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Abstract. Anisotropic particles are present in many natural and industrial flows. Here we perform direct
numerical simulation (DNS) of turbulent pipe flows with dispersed finite-size prolate spheroids simulated
by means of the lattice Boltzmann method (LBM). We consider three different particle shapes: spheroidal
(aspect ratio 2 and 3) and spherical. These three simulations are complemented with a reference simulation
of a single-phase flow. For the sake of comparison, all simulations, laden or unladen have the same energy
input. The flow geometry used is a straight pipe with length eight times its radius where the fluid is
randomly seeded with 256 finite-size particles. The volume fraction of particles in the flow has been kept
fixed at 0.48% by varying the major and minor axis of each particle such that their volume remains the
same. We studied the effect of different particle shapes on particle dynamics and orientation, as well as
on the flow modulation. We show that the local accumulation of spheres close to the wall decreases for
spheroids with increasing aspect ratio. These spheroidal particles rotate slower than spheres near to the
wall and tend to stay with their major axes aligned to the flow streamwise direction. Despite the lower
rotation rates, a higher intermittency in the rotational rates was observed for spheroids and this increase
at increasing the aspect ratio. The drag reduction observed for particles with higher aspect ratio have also
been investigated using the one-dimensional energy and dissipation spectra. These results point to the
relevance of particle shapes on their dynamics and their influence on the turbulent flow.

1 Introduction

The study of solid particle suspensions in turbulence is
relevant for the understanding and for the optimization
of many biological and engineering flows [1]. Some exam-
ples of these are slurry flows, the combustion of pulver-
ized solid fuels, dust storms, pollutant dispersion in the
atmosphere and the dynamics and stresses on microal-
gae in photo-bioreactors. Additionally, non-spherical par-
ticles, with varying shapes and sizes are common: plank-
ton species and pollen grains occur in an astonishing vari-
ety of shapes, cellulose fibers or textile vary in their rigid-
ity and shape, microalgae in photo-bioreactors are also
usually anisotropic in shape [2].

The motion of non-spherical particles in turbulent
flows is particularly intricate, also in view of the fact that
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their rotational dynamics in laminar flows is already com-
plicated. The presence of turbulence makes the problem
even more intriguing and challenging to solve: in addi-
tion to the complexity of turbulence, we now have to
consider forces and torques that vary according to the
particle orientation. Most of the literature on particu-
late fluid flows reports the fluid interactions with spher-
ical particles [3–13]. Non-spherical particles, due to their
anisotropic nature, are more complicated to treat than
spherical particles. Consequently, relatively fewer numer-
ical and experimental studies have been devoted to non-
spherical particles in turbulent flows. For non-spherical
particles, analytic approaches that account for fluid iner-
tia in an unsteady flow and that are applicable across the
full range of spheroidal shapes are not yet available in the
literature [14].

The study of elongated particles suspended in a vis-
cous fluid flow has been a topic for research through many
decades. The case of an ellipsoidal particle immersed in a
creeping viscous fluid was studied by Jeffery [15]. Further
analytical work on particles of different geometrical shapes
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has been conducted by Brenner [16] and a general treatise
is provided in Happel and Brenner [17]. All these different
analytical studies assume Stokes flow conditions around
the particles, i.e. viscous effects dominate over inertial ef-
fects.

A comprehensive review of the models used to describe
non-spherical particle motion, along with numerical and
experimental methods for measuring particle dynamics,
has been provided in [14]. The majority of these previ-
ous studies, mostly focusing on turbulence, limited to the
case of point-like spheroidal particles, assumed dilute con-
ditions, and additionally, neglected the feedback on the
flow. To the best of our knowledge, we can report only
three investigations of finite-size anisotropic rigid particles
in turbulence, those by Do-Quang et al. [18], Ardekani et
al. [19] and Eshghinejadfard et al. [20]. The lattice Boltz-
mann method was used in [18] to simulate finite-size fibers
in turbulent channel flows. In [19] researchers used an im-
mersed boundary method to simulate oblate particles in a
turbulent channel flow at volume fractions up to 20%. Fi-
nally in [20], the lattice Boltzmann method coupled with
an immersed boundary method was used to simulate fully
resolved prolate ellipsoids with a different aspect ratio in
a turbulent channel flow.

There are two important aspects regarding anisotropic
particles in turbulence that we would like to explore fur-
ther in this work. The first is the influence of particles
on the carrier phase turbulence, commonly known as tur-
bulence modulation. A fundamental understanding con-
cerning the underlying phenomena, which are responsible
for the complex interaction between the particles and tur-
bulence is required to advance the design of engineering
devices where such flows occur. The current understand-
ing on the modification of the carrier phase turbulence due
to the presence of solid particles, however, is limited. Dif-
ferent mechanisms have been suggested to explain exper-
imental observations and different parameters have been
identified as being important but a lack of consensus exists
in this field. Moreover, it is difficult to separate the direct
modulation of the turbulence which can be attributed to
enhanced effective viscosity, from the additional effects,
like the momentum exchange on the surface of particles,
the presence of the particle wake or the distribution of
particle-induced stresses.

For finite-sized particles, attenuation of turbulence of
the carrier phase is observed with small particles while
amplification is observed with larger particles [21,22]. The
study of small spherical particles at higher concentrations
was performed by Kulick and coworkers [23], modeling
feedback on the flow (two-way coupling), reporting that
the fluid turbulence is attenuated by the addition of par-
ticles, while turbulence anisotropy increases. This effect
was reported to increase with the particle Stokes num-
ber, with the particle mass loading and with the distance
from the wall. In the case of non-spherical particles, the
shape effect of particles on the particle-turbulence inter-
action is even more interesting. It was first observed in
1948 that the addition of polymers to a turbulent pipe
flow reduced the pressure drop substantially below that
of the solvent alone at the same flow rate [24]. The phe-

nomenon was termed as drag reduction and has been the
subject of several numerical and experimental investiga-
tions since then. Compared to the rigid anisotropic parti-
cles, polymers have an additional degree of freedom: they
can stretch. However, drag reduction in the suspensions
of rigid fibers was also observed in [25, 26], similarly to
what was reported for dilute polymer solutions [27, 28].
A review of the phenomenon of drag reduction was pro-
vided by Nieuwstadt and den Toonder [29]. While drag
reduction was observed also with spherical particles [30],
very few other evidences were reported in the literature.
For example, an attenuation in turbulent kinetic energy
of 3% and 15% respectively, for prolate ellipsoidal and for
spherical particles, was observed [31]. In the maritime in-
dustry, drag reduction due to injection of air bubbles into
the turbulent boundary layer under the ship hull is used
to reduce the fuel consumption and has been a subject of
several numerical and experimental studies (see review by
Ceccio [32]). It has been observed that it dramatically de-
pends on the bubble size and deformability [33]. Clearly,
there is no general consensus on how drag reduction is
affected by particle shape and particle properties. In this
article, we will explore this further for rigid spheres and
prolate spheroids.

Another important issue for anisotropic particles is
their orientation and rotation. Particle orientation has a
major influence on particle-fluid interactions. Orientation
and angular velocities have been studied extensively in
the past decade using the point-particle approach. Nu-
merical and analytical studies on the orientation distribu-
tion of ellipsoids immersed in laminar and turbulent pipe
flows have been performed [34], reporting that fibers in
the laminar regime are more aligned in the flow direction.
In several studies [35, 36], the deposition and orientation
of glass fibers in a turbulent pipe flow was experimentally
investigated. Researchers investigated, by means of DNS,
the transport and the deposition of ellipsoidal particles
in a turbulent channel flow [37]. They provided velocity
and orientational particle statistics in the viscous sublayer
and in the buffer layer. Later, it was observed that both
spheres and ellipsoids are preferentially concentrated in
the near-wall, low-speed streaks [38, 39]. An investigation
of the rotational motion of inertia-free spheroids in turbu-
lent channel flow was conducted, see refs. [40, 41]. These
authors showed that oblate spheroids preferentially align
their symmetry axes normal to the wall, whereas prolates
are preferentially aligned parallel to the wall. The mean
particle rotation was also reported to reduce when increas-
ing the particle aspect ratio. In [42] researchers studied
the effects of particle inertia, particle shape, and fluid
shear on particle rotation using the direct numerical sim-
ulation of the turbulent channel flow. In [43], the work
related to non-spherical particles in laminar shear flows
and sedimentation of non-spherical particles in still fluids
was studied.

In this article, we report results of simulations with
particles with different shapes and try to understand their
effect on the flow modulation, particle dynamics and ori-
entation. The outline of the article is as follows. Section 2
deals with theory and introduces the approach used in
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this paper for particle-particle and particle-wall interac-
tion. Section 3 comprises a discussion on flow geometry
and particle shapes used for the simulations. Section 4 fo-
cusses on the fluid statistics where we present the mean
and root-mean-square (RMS) velocity profiles along with
the energy spectrum. In sect. 5, we discuss the results on
particle dynamics. Here, the particle distribution profiles,
velocity, and orientational statistics will be presented. Fi-
nally, sect. 6 summarizes and concludes the work.

2 Methodology

The simulation algorithm consists of three major compo-
nents: the fluid solver, the model to simulate the dynamics
of the particles and the particle-particle/particle-wall in-
teraction.

The description of the lattice Boltzmann method as a
flow solver has been discussed in several texts [44,45]. Lat-
tice Boltzmann methods (LBM) are a class of computa-
tional fluid dynamics (CFD) methods for flow simulation.
In LBM, instead of solving the Navier-Stokes equations,
the discrete Boltzmann equation is solved to simulate the
flow of a Newtonian fluid with collision models such as
Bhatnagar-Gross-Krook (BGK). In this method, the fluid
is replaced by distribution functions streaming along given
directions and colliding at the lattice sites. The distribu-
tion function represents the probability of finding fictious
fluid particles within a certain range of velocities and a
certain range of locations at a given time. Both collision
and streaming processes are local operations and there-
fore allows efficient programming for parallel computing.
Additionally, the handling of complex phenomena such
as moving boundaries, multiphase flows etc. can be han-
dled in LBM without a need for a separate Lagrangian
mesh. In comparison to molecular dynamics simulations,
the distribution function replaces the tagging of each par-
ticle, thereby saving the computer resources drastically.
By simulating streaming and collision processes across a
limited number of distribution functions, the intrinsic par-
ticle interactions evolve the macroscopic behavior of the
fluid.

The lattice Boltzmann equation reads as follows [44]:

fi(�x + �eiδt, t + δt) = fi(�x, t) +
δt

τ
(feq

i − fi), (1)

where fi is the probability distribution function and the
subscript i labels a set of discrete speeds connecting the
nodes of a regular lattice, feq

i is the corresponding equilib-
rium distribution function, δt is the time increment and τ
is the fluid relaxation time related to the kinematic viscos-
ity as ν = (τ−δt/2)c2

s, where cs is the speed of sound. The
D3Q27 BGK lattice Boltzmann method has been used to
simulate the fluid flow.

As also discussed in [13], the mid-point bounce-back
method proposed by Chen et al. [46] has been used for the
particle-fluid coupling. The net force and the torque on the
suspended solid particles is computed using the momen-
tum exchange with the surrounding fluid. Consequently,

Fig. 1. An ellipsoidal particle and the corresponding coor-
dinate systems: the inertial frame, x = (x, y, z), the parti-
cle frame, x′ = (x′, y′, z′) and the comoving frame, x′′ =
(x′′, y′′, z′).

the motion of the solid particle is simply determined by
solving Newton’s equations for the linear and angular mo-
mentum. Finally, these equations are integrated using a
leap-frog scheme to obtain the complete motion of the
suspended solid particles in the fluid [47].

In order to describe the motion of ellipsoids, we invoke
three different Cartesian coordinate systems: the inertial
frame, the particle frame, and the comoving frame. The in-
ertial frame, x = (x, y, z), is the frame that spans the com-
putational domain. The particle frame, x′ = (x′, y′, z′), is
attached to the particle with its origin at the particle mass
center. In this frame, the coordinate axes are aligned with
the principal directions of inertia. The comoving frame,
x′′ = (x′′, y′′, z′′), has its origin translating along the cen-
ter of mass of the particle. The coordinate axes are paral-
lel to those of the inertial frame. The different coordinate
systems are shown in fig. 1 along with a particle of aspect
ratio three.

The purpose of introducing the particle frame is to de-
scribe the orientational behavior of the ellipsoids using the
principal of moments inertia (moment of inertia in the par-
ticle frame). The sole purpose of introducing the comoving
system is to provide an intermediate step between conver-
sion from inertial to particle frame. After the shift of origin
from inertial to comoving frame, one needs to transform a
given vector from the comoving frame to the particle fixed
frame through the linear transformation x′ = Ax′′. The
orthogonal transformation matrix A comprises the nine
direction cosines. Usually these parameters are comprised
by the three independent Euler angles [47]. However, the
Euler angles suffer from singularity problems. For this rea-
son, the corresponding four Euler parameters will be used
for the particle orientation. The parameters q0, q1, q2, and
q3 are called quaternions. They are inter-dependent and
must satisfy the following constraint: q2

0 +q2
1 +q2

2 +q2
3 = 1.

Using the quaternions, the transformation matrix is given
by

A =

⎛
⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ ,
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Table 1. Parameter settings for the turbulence simulations (all dimensional quantities are in lattice units). 〈g〉 is the mean
forcing needed to obtain fixed energy input, uτ is the friction velocity, t+ is the integral time scale, Reτ is the Reynolds number
based on the friction velocity and on the diameter of the pipe (Reτ = uτD/ν), 〈Ux〉 is the average velocity in the pipe and
Re〈Ux〉 is the Reynolds number based on average velocity and on the diameter of the pipe (Re〈Ux〉 = 〈Ux〉D/ν).

Case S0 S1 S2 S3

Aspect ratio NA 1 2 3

Major axis NA 5.8 9.16 12

Volume fractions NA 0.48% 0.48% 0.48%

〈g〉 2.06 × 10−7 2.13 × 10−7 2.11 × 10−7 2.08 × 10−7

uτ 3.5 × 10−3 3.6 × 10−3 3.5 × 10−3 3.5 × 10−3

t+ 3.39 × 104 3.34 × 104 3.35 × 104 3.38 × 104

Reτ 250 255 253 251

〈Ux〉 0.0483 0.0468 0.0472 0.0478

Re〈Ux〉 3.45 × 103 3.34 × 103 3.37 × 103 3.39 × 103

where aij is

a11 = q2
0 + q2

1 − q2
2 − q2

3 ,

a12 = 2(q1q2 + q0q3),
a13 = 2(q1q3 − q0q2),
a21 = 2(q1q2 − q0q3),
a22 = q2

0 − q2
1 + q2

2 − q2
3 ,

a23 = 2(q2q3 + q0q1),
a31 = 2(q1q3 + q0q2),
a32 = 2(q2q3 − q0q1),
a33 = q2

0 − q2
1 − q2

2 + q2
3 .

The angular dynamics was integrated by the method
of quaternions, as discussed in [47], for representing ori-
entations and rotations of finite-size particles. The Euler
equations are formulated in the particle frame and the
principal moments of inertia are used.

The numerical method is capable of correctly predict-
ing the particle dynamics as well as the velocity profiles
of the turbulent flow in a pipe as discussed in [12]. How-
ever, the strong dependence of lubrication interactions on
the minimum separation between two particles requires
precise knowledge of the magnitude and direction of the
minimum gap vector. For two spheres with given radii, this
can be computed trivially using the distance between the
centers and the radii of the particles. For spheroids, the
problem is considerably more intricate. One solution is to
follow the iterative procedure presented by Lin et al. [48]
for the distance between two ellipsoids. The method in-
volves the repositioning of tangent spheres along the inner
surface of each ellipsoid to minimize the distance of the
sphere centers and thus the gap between the ellipsoids.
The approach is limited to ellipsoidal geometries and is
not valid for particles of any arbitrary shape.

We developed a novel approach to compute the clos-
est distance between the particles. In our approach, we
randomly generate points constraint on the surface of the
particles. The geometric minimum distance between two

Fig. 2. A visual impression of the three particle shapes con-
sidered, S1 (λ = 1), S2 (λ = 2), S3 (λ = 3). All particles have
the same volume.

particles can then be computed as the minima in the dis-
tance function. In appendix A, we demonstrate the use
of this method to calculate the distance between a sphere
and a spheroid rotating in a Couette flow with an accuracy
of about 0.5 lattice units. The method does not provide
the direction of closest approach, and therefore, it is not
possible to apply lubrication forces using this method.

3 Flow geometry

In this study, we performed a number of particle-laden
DNS of turbulent pipe flow (see table 1 for details of
simulations parameters). The flow geometry concerns a
straight pipe and the fluid is randomly (with regard to
position and orientation) seeded with 256 finite-size par-
ticles. Similar to most of the previous works in this field,
we consider the case of axisymmetric ellipsoids, also called
spheroids. Any spheroidal shape can be specified by a sin-
gle aspect ratio, λ, defined as the ratio of the dimension
along the symmetry axis to a perpendicular dimension:
λ = 1 corresponds to a sphere, λ > 1 corresponds to a
prolate spheroid (or fiber-like), and λ < 1 corresponds to
an oblate spheroid (or disk-like). In the present simula-
tions, three different particle shapes are considered, either
spheroidal (aspect ratio λ = 2 and 3) or spherical (λ = 1)
as shown in fig. 2. The solid-phase volume fraction has
been kept fixed at 0.48% by varying the major and mi-
nor axis of each particle such that its volume remains the
same. Consequently, the volume fraction remains the same
in all the particle-laden turbulence simulations considered



Eur. Phys. J. E (2018) 41: 116 Page 5 of 15

Fig. 3. Time history of the forcing signal (g) for the three
particle shapes considered, S1 (λ = 1), S2 (λ = 2), S3 (λ = 3)
and for the unladen case, S0. The forcing (g) is varied at each
time step such that energy input remains constant, i.e. Ein =
〈g · U 〉1−φ = 10−8. The time history is shown after the initial
transient period (t > 500τη).

in this investigation. These simulations are complemented
with a reference single-phase flow (S0): the unladen case
with the same energy input as in the case with particles.
Since the Cartesian coordinates were used for the simu-
lations, the particle and fluid velocities were converted to
radial coordinates before any further analysis.

As also discussed in [12,13], the flow is characterized by
a nearly constant energy input controlled by a time vary-
ing volume force, g = (g, 0, 0), with intensity of g chosen
at each time step in order to produce a fixed energy input
Ein = 〈g · U〉1−φ = 10−8. Here U = (Ux, Ur, Uθ) is the
velocity of the fluid, φ is the volume fraction of the parti-
cles and 〈·〉1−φ represents the fluid averaged dot product,
i.e. the nodes within the particle boundaries are excluded
from the average. The friction velocity is computed from
the wall shear stress. The wall shear stress is computed
from the momentum balance between pressure and vis-
cous forces, using the relation, τw = 1

2R dp
dx with dp

dx = 〈g〉,
where 〈g〉 is the mean time-space averaged value volume
force, g = (g, 0, 0). The integral time scale is computed
using the pipe radius and friction velocity t+ = R/uτ and
is shown in table 1.

The Reynolds number based on the friction veloc-
ity and on the diameter of the pipe (Reτ = uτD/ν) is
used in the subsequent discussion. The average velocity
in the pipe, 〈Ux〉, and the Reynolds number based on it,
Re〈Ux〉 = 〈Ux〉D/ν, are also presented in table 1. The do-
main is discretized by a cubic mesh of 960 × 240 × 240,
with 960 lattice points in the streamwise and 240 in the
lateral directions. The turbulent pipe flow is simulated via
a circular duct element with length L = 8R, where R is
the pipe radius and periodic inlet/outlet boundary condi-
tions. The rest of the details remains the same as discussed
in [12,13].
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Fig. 4. Time series of the total kinetic energy (TKE) and
energy dissipation (ε) per unit length in turbulent pipe flow
for single-phase flow (S0) and for the particle-laden turbulent
pipe flow with three particle shapes, S1 (λ = 1), S2 (λ = 2),
S3 (λ = 3). The kinetic energy has been scaled down in the
plot such that its RMS has the same value as the RMS of the
energy dissipation. The time history is shown after the initial
transient period (t > 500τη).

Figure 3 shows the variation of the forcing as a function
of time (excluding the initial transient phase) for the three
cases considered and S0. It can be observed that a larger
forcing is needed for spherical particles S1, despite the
lowest surface area. Table 1 also shows the mean forcing
values, 〈g〉 needed for fixed energy input, which are used
to compute the wall shear stress for each case.

Figure 4 shows the time history (excluding the initial
transient phase) of the energy dissipation, ε, and of the
total kinetic energy (TKE) per unit length. Here, a time-
lag between the two plots is suggestive of the presence
of an energy cascade and thus of a turbulent flow. The
kinetic energy has been scaled down in the plot such that
its root-mean-square (RMS) value is the same as the RMS
of the energy dissipation and the energy dissipation has
been computed as discussed in [13].

4 Fluid phase analysis

A visual impression of the suspension flow in the whole do-
main is provided in fig. 5, which shows a typical particle
configuration along with a color plot of the instantaneous
streamwise velocity. In the previous section, we observed
that less forcing is needed to maintain the same energy
input in turbulent pipe flow laden with spheroidal parti-
cles as compared to the case with spherical particles. In
two-phase two-way coupled flow, several mechanisms con-
tribute to the modification of the turbulence, e.g. increase
of dissipation due to no-slip boundary conditions at the
surface of the particles, the transfer of a part of the par-
ticle kinetic energy to the carrier phase and vice-versa.
Secondary motion, due to the larger number of degrees
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Fig. 5. Instantaneous snapshots of the streamwise velocity (color coded on vertical planes) together with the particle positions
for the particle-laden turbulent pipe flow with particle shapes, S1 (spherical, left) and S3 (spheroidal, right). Color varies from
blue (zero velocity near the wall) to red (maximum fluid velocity near the center of the pipe).

of freedom of motion (tumbling and spinning), associated
with non-spherical particles can transfer kinetic energy of
particles into turbulent kinetic energy, E, and transfer it
in many more modes than spheres can do. Consequently,
particles with different aspect ratio have different effect on
the flow. In order to understand this, we decided to look
into the energy and dissipation spectra for all the cases.

However, it is not straightforward to compute the spec-
tra of the fluid in presence of finite-size particles. A simple
way is to compute the spectra using the fluid velocity field
at all the Eulerian mesh points in the computational do-
main including those points that are inside the particles
at the time of interest. This means that the fluid motion
inside the particle contributes to the computed spectrum
of turbulent kinetic energy, E. The flow field inside the
particle is the result of the rigid-body dynamics of the
finite-sized particle. Of course, accounting for the fluid
velocity inside the solid particles for computing E(k) does
not have any physical meaning. Moreover, setting the ve-
locity inside the particle to zero only for computing E(k)
causes oscillations in the spectrum as discussed by Lucci
and coworkers [49]. Their analysis suggests that including
the Eulerian velocity field inside the particles to compute
the energy spectrum not only has no physical meaning
but also corrupts the spectrum at all the wave numbers.
We therefore used an alternative approach to avoid the
corruption of wave number spectra by the presence of
particles in the Eulerian velocity field. We sample axial
velocity fluctuations along the length of the pipe for ev-
ery radial position. If during the sampling of the velocity
signal a particle is encountered, that signal is rejected and
not used for the computation of the spectrum. Therefore,
the one-dimensional energy spectrum in the presence of
finite-size particles can be written as

E11(k)=

⎧⎪⎨
⎪⎩

1
π

∫ L

x=1

R11(x)e−ikxdx, if (x=1, . . . , L)∈f.

0, otherwise,
(2)

where R11(x) is the two-point velocity correlation for ax-
ial velocity fluctuations computed along the axial direc-
tion and f represents the fluid nodes. Figure 6 shows
the one-dimensional energy spectrum for turbulent fluc-

tuations along the axial direction of the pipe for different
particle shapes.

The energy spectra of the single-phase flow is also com-
pared to the two-phase dispersed flows for all three parti-
cle shapes. The wave number is scaled by the Kolmogorov
length scale and the energy is normalized using the en-
ergy dissipation and viscosity. The two vertical lines in
the plot represent the wave numbers corresponding to the
radius of the sphere, S1, and the semi-major axis of the
most prolate particle, here S3. It can be observed from
fig. 6 that the particles reduce the turbulent kinetic en-
ergy, E(k), at small wave number compared to the case
S0. The decrease of kinetic energy at small wave numbers
for spheroids is in agreement with results obtained from
experimental studies [31]. This effect is more pronounced
for spherical particles than for spheroidal particles (see
inset of fig. 6). The area under the curve of the energy
spectrum plot represents the kinetic energy due to turbu-
lent fluctuations along the axial direction as shown in the
equation below [50]:

u′2
x =

∫ kmax

k=0

E11(k)dk.

The values u′2
x computed in this way, normalized by the

value of u′2
x for the unladen case are 0.81, 0.84 and 0.95 for

S1, S2 and S3, respectively. Furthermore, fig. 6 shows that
particles increase the energy of the intermediate and high
wave numbers. These observations can be qualitatively ex-
plained using the following phenomenological picture. In
finite-size particle-laden turbulence, the large eddy struc-
tures have less energy than those in single-phase flow, be-
cause they are disrupted by the finite-size particles that
drag the surrounding fluid in their direction. At the same
time, particles generate, in their downstream direction,
new eddies that become more frequent in the flow, thus
increasing the energy of the high wave numbers. An in-
crease of the kinetic energy at wave numbers correspond-
ing to the particle size indicates that particles generate
fluid motion at scales of the order of the particle size. Due
to the relative motion between the particles and the fluid,
velocity gradients are generated near the particle surface
that enhance the rate of energy dissipation at large wave
numbers and consequently suppress the kinetic energy in
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Fig. 6. One-dimensional energy spectra (left) and dissipation spectra (right) for turbulent fluctuations along the axial direction
of the turbulent pipe flow, normalized by the energy dissipation and kinematic viscosity versus wave number normalized by
the Kolmogorov length scale, η. The two vertical lines in the energy spectra plot represent the wave numbers corresponding
to the radius of the sphere, S1, and the semi-major axis of the most prolate particle, here S3. A scaling exponent of −5/3 ×
18/55 corresponding the Kolmogorov hypotheses for the one-dimensional energy spectrum is also shown along with the energy
spectrum [50].

Fig. 7. The RMS of the axial, u+
x , and of the radial fluctuating velocity component, u+

r , for the fluid phase in viscous wall units
for different particle shapes.

the spectrum at smaller wave numbers. To explore this
further, we also looked into the one-dimensional dissipa-
tion spectrum. The one-dimensional dissipation spectrum
can be computed from energy spectrum using [50]:

D11(k) = 15νk2E11(k).

It can be seen that the peak of the dissipation spectrum
occurs at kη ≈ 0.006. Thus the motion responsible for the
bulk of dissipation is considerably larger than the Kol-
mogorov scale. It should be noted that there is no incon-
sistency between this observation and the Kolmogorov hy-
potheses. The hypotheses implies that the length scale of
dissipative motions scales with η and it does not necessar-
ily have to be equal to η. The area under the curve of the

dissipation spectrum plot represents the total dissipation
due to turbulent fluctuations along the axial direction as
shown in the equation below [50]:

ε =
∫ ∞

k=0

D11(k)dk.

The values ε computed in this way, normalized by the
value of ε for unladen case, are 1.24, 1.15 and 1.07 for
S1, S2 and S3, respectively. This confirms that the spher-
ical particles dissipate more energy than the other cases.
In summary, spherical particles extract less energy at the
smaller wave number and overall dissipates more energy.
Overall, these combined effects can explain the higher drag
and larger forcing for spherical particles.
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Fig. 8. Mean particle and fluid axial velocity profile (Ux) in
viscous wall units. The velocity statistics have been calculated
using phase-ensemble average and rigid-body motion for lattice
nodes inside the particle.

The spectrum is only for fluctuations in the axial di-
rection. The particles also redistribute turbulent kinetic
energy from axial to lateral directions. To understand
this, we also discuss the effect of particles on the Eule-
rian root-mean-square (RMS) velocity profiles. The root-
mean-square (RMS) velocity is normalized by the friction
velocity, uτ . Figure 7 shows the axial and radial RMS ve-
locity values for the three simulations.

Our results indicate that the presence of particles re-
sults in a decrease of the RMS of the streamwise velocity
fluctuation and in an enhancement of the RMS of radial
velocity fluctuations near to the wall. This behavior is con-
sistent with the observation that the presence of particles
redistributes energy more isotropically [8, 13]. However, a
decrease in streamwise velocity fluctuations in the pres-
ence of spherical particles has also been observed for a
turbulent pipe [4]. But they also used a smaller pipe to
particle diameter ratio of 15 as compared to our simula-
tions (almost 20).

It is also observed that the effect is less pronounced for
particles with higher aspect ratio for streamwise velocity
fluctuations, i.e. the streamwise velocity fluctuation are
less dampened by the presence of particles with higher
aspect ratio. This is consistent with the observation that
among the particle-laden cases, spheroidal particles with
higher aspect ratio have higher turbulence kinetic energy
at low wave numbers in the energy spectrum. With respect
to the radial RMS fluctuations, it is observed that the
profiles for higher aspect ratio spheroid (S3) particles are
closer to a single-phase flow along most of the pipe radius.

Figure 8 depicts the mean particle and fluid velocity
profiles in viscous wall units. The fluid velocity statistics
have been calculated using phase-ensemble averaging as
discussed in [13]. Similarly, the particle velocity profile is
computed using the rigid-body motion for lattice nodes in-
side the particle. It can be observed in fig. 8 that both fluid
and particles have the same mean velocity in the whole

Fig. 9. Mean absolute value of the particle angular velocities
versus the distance from the center of the pipe to the wall, nor-
malized with the friction velocity, for the three particle shapes,
S1 (λ = 1), S2 (λ = 2), S3 (λ = 3). The error bars computed
using the RMS of the corresponding angular velocities were at
least three orders of magnitude smaller than the mean values.

pipe with the exception of velocities near the wall where
particles have a larger mean velocity than the surrounding
fluid. For the particles, the velocity at the wall does not
have to be zero as the particles can have a relative tangen-
tial motion. Since particles have finite size, they might be
located in regions with a higher velocity. This results in
higher average velocity of particles compared to local fluid
layers. Moreover, spheroids moves faster than spheres in
the near-wall region. It is later shown that spheroids tend
to align themselves in streamwise direction. This stream-
wise alignment might be the reason for higher velocity of
spheroids compared to spheres.

5 Particle dynamics

Anisotropic particles in turbulence exhibit rich orienta-
tional dynamics from the coupling of their rotation to the
velocity gradients of the turbulence field. We consider the
rotation and orientation of neutrally buoyant axisymmet-
ric spheroidal particles suspended in a turbulent pipe flow.
Using numerical calculations, we explore how particle ro-
tation depends upon particle shape. In the subsequent dis-
cussion, r is the radial coordinate in the cylindrical coor-
dinate system with the pipe center as the origin and R
being the radius of the pipe. Note that this radial coor-
dinate system is different from the Cartesian coordinate
system discussed earlier in sect. 2 and used solely for the
presentation of results. While computing the radial aver-
ages, the radial position of the centre of mass of a particle
is used. This means that all data points with centre of
mass of a particle lying between any given integer radial
position, ro − 1 and the next integer position, ro, are av-
eraged together and returns the mean value at ro. For a
given quantity q, whose radial average is being computed,
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Fig. 10. The absolute mean direction cosine of the particle inclination angle, measured with respect to the axial (left panel)
and radial directions (right panel), as a function of the distance from the center of the pipe to the wall, corresponding to the
three particle shapes, S1 (λ = 1), S2 (λ = 2), S3 (λ = 3).

this can be written as follows:

q(ro) = 〈q(r) | (ro − 1) < r ≤ ro〉
where ro is the integer radial coordinate and r is the po-
sition of centre of mass of the particle.

Inertial particles do not just sample fluid vorticity and
strain, but rather they extract angular momentum, trans-
port it, and return it back to the fluid phase. This de-
pends upon how the total angular velocity of the particle
is distributed between tumbling and spinning. This dis-
tribution of total angular velocity between tumbling and
spinning is likely to affect these phenomena. The tumbling
denotes the rotation of the symmetry axis of the particle,
while the term spinning denotes the rotation of the parti-
cle around its own symmetry axis. An axisymmetric parti-
cle with symmetry axis given by the unit vector p rotates
with a solid-body rotation rate, Ω = (Ωx, Ωr, Ωθ), that
can be split into a spinning rate which can be computed
as the dot product of the angular velocity, Ω, with the
unit vector along the symmetry axis, p:

Ωs = |Ω · p|,
and a tumbling rate, which is the cross product of the an-
gular velocity, Ω, with the unit vector along the symmetry
axis, p:

Ωt = |p × (Ω × p)|.
The mean absolute value of the particle angular velocities,
|Ω| as a function of radial positions, is reported in fig. 9.
The rotation velocities are quite similar far from the wall
for all the particle shapes. It can be observed that the pro-
late particles have significantly lower rotation rates than
spheres close to the wall. The mean particle rotation was
also reported to reduce close to the wall when increasing
the particle aspect ratio [19,20]. Even a small drop in the
angular velocity is observed near the wall for the largest
aspect ratio case, S3. This might be due the physical in-
terference of the wall with rotating motion of the particles
which becomes more significant on increasing aspect ratio.

Figure 10 depicts the absolute mean direction cosines,
〈| cos(θ, i)|〉, versus distance from the center of the pipe for
the axial (left) and radial (right) directions, where (θ, i) is
the angle between the symmetry axis of the spheroid and
the relevant direction of the inertial reference frame. Note
that values of cos(θp,x) close to 1 indicate that the parti-
cles tend to be aligned with their symmetry axis parallel to
the axial direction. It can be immediately seen that finite-
size spheroids tend to be aligned with their symmetry axis
along the streamwise direction, in particular close to the
wall, where particles exhibit very strong preferential ori-
entation. This can be observed by an increase in cos(θp,x)
and decrease of cos(θp,r) near to the wall. The effect of
particle shape on both axial and radial direction cosines
increases with increase in particle aspect ratio. This pref-
erential orientation decreases gradually toward the pipe
center. The minor fluctuations appearing on the curves
(in particular near the pipe center) are due to the discrete
nature of the solid particles and to the limited amount
of particles available for statistics. In the core region, the
orientations are more isotropic and random orientation is
thus more probable, which is due to higher isotropy of
the flow field fluctuations around the pipe center. Conse-
quently, both the axial and radial direction cosines for all
the particle shapes approach 0.5 and accordingly reflect
an isotropic orientation in the core region of the pipe. Ob-
viously, the orientation of a sphere always remains ran-
dom as it does not have any preferred axis. Alignment of
finite-size spheroids in our study is qualitatively similar to
the results obtained for inertial point particles as reported
in [38,39,42] and for finite-size particles as reported in [20]
for turbulent channel flow. Spheres does not have one par-
ticular symmetry axis. The orientation data was plotted
for sphere as a sanity check and the symmetry axis was
fixed arbitrary for spheres in our analysis.

Figure 11 shows the mean spinning and tumbling an-
gular velocities versus the distance from the center of
the pipe to the wall, for different particle shapes, normal-
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Fig. 11. Mean spinning, Ωs = Ω · p and tumbling angular velocities, Ωt = |p × (Ω × p)| versus the distance from the center
of the pipe to the wall, for the three particle shapes, S1 (λ = 1), S2 (λ = 2), S3 (λ = 3), normalized with the mean absolute
value of the particle angular velocities.

Fig. 12. The particle concentration profile across the pipe
radius for the three particle shapes, S1 (λ = 1), S2 (λ = 2), S3
(λ = 3). The profiles have been normalized such that the area
under the curve remains one. The large fluctuations near the
center of the pipe stems from the limited amount number of
particles available for statistics due to less cross-sectional area
near the center of the pipe.

ized with the mean absolute value of the particle angular
velocities. Spheroids align parallel to the axial direction
near to the wall. This results in a higher relative spin-
ning rate for spheroids as we go towards the wall. This
alignment and the corresponding spinning effect becomes
slightly stronger for particles with greater departure from
sphericity. A complementary behavior is observed for the
tumbling profiles, where the tumbling decreases as the
non-spherical particle approaches the wall. As expected,
the radial profiles of tumbling and spinning velocities for
spheres are independent of the radial position.

The local volume fraction of particles for different par-
ticle shapes is shown in fig. 12. The concentration profiles
have been normalized such that the area under the curve
remains one. It can be seen that spherical particles have a
local peak of distribution close to the wall. For spheroids,
the peak seems to diminish with increasing aspect ratio
such that there is no clear local peak for S3. This means
that spheroidal particles apparently do not show preferen-
tial concentration near to the wall. A similar phenomenon
was observed in an experimental study of fiber suspensions
by [51] and in a numerical study of spheroids [52]. On the
other hand, spherical particles stay mainly trapped close
to the wall. The main factor that helps spheroids leaving
this region can be their increased collision probability with
the wall due to their anisotropy. Far from the wall, where
the mean shear vanishes, this preferential concentration
disappears and the behavior is similar to that observed in
homogeneous and isotropic turbulence.

Figure 13 shows a numerically measured trajectory
of a spheroid with λ = 3. This example illustrates an
important property of the rotation of particles: intermit-
tency. The particle has bursts of high tumbling rate with
smooth rotational behavior in between the bursts, reflect-
ing the intermittency of particle rotations. To understand
this rotational intermittency further, we plot the proba-
bility density function (pdf) of tumbling rate squared for
spheroids and spheres together with the pdf of enstrophy
(vorticity squared) for the unladen case in fig. 14. The
values are normalized with their respective means.

Spheres simply tumble with the vorticity for lower
rotational rates. Variations in the orientation of the
spheroids with respect to the velocity gradient tensor con-
tribute additional fluctuations giving spheroids the most
high rotation rate events that increases with the aspect
ratio. The results indicates a similar trend as observed
in [53] for homogeneous isotropic turbulence.

Figure 15 and 16 show the results for the joint prob-
ability distribution function (PDF) of axial and angular
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Fig. 13. Three-dimensional view of a spheroid trajectory (S3)
in the turbulent pipe flow for 10 eddy turnover times with its
projection on three orthogonal planes. The color code of the
rod represents the rotation rate. The black line indicates the
projection of boundaries of the pipe on the orthogonal planes.
For the purpose of visualization, the axial direction has been
squeezed by a factor of 20.

Fig. 14. Probability density function (pdf) of the tumbling
rate squared for spheroids and spheres, |Ωt |2, normalized with
respect to their mean, 〈|Ωt |2〉, for the three particle shapes, S1
(λ = 1), S2 (λ = 2), S3 (λ = 3), compared with the probability
density function of enstrophy for the unladen case (S0), ω2,
normalized with respect to its mean value, 〈ω2〉.

velocity, respectively, with the radial position of the center
of mass of the particles obtained from the simulation. The
axial velocity is normalized by the friction velocity of the
corresponding simulation, the angular velocity is normal-
ized by the ratio of friction velocity to lattice resolution
(Δx = 1) and the radial positions are normalized with the
radius of the pipe.

The particle axial velocity is compared with the mean
Eulerian velocity obtained from another simulation with-
out particles but with the same energy input. It is observed
that the axial velocity of particles is scattered around the
mean velocity obtained from the Eulerian field. The angu-
lar velocity of a sphere in a shear flow with shear rate G is
given by G/2. For this reason, the magnitude of angular

velocities of the particles is compared with the half of the
shear rate (G/2), again obtained from another simulation
with the same energy input but without particles. The an-
gular velocities of the particles increase towards the wall
due to the presence of a high-shear region and remains
scattered around the values of shear rate obtained from
the Eulerian field. The finite size of the particles results
in an excluded region near to the wall. Changing the par-
ticle aspect ratio has a more prominent effect on angular
dynamics than on the center-of-mass dynamics. There are
few observations that can be made by looking at angu-
lar velocities. First, S3 samples angular velocities are very
close to zero near to the wall while the sphere S1 only
exhibits angular velocities greater than zero. This can be
explained by the fact that the spheroids have higher spin-
ning rate near to the wall than the tumbling rate which
results in lower angular velocities overall. It can be seen
that the maximum values of angular velocities encoun-
tered decreases on increasing the aspect ratio, which is
consistent with the observation made in fig. 9. The axial
velocity joint PDF does not change much at changing the
particle shapes, apart from the particle velocity near the
wall, which remains higher for higher aspect ratio particles
as also observed in fig. 8.

6 Conclusions

In this paper, the Lattice Boltzmann method (LBM)
has been used to simulate turbulent pipe flow seeded
with finite-size prolate spheroids and spheres. Test cases
with spheroidal particles of aspect ratio two and three,
along with a case with spherical particles and an unladen
case have been successfully investigated. Investigations of
finite-size anisotropic particles in turbulence are scarce
and the DNS of fully resolved prolate spheroids in turbu-
lent pipe flow has not been performed yet to our knowl-
edge. Therefore, it is not possible to make a quantitative
comparison with the existing literature. The outcome of
our analysis is a rather qualitative description of particle
dynamics and its effect on flow statistics in a turbulent
pipe flow for spheroidal particles with different aspect ra-
tios.

Comparing the obtained results of simulations with
spheroidal particles with those of spherical particles, it
is found that finite-size spheroids experience considerably
lower angular velocities close to the wall and stay preva-
lently aligned parallel to the wall. Despite the lower rota-
tion rates, the variations in the orientation of the spheroids
with respect to the velocity gradient tensor results in
higher rotational intermittency, which increases with in-
creasing aspect ratio. A mean particle velocity that is
higher than the mean fluid velocity near to the wall was
also observed. Streamwise turbulence attenuation occurs
for all particle types. However, the effect is more pro-
nounced for spherical ones. For radial and tangential di-
rections, turbulence fluctuations for spheroids are closer
to single-phase flow. Although spheres show a local peak
of volume fraction near the wall, this is clearly not the
case for spheroids. Spheroids are mainly aligned along
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Fig. 15. Joint PDF of the axial velocity with radial position of the particles for the three particle shapes, S1 (λ = 1, left),
S2 (λ = 2, centre), S3 (λ = 3, right). Color bar indicates log10 of probability. White line inside colors and black line outside
indicate the mean axial velocity obtained from the Eulerian velocity field of the turbulent pipe flow simulation without particles
and with the same energy input as the one with particles (S0).

Fig. 16. Joint PDF of the magnitude of the angular velocity with radial position of the particles for the three particle shapes,
S1 (λ = 1, left), S2 (λ = 2, centre), S3 (λ = 3, right). The color bar indicates log10 of probability. The white line inside colors
and the black line outside indicate half of the mean shear rate obtained from the Eulerian velocity field of the turbulent pipe
flow simulation without particles and with the same energy input as the one with particles (S0).

the streamwise direction. The preferential orientation and
spinning are stronger close to the walls and increase with
the particle aspect ratio. Around the pipe center, particles
show a much less preferential orientation. Another macro-
scopic effect of non-spherical particle dynamics includes
drag reduction compared to the spherical particles. The
results show that the turbulent kinetic energy decreases
and dissipation increases in the presence of spherical par-
ticles as compared to the spheroidal particles. The energy
present in fluid-phase velocity fluctuations is shifted to
smaller scales by the presence of particles. These observa-
tions were used to explain the higher forcing needed for
spherical particles.

The results presented in this article are qualitatively in
agreement with those of Eshghinejadfard et al. [20], where
they simulated finite-size prolate spheroids in a turbulent
channel. They also observed stronger streamwise turbu-
lence attenuation for spherical particles along with a peak
in volume fraction, that disappears for particles with in-
creasing aspect ratio. Moreover, they also observed a pref-
erential alignment of spheroids with axial direction which
increases with particle aspect ratio and is stronger close to
the wall. The effect of particle shape on turbulent kinetic

energy was qualitatively similar to that observed by Bel-
lani et al. [31] where they observed that addition of both
spherical and spheroidal particles results in attenuation of
turbulent kinetic energy with more pronounced effect of
spheroidal particles.

As a continuation of the present work, it might be
interesting to study if the turbulence is attenuated or en-
hanced on varying pipe to particle diameter ratio. Fur-
thermore, a momentum budget analysis can be useful as
well to understand the relative contribution of Reynolds
shear stress and the particle-induced stresses.

Though the method for particle-particle interaction
presented in this paper works for particles with any given
shape, it has the disadvantage that it cannot be used to
implement the lubrication forces. Four-way coupled nu-
merical simulation algorithms capable of handling arbi-
trarily shaped particles in turbulence are needed. Another
limitation of the work presented here is the limited param-
eter space that is explored: large portions of the param-
eter space is yet to be explored and many aspects of the
complex cases relevant to applications still need to be un-
derstood. However, thanks for systematic investigations,
it will be possible to provide a physical explanation to the
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mechanism of particle-induced turbulent drag reduction
and enhance the general understanding about particles
dynamics in turbulence.
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Appendix A. Model for spheroid interaction

We used a very simplistic model for the particle-particle
and particle-wall interaction. In our model, if a particle
hits the wall or another particle, it is elastically bounced
off affecting only the component of the velocities that are
directed along the contact normal and leaving the tangen-
tial components and angular momentum unaffected. In or-
der to use this approach, we just need the geometric (mini-
mum) distance between two arbitrary surfaces and not the
gap vector. However, the problem of finding the minimum
distance between two arbitrary surfaces is also rather dif-
ficult. We implemented an approximate technique based
on the Monte Carlo method to estimate the minimum dis-
tance between the two particles or the particles and the
wall. It is based on repeatedly finding the distance be-
tween randomly generated points on the surface of the
particles, which can be done analytically and then find
the minima/maxima of the distance. In fig. 17, we em-
ploy this method to compute the distance between two
stationary spheroids as a function of the number of ran-
domly generated points on the surface of each spheroid,
Np. The actual minimum distance between the objects is
4 lattice units and different colors represent different nu-
merical experiments. It can be observed that the algorithm
converges to the actual separation between the particles
with an accuracy of 0.5 lattice units for 104 iterations.

For computing the minimum distance between two
particles i and j, we generate n points on the sur-
face of each particle, ri,n = (xi,n, yi,n, zi,n) and rj,n =

Fig. 17. Minimum of the distance, Dspheroids between ran-
domly generated points on the surface of two stationary
spheroids as a function of the number of randomly generated
points on the surface of each spheroid, Np. The actual mini-
mum distance between the objects is 4 lattice units and differ-
ent colors represent different numerical experiments. The algo-
rithm converges to the actual separation between the particles
(4 lattice units) with an accuracy of 0.5 lattice units after 104

iterations for all numerical experiments.

Fig. 18. A spherical particle of radius r = 6 and a spheroid
with semi-major radius a = 12 and semi-minor radius b = 4
placed symetrically in a simple shear flow with a separation
of 30 LU between their centers, at three different time steps,
t = 0 (left), T/4 (centre) and T/2 (right) where T ≈ 7200 LU
is the period of one complete rotation the spheroid.

(xj,n, yj,n, zj,n). Then the minimum distance between the
surfaces, rmin,ij , is simply given by

min
n=1,...Np

√
(xi,n − xj,n)2 + (yi,n − yj,n)2 + (zi,n − zj,n)2.

In order to compute the minimum of the distance of
the particle from the wall, we again generate n points on
the surface of the particle ri,n = (xi,n, yi,n, zi,n). where n
goes from 1 to Np. Then the minimum distance between
the surfaces between the particle and the wall, rmin,i, is
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Fig. 19. Maximum distance of the particles from the center of the pipe (left) and minimum distance of the spheroid from the
sphere (right).

given by

rmin,i = R − max
n=1,...,Np

√
(yi,n − yc)2 + (zi,n − zc)2 ,

where yc and zc are coordinates of the center of pipe in
non-axial direction and R is the radius of the pipe. The
approach is not limited to ellipsoidal geometries but is
valid for particles of any arbitrary shape. Though this is
a rather crude interaction model, it is expected that the
total number of collisions is not sufficiently frequent to sig-
nificantly alter the particle statistics in the dilute regime
(φ < 0.5%). Arcen et al. [54] showed that lubrication cor-
rection forces have a negligible effect on the statistics of
spherical particles in the dilute regime. On the other hand,
the more realistic approach of Lin et al. [48] is intrinsically
complicated and limited to ellipsoidal geometries.

To demonstrate our approach, we compute the dis-
tance between a sphere of radius r = 6 LU (lattice units)
and a spheroid with semi-major radius a = 12 LU and
semi-minor radius b = 4 LU, placed symetrically in a sim-
ple shear flow with a separation of 30 LU between their
centers as shown in fig. 18. Figure 18 shows the flow con-
figuration at t = 0, T/4 and T/2 where T ≈ 7200 LU is
the period of one complete rotation of the spheroid.

As the two particles rotate due to the shear flow, the
minimum distance between the surface of the two particles
as well as the minimum distance of the spheroid surface
from the wall changes. In order to compute the minimum
distance of the spheroid surface from the wall, we ran-
domly generate 104 points on the surface of the spheroid
and compute the maximum of its distance (rmax) from
the center of the pipe. Then, the point of minimum sep-
aration from the wall is computed as R − rmax, where R
is the radius of pipe or the half-width for the channel. As
shown in fig. 19, the maximum distance of the spheroid’s
surface from the center of the pipe is 12 LU and it oc-
curs at t = T/4 = 1800, correspondingly the minimum
distance of the spheroid’s surface from the wall is R − 12
LU and it occurs at t = T/4 = 1800. As expected, the
maximum distance of the sphere’s surface from the cen-
ter of the pipe remains equal to the radius of the sphere,

i.e. 6 LU throughout the simulation. It can be seen that
the method correctly predicts the minimum distance of a
spheroid and sphere from the wall.

A similar process is used to compute the distance of a
sphere from the spheroid and the results for both spheroid
and sphere are shown in fig. 19. Here, we iteratively gen-
erate points on the surfaces of both particles and com-
pute the minima of the distance of all randomly generated
points on the surface of the spheroid to that on the sphere.
The minimum distance between the two particles is 12 LU
(at t = 0 and t = T/2 = 3600) and maximum is 20 LU
at t = T/4 = 1800. The above-discussed method very
accurately predicts the distance from the wall while the
distance between the particle surfaces is computed with an
accuracy of 0.5 LU. In the turbulent pipe-flow simulation
laden with multiple particles, we perform these iterations
only when the gap between an imaginary sphere with the
same radius as the major axis of the spheroid and the
wall, or between the two imaginary spheres with the same
radius as the major axis of the spheroid is less than one lat-
tice unit. The random points on the surface of the particles
are generated in angular coordinates using the parametric
equation of the ellipsoids. They are transformed to Carte-
sian coordinates where the distances are computed. The
total number of points generated on the surface of each
particle is 104. The surface area for S2 and S3 is 450 and
493 LU2 respectively. This gives the number of points per
unit surface area as 22.2 and 23.9, respectively, for the S2
and S3. The random points numbers were generated us-
ing the rand() function in C, while srand() function sets
the starting point(seed) for the random number genera-
tion. Overall, the method results in a numerical overhead
of about 10–20% in our simulations, depending on the as-
pect ratio and the number of particles.
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