, this
bracket vanishes identically. A classification of the possible extensions of the Lie algebra
u(H) satisfying the constraints found above will certainly give a hint on what type of group
actions one can hope to link to monotone metric tensors. According to [2,3], the groups
GL(H) and T ∗U(H) are symplectomorphic and Morita-equivalent, and each of them is a
so-called group double of U(H). This leads to conjecture that the appropriate enlargements
may be looked for in the context of the double metric-Lie algebras containing u(H) as a
subalgebra. The emergence of a group double of U(H) in both situations we discussed seems
to suggest that we may deal with the Non-Commutative Extension of Information Geometry
by using the whole machinery introduced by Drinfeld to deal with Poisson-Lie groups (see
again [2,3] and references therein).

From another point of view, the case of monotone metric tensors obtained from the quan-
tum Tsallis relative entropies [34] and from the α − z-relative Rény relative entropies [6,14]
is currently being investigated using the methodology developed in Sect. 3.

Finally, it should be noted that it is possible to reformulate the results contained in this
work no more in terms of quantum states on H, but in terms of the more general notion
of states on an arbitrary finite-dimensional von Neumann algebra. This would help to give
a unifying picture for the classical and quantum case, and would be necessary in order to
extend this information geometrical considerations also to the recent groupoidal approach to
quantum theories developed in [11,12,16–19].
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