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Abstract. Although pathway-specific kinetic theories are fundamentally important to describe and un-
derstand reversible polymerisation kinetics, they come in principle at a cost of having a large number
of system-specific parameters. Here, we construct a dynamical Landau theory to describe the kinetics of
activated linear supramolecular self-assembly, which drastically reduces the number of parameters and
still describes most of the interesting and generic behavior of the system in hand. This phenomenological
approach hinges on the fact that if nucleated, the polymerisation transition resembles a phase transition.
We are able to describe hysteresis, overshooting, undershooting and the existence of a lag time before
polymerisation takes off, and pinpoint the conditions required for observing these types of phenomenon
in the assembly and disassembly kinetics. We argue that the phenomenological kinetic parameter in our
theory is a pathway controller, i.e., it controls the relative weights of the molecular pathways through
which self-assembly takes place.

1 Introduction

Supramolecular polymerisation, β-amyloid fibril forma-
tion, actin and microtubule polymerisation all have two
features in common: i) some form of activation and ii) re-
versible elongation [1–4]. Activation can happen in many
different ways, the most important being conformational
switching [5] and a minimum number of monomers com-
ing together before elongation can take place (nucle-
ation) [2,6]. Generally, the activation constant for the
above-mentioned systems is very small compared to the
elongation constant, giving rise to very sharp polymeri-
sation transition as a function of, e.g., the temperature,
concentration, acidity and so on. This makes the poly-
merisation transition reminiscent of a phase transition [7,
8]. Hence, if we keep aside details of the actual activation
mechanism and other system-specific details, we can hope
to understand the universal and the most interesting be-
havior of many such systems by relying on notions from
the statistical mechanics of the phase transitions [4,8].

Even though our understanding of the thermodynam-
ics of supramolecular polymers and the role of activation
or nucleation [9,10], solvent [11–13], conformational [14,
15] and compositional disorder [16,17] has made great ad-
vances, much less is known about the kinetics underly-
ing reversible polymerisation processes [4]. The most ex-
tensively studied kinetic reaction rate models were ini-
tially set up to describe the equilibration of the length
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distribution of worm-like surfactant micelles in response
to a temperature jump, and stress relaxation under shear
flow via the dynamical breakdown and re-growth of poly-
meric assemblies [18]. Four kinetic pathways have been
identified in this context: i) end evaporation and addi-
tion [18], ii) scission and recombination [19], iii) end-
interchange [20], and iv) bond-interchange [21]. In prin-
ciple, one should consider not a single but a hybrid of
pathways [22], but this is rarely done [23].

The reaction rate or master equations are invariably
highly non-linear integro-differential equations, some of
which elude exact analytical solutions even in linearised
form [18]. Only in some limiting cases asymptotic ana-
lytical results have been obtained for the temporal evolu-
tion of the length distribution within the end-evaporation-
and-addition and scission-recombination kinetics apply-
ing the rate-equation approach outside of the linearised
regime [43,44,27]. Not surprisingly, it is tempting to ob-
tain closed-form equations for first few moments only,
presumably requiring the assumption that the shape of
the probability distribution function does not change with
time. This in turn requires pathways to be tuned in such a
way that it may not be possible to obtain correct thermo-
dynamic equilibrium (e.g., by assuming irreversible scis-
sion) [23–25].

In this paper we present as an alternative to the
above-mentioned approaches a phenomenological dynam-
ical Landau theory for activated reversible polymerisation
processes that makes use of what is known about the ki-
netics of phase transitions. The advantage of this method
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is that it allows for straightforward coupling of the equilib-
rium polymerisation to other kinds of macroscopic phase
transition, such as phase separation and the spontaneous
alignment in liquid crystalline states [34–36] as well as to
flow fields [37,38]. The coupling is straightfoward because
all the phenomena (polymerisation, phase ordering of var-
ious kind) can be treated on an equal footing in terms of
appropriate order parameters. The aim of our work is not
to replace reaction rate theories but to provide an alter-
native formalism to describe polymerization kinetics, one
that allows us in principle to couple the polymerization
transition to other hierarchical phase transitions.

Our theory is able to describe kinetic phenomena like
hysteresis, overshooting, undershooting and the existence
of a lag time, yet has only a single kinetic parameter. We
argue that this parameter controls in some sense the rel-
evant weights of different molecular pathways implicit in
the theory. We find that our theoretical predictions are in
qualitative agreement with experimental observations on
the assembly kinetics of β-amyloids, at least if we renor-
malize the theory with an appropriate time scale.

The remainder of this article is organized as follows: In
sect. 2, we construct a thermodynamically consistent Lan-
dau free energy involving two relevant non-conserved order
parameters, representing two moments of the full distribu-
tion function, and then use that to construct our dynam-
ical equations [39]. The two moments we focus attention
on are the polymer fraction and degree of polymerisation.
We ignore any spatial variation and presume the system
is well mixed at all times. Our two non-linear differential
equations describing the temporal evolution of the two
order parameters in essence depend on only two dimen-
sionless groups. One, the mass action variable describes
the strength of the thermodynamic driving force towards
polymerisation and the other, the pathway controller vari-
able, selects the relaxation pathway. In sect. 3, we solve
the linearised version of these equations and investigate
transient phenomena known as “overshooting” and “un-
dershooting”. The former has been observed in nucleated
self-assembling polymer solutions of tobacco mosaic virus
(TMV) coat protein [41] and of actin [32]. We analyse the
delayed response before assembly takes off, an observable
studied extensively in different types of system, in sect. 4.
There, we solve our non-linear evolution equation using
the method of “Matched Asymptotic Expansion” (MAE)
and obtain, in analytical form, the lag time as a function
of the relevant mass action variable and the initial condi-
tions. In sect. 5, we provide an interpretation for our path-
way control variable. We also discuss the phenomenon of
temporal hysteresis and match our analytical results with
experimental data for β-amyloid fibril assembly and ob-
tain excellent agreement if we allow for an offset. We end
this paper with a summary and conclusion in sect. 6.

2 Landau free-energy function and dynamical
equations

Our problem of interest is activated polymerisation in di-
lute yet well-mixed solution. This implies that we consider

two basic components: assembly active polymers and as-
sembly inactive monomers. Inactive monomers have to ac-
quire a high-energy, activated state to be able to polymer-
ize. Activated monomers convert inactive into active ones
upon binding. If the latter does not require any free-energy
input, this is known as “autosteric” or “auto-catalytic”
binding [4,28]. If it does require a free-energy input, we
have conventional activated polymerisation [45,31]. Both
types of polymerisation turn out to obey the same statis-
tics, i.e., the mass action models that describe these statis-
tics are equivalent [4].

We arbitrarily choose the autosteric model. In it, the
free-energy difference between active and inactive states
is Δfa ≥ 0, and the free-energy gain upon bonding is
Δfe ≤ 0. Let φ be the overall concentration (mass frac-
tion) of monomers in the solution. If we now invoke the
law of mass action and assume that the free monomers,
the dimers, the trimers, etc., do not mutually interact, we
obtain for the active polymers an exponential distribution
with an average degree of polymerisation that we denote
N̄a. A fraction f of the material is in the polymerised,
i.e., active state. The overall mean aggregation number,
including active and inactive species, we denote N̄ . Under
conditions of thermodynamic equilibrium, one can show
that [28]

f =
N̄a(N̄a − 1)Ka

X
, (1)

where N̄a obeys an equation of state given by

X = 1 − N̄−1
a + KaN̄a(N̄a − 1). (2)

Here, X ≡ φ exp (−Δfe/kBT ) is our mass-action vari-
able and Ka ≡ exp (−Δfa/kBT ) the activation constant,
where, kBT denotes the thermal energy with kB Boltz-
mann’s constant and T the absolute temperature. Note
that the mean degree of polymerisation averaged over ac-
tive and inactive species obeys N̄ = (1 + KaN̄2

a )/(1 +
KaN̄a).

From eqs. (1) and (2), we deduce that f = (X − 1 +
N̄−1

a )/X. If we demand that Ka → 0 and X ≥ 1+Ka, then
f ∼ 1−X−1 +X−1

√
Ka(X − 1)−1 ∼ 1−X−1 +O(K1/2

a ).
So, indeed, the polymerisation transition becomes in-
finitely sharp in the limit Ka → 0, with

f ∼
{

0, for X ≤ 1,

1 − X−1, for X ≥ 1.
(3)

It is straightforward to show that in this limit the heat
capacity exhibits a jump at the polymerisation point X =
1, as to be expected from mean-field arguments [29,1].
The limit Ka → 0 is sensible because experimental values
are typically 10−2–10−5 [30,10,11].

Now that we have convinced ourselves that the poly-
merisation transition resembles a phase transition [29,8],
we may attempt to describe it by constructing a Landau
free energy that will become a starting point of a dynam-
ical theory. We recall that there are two types of distribu-
tion: an exponential size distribution of active polymers
and a distribution over active and inactive material. This
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implies that we should be able to describe the thermody-
namics of activated polymerisation with only two order
parameters, one representing the fraction of polymerised
material f and the other describing the mean aggregation
number of active material N̄a. From eqs. (1) and (2) we
conclude that whilst f is critical in the limit Ka → 0, N̄a

is not. In this limit f is non-zero only if X > 1 yet N̄a > 1
for all X > 0. Indeed, from eq. (2) we find that at X = 1,
N̄a = K

−1/3
a � 1 if Ka � 1. Hence, only f exhibits a

sharp transition at the polymerisation point [4].
Parenthetically we note that for N̄a � 1, eq. (1) sug-

gests that fX ∼ KaN̄2
a and it seems therefore that as

f becomes critical, so does N̄a. However, because we are
interested in the limit Ka → 0, the product KaN̄2

a go-
ing to zero does not mean that N̄a also goes to zero or
even to unity as we have just seen. Hence, it makes sense
not to use N̄a as order parameter but instead a quantity
proportional to KaN̄2

a . In this case both order parameters
are zero below the critical point X = 1, and non-zero and
finite above it even in the limit Ka → 0.

It is important to point out in this context that our
statistical mechanical model is identical to the Tobolsky-
Eisenberg model for (spontaneous) sulfur polymerization,
which is an example of activated equilibrium polymeriza-
tion [7]. Wheeler and Pfeuty [8] have shown that a mag-
netic spin lattice model, the so-called n-vector model, be-
comes equivalent to the Tobolsky-Eisenberg theory in the
limit n → 0. In that model, the spin-spin coupling con-
stant corresponds to our elongation constant Ke, whereas
the magnetic field strength maps onto the activation con-
stant Ka. Wheeler and Pfeuty show that in their prescrip-
tion the number concentration of polymers depends lin-
early on the external field. Hence, in the limit of zero mag-
netic field, the number concentration of polymers tends to
zero. A vanishing number concentration of polymer chains
has to accommodate a finite polymerized mass, giving rise
to a diverging mean degree of polymerization above the
critical point. This confirms that it is not sensible to use
N̄a as an order parameter in the limit Ka → 0.

It follows that a sensible Landau free energy describing
nucleated polymerisation must involve two coupled order
parameters. In a state of thermodynamic equilibrium, this
free energy should retrieve eqs. (1) and (2) or (1) and (3),
which are equivalent in the appropriate limit Ka → 0. To
stay within the philosophy of Landau theory we opt for the
latter, because it allows us to invoke the relevant control
variable, X, and let it play a role similar to temperature.
The mass action variable X = φ exp (−Δfe/kBT ) depends
on the solution conditions, that is, the concentration φ, the
temperature T and, depending on the type of system, on
the solvent, the acidity and the salinity that (apart from
temperature) control the binding free energy Δfe.

As we have seen, the polymer fraction 0 ≤ f ≤ 1
shows a sharp continuous transition, which is a signa-
ture of a second-order phase transition, requiring a Lan-
dau free-energy function consisting of even powers of the
corresponding order parameter. To satisfy two essential
properties of the theory, i.e., a second-order–like transi-
tion and non-negativity of polymer fraction f , we select

this order parameter to be
√

f instead of f . Hence, we
denote our first-order parameter as S1 =

√
f , giving us

the first two terms in our free energy (per particle) as
−(X−1

p − X−1)S2
1 + S4

1 , in accordance with the require-
ments of the free energy for the second-order phase tran-
sition, and showing a transition at X = Xp ≡ 1, Xp. Xp

is transition point of the control variable X, even though
minimizing this free energy does not quite produce eq. (3)
yet as it is off by a factor of two. This, we fix below.

Apart from the critical order parameter S1 that is re-
lated to the fraction of active material f , we have to in-
troduce another order parameter, S2, that somehow de-
scribes the degree of polymerisation of the active material,
N̄a, and that is a proper order parameter. As already sug-
gested, an in this context natural order parameter would
be S2 = N̄a(N̄a−1)Ka/X, which is also critical but which
in our model is enslaved by S1. See eq. (1).

This suggests a contribution to the free-energy density
a term proportional to S2

2 , and a coupling term that estab-
lishes the enslavement of S2 to S1. We have to keep in mind
that in equilibrium we have to obey eq. (1). This we man-
age by adding to our free energy the terms (1/2)S2

2−S2
1S2.

The introduction of the coupling term S2
1S2 ensures that

we automatically obey eq. (1) and (3) in equilibrium, that
is, if we minimize the free energy with respect to S1 and
S2.

In conclusion, we obtain the following free energy per
solute molecule F that obeys:

F

kBT
= −(1 − X−1)S2

1 + S4
1 +

1
2
S2

2 − S2
1S2, (4)

and that meets all requirements. As usual kBT denotes the
thermal energy. As another thermodynamic consistency
check, we calculate the specific heat using this free energy.
It turns out to be consistent with that obtained invoking
the law of mass action (or the equivalent microscopic ther-
modynamic theory) [29]. We refer to appendix A for de-
tails. We do not invoke any spatial gradient terms in our
free energy, because we focus attention on dilute solutions.
This implies that the only interactions that we allow are
those that give rise to the polymer assembly and disas-
sembly, and these are highly local in space.

Now that we have defined our free-energy landscape,
we can build on that our dynamical theory. Using the ap-
propriate description for non-conserved order parameters
(model A) [39], we set

∂S1

∂t
= −Γ1

∂F/kBT

∂S1
and

∂S2

∂t
= −Γ2

∂F/kBT

∂S2
, (5)

with Γ1 and Γ2 phenomenological relaxation rates for our
order parameters S1 and S2. In line with common prac-
tice, and in the absence of a clear microscopic interpreta-
tion, we presume these relaxation rates to be independent
of the order parameters. As we shall see, this simplifica-
tion will prove sufficient to produce all known dynamical
behaviours of supramolecular assembly, including a lag
phase, overshoots and hysteresis. Note that even in the
absence of cross coefficients terms in our dynamical equa-
tions, eq. (5), the presence of S2

1S2 term in our free energy
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does give rise to the coupling between the temporal evo-
lution of the two order parameters [39]. The absence of
noise in our dynamical equations will be discussed below.

The resulting dynamical equations now read

∂S1

∂τ
= 2(1 − X−1)S1 + 2S1S2 − 4S3

1 , (6)

∂S2

∂τ
= γ(S2

1 − S2), (7)

where we introduced a dimensionless time, τ ≡ Γ1t, and a
the ratio of relaxation rates γ ≡ Γ1/Γ2 that will prove to
be our kinetic pathway controller. In principle, this could
point towards a microscopic interpretation of the kinetic
parameters and a possible evaluation of whether, and if
so, how, they should depend on the order parameters. We
leave this for future work.

Superficially, this set of coupled dynamical equations
looks very simple. However, their highly non-linear char-
acter heralds not only a complex dynamical behavior but
also difficulty in dealing with them analytically. This is
well known in the field of dynamical Landau theory [39].
In our case the non-linear character of the governing equa-
tions can be reduced somewhat by a simple transforma-
tion: f ≡ S2

1 and N̂a ≡ KaN̄a(N̄a − 1) ≡ S2X. Here, f is
as before the fraction of polymerised material, and N̂a is
a measure for the degree of polymerisation of the active
material that from now on we call the renormalised active
degree of polymerisation or renormalised mean polymer
length. Inserting this into eqs. (6) and (7), we obtain

∂f(τ)
∂τ

= 4
(

1 − 1
X

)
f(τ) + 4f(τ)

N̂a(τ)
X

− 8f(τ)2, (8)

∂N̂a(τ)
∂τ

= γf(τ) − γ

X
N̂a(τ). (9)

Note that if we solve the above set of dynamical equations
with the initial condition f(0) = 0, they will not evolve
towards the correct equilibrium point, i.e., the minimum
of the free energy. This is to be expected, as our theory is a
dynamical mean-field theory, implying that if the starting
point is a maximum free-energy state, the order parame-
ters will not evolve in the absence of fluctuations. In the
present study, we choose not to include noise and hence
focus on “seeded polymerization” [40]. Arguably, this is
not a huge drawback. First, noise is customarily ignored
in standard reaction rate theoretical approaches and our
aim is to connect with that kind of theory. Second, fixing
the amplitudes of the noise terms is highly non-trivial not
least because there is no equivalence of the fluctuation-
dissipation theorem for these two order parameters to fall
back on.

Finally, notice that the highest-order non-linear term
in eq. (8) is now quadratic rather than cubic as is the case
in eq. (6), and the quadratic term in eq. (7) becomes linear
in eq. (9). This makes a linear analysis more accurate. As
we shall show in the next section, even at the linearised
level our governing equations give rise to the interesting
transient phenomena of overshooting and undershooting.

3 Overshoot and undershoot

An exact analytical solution of our set of governing dy-
namical equations, eqs. (8) and (9), has evaded us. A
numerical evaluation of eqs. (8) and (9) in fig. 1 shows
that if we perturb the fraction of polymerised material
and/or their mean aggregation number away from their
equilibrium values, these quantities do not necessarily re-
lax in a simple exponential fashion, but can exhibit a
transient response of non-monotonic growth or decay be-
fore approaching equilibrium. There are two types of non-
monotonic relaxation that we call overshooting and under-
shooting [41]. What this means precisely, will become clear
below. Note that overshooting of the polymerised fraction
has been observed in actin assembly [32], and that of the
active degree of polymerisation in TMV coat protein as-
sembly [41]. We have not been able to find examples of un-
dershooting; most experimental studies focus on assembly
rather than disassembly.

Interestingly, overshooting and undershooting present
themselves to us even in a linearised version of the govern-
ing equations, which we can solve exactly. The analytical
solution allows us to demarcate different kinetic regimes
dominated by overshooting, undershooting and simple ex-
ponential relaxation for both quantities f and N̂a. To lin-
earize eqs. (8) and (9), we write f(τ) = f(∞)+ δf(τ) and
N̂a(τ) = N̂a(∞)+δN̂a(τ). Here, f(∞) and N̂a(∞) are the
respective equilibrium values for time τ going to infinity,
and δf(τ) and δN̂a(τ) are the perturbations away from
equilibrium, starting at zero time, τ = 0. The solutions to
our linearised version of our dynamical equations read

δf(τ) = A1e
−λ1τ + B1e

−λ2τ , (10)

and
δN̂a(τ) = A2e

−λ1τ + B2e
−λ2τ . (11)

These solutions are linear combination of eigenmodes with
principal relaxation rates (the eigenvalues of the dynami-
cal matrix)

λ1 = −8 − 8X − γ − κ

2X
, (12)

and
λ2 = −8 − 8X − γ + κ

2X
. (13)

The amplitudes A1, B1 and A2, B2 of the corresponding
eigenmodes are

A1 =
δf(0)(κ + 8X − γ − 8) − 8(1 − X−1)δN̂a(0)

2κ
,

B1 =
δf(0)(κ − 8X + γ + 8) + 8(1 − X−1)δN̂a(0)

2κ
,

(14)

and

A2 =
(κ − 8X + γ + 8)δN̂a(0) − 2γδf(0)X

2κ
,

B2 =
(κ + 8X − γ − 8)δN̂a(0) + 2γδf(0)X

2κ
. (15)
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Fig. 1. (a) Polymer fraction f vs. dimensionless time τ (left), and the quantity N̂a = KaN̄2
a , with Ka the activation constant

and N̄a the mean degree of polymerisation of the active matter, as a function of dimensionless time τ (right). Curves shown

are for the initial conditions f(0) = 0.55, 0.4, 0.3 and N̂a(0) = 1.5, 0.2, 0.5, respectively, indicated in blue, purple and yellow.

(b) Similar curves for initial conditions f(0) = 0.4, 0.6, 0.3 and N̂a(0) = 0.98, 1.05, 0.5, again blue, purple and yellow. For all
figures we set the mass action variable at the value of X = 2 and the pathway controller at a value of γ = 10. See the main
text for an explanation of these parameters. Given in the insets are the percentage differences (errors) of f and N̂a between
linearised theory and numerical calculation.

Here, κ ≡
√

γ2 + 64(X − 1)2. Notice that these solutions
are meaningful for only X > 1, because we cannot per-
form a perturbation theory for X ≤ 1 as the equilib-
rium solution in this case is f(∞) = 0. Also note that
the other limit X → ∞ is not meaningful either, as in
the linearised version of our dynamical eqs. (8) and (9),
the equilibrium conditions are, δf(∞) = N̂a(∞)/2X and
δf(∞) = N̂a(∞)/X. Both these equilibrium conditions
are true if and only if δf(∞) = δN̂a(∞) = 0, for any fi-
nite value of X. But in the limit X → ∞, the equilibrium
solution, (δf(∞), δN̂a(∞)) = (0, 0), becomes unstable.

Figure 1 shows that both numerical and linear solu-
tions point at the existence of overshooting, undershooting
and exponential monotonic relaxation. We never find over-
shooting and undershooting in both observables. What
kind of response and in what variable we find the dif-
ferent types of response depends entirely on the initial
conditions, i.e., on the values that our two order parame-
ters have at time zero. The demarcation between different
types of behavior we can evaluate using the linearised the-

ory. For this purpose, we define the (dimensionless) time
of transient response, τ tr, as the time at which the quan-
tity showing a non-monotonic transient response is at its
extremum. From eqs. (10) and (11) we deduce that

τ tr
f =

1
λ1 − λ2

ln
(
−A1λ1

B1λ2

)
, (16)

and

τ tr
N̂a

=
1

λ1 − λ2
ln

(
−A2λ1

B2λ2

)
, (17)

where τ tr
f and τ tr

N̂a
are the transient response times for the

quantities f and N̂a, respectively. For a non-monotonic
transient response to exist, these transient times must be
real and positive, which can be evaluated using eq. (12)
through (16). The transient times cannot be zero for the
solutions obtained from a linear analysis because of the
absence of any sigmoidal response at that level of approx-
imation. As overshooting and undershooting can occur in
both f and N̂a, but never in both, this gives rise to four
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Table 1. Initial condition regimes showing transient response or monotonic response for the polymer fraction f and N̂a ≡ KaN̄2
a ,

where Ka and N̄a are the activation constant and the mean degree of polymerisation. The quantities, δf and δN̄a, indicate
perturbation around equilibrium at time zero.

δf(0) > 0 δf(0) < 0

transient response in f

δN̂a(0) > 0 δN̂a(0) ≥ 2Xδf(0) δN̂a(0) > κ−

δN̂a(0) < 0 δN̂a(0) < κ+
1 δN̂a(0) ≤ 2Xδf(0)

transient response in N̂a

δN̂a(0) > 0 δN̂a(0) ≤ Xδf(0) δN̂a(0) < κ−

δN̂a(0) < 0 δN̂a(0) > κ+ δN̂a(0) ≥ Xδf(0)

monotonic response in both f and N̂a

δN̂a(0) > 0 Xδf(0) < δN̂a(0) < 2Xδf(0) no monotonic response

δN̂a(0) < 0 no monotonic response 2Xδf(0) < δN̂a(0) < Xδf(0)

1
κ± ≡ 1

8 Xδf(0)

„

±
r

γ2

(X−1)2
+ 64 + γ

1−X + 8

«

sets of initial conditions for each type of the transient
response. We tabulate these in table 1, for positive and
negative perturbation around the equilibrium values, and
notice that the demarcation of the various regimes depend
on both X and γ, so on thermodynamics and kinetics.

Table 1 only tells us whether or not there is a transient
response in f or N̂a, dependent on the initial conditions.
It does not tell us the nature of the transient response.
In principle, we can deduce this by calculating the cur-
vature of the quantity showing transient response at the
point of the extremum, that is, by calculating the second
derivative of f and N̂a with respect to time. Conditions
that we derive from the second-derivative test turn out to
be extremely complicated expressions, and hence we use
a simpler method to find what kind of transient response
our order parameters show. It hinges on evaluating the
slope of f and N̂a at zero time and connecting that to the
expected response from table 1. For instance, if conditions
are such that f shows transient behavior and if the slope
at zero time is negative (positive) then we know that we
are dealing with undershooting (overshooting).

Figure 2 shows how the initial conditions dictate
whether we have overshooting, undershooting or mono-
tonic relaxation. Although this “phase diagram” is in-
ferred from a linear analysis, it gives us information as
to when overshooting or undershooting will occur for a
specified set of parameters. The non-linear terms in our
dynamical equations modifies the extent of overshoot or
undershoot and magnitude of transient time τtr, and also
slightly deform the boundaries separating various tran-
sient responses in fig. 2 away from the equilibrium point.
The phase diagram shows that one cannot, as already ad-
vertised, have non-monotonic response in both quantities
f and N̂a, a fact that can be inferred from table 1 also.
Indeed, table 1 is exhaustive in describing all regimes of
initial conditions that are mutually exclusive among the
three different kinds of response.

We can qualitatively understand the transient response
of our order parameters from the dynamical eqs. (8)
and (9), and the equalities obtained from minimizing the

free energy yielding the equalities: 1) N̂a = 1 − X + 2Xf

and 2) N̂a = Xf , which we may call local equilibrium
conditions. As shown in fig. 2, if the initial conditions are
such that the system starts in the region between the lo-
cal equilibrium conditions then no transient response is
observed. If we start with initial conditions away from the
equilibrium point, the system first transiently evolves to-
wards either condition 1) or 2), depending on the initial
conditions and once that has been accomplished, both the
order parameters simultaneously decay to satisfy eq. (3).
In the process of f following N̂a, or vice versa depending
on the initial conditions and the value of pathway con-
troller, our order parameters show overshoot, undershoot
or monotonic response. This implies that the only tran-
sition that is sensitive to the value of γ, is that between
undershoot and overshoot.

Obviously, it would be very useful to have a physi-
cal interpretation for the existence of the various regimes
shown in table 1 and in fig. 2. For instance, the question
arises what plausible mechanism causes overshooting to
occur in the polymerised fraction. This occurs, as per ta-
ble 1, under conditions where the initial mean degree of
polymerisation of active material is large and the poly-
merised fraction is much smaller compared to its equilib-
rium value. In that case, assembly starts with very few but
very long filaments. These filaments can efficiently tend
to equilibrium by breaking, and in the process create new
nucleation centers. The number of segments a filaments
has broken into depends on two factors: 1) length of the
polymer and 2) probability of breaking of bonds (which
in principle is also a function of length of the polymer).
If a large polymer has been broken into a number of nu-
cleation centers greater than the equilibrium number of
polymers, then each newly created nucleation center ex-
tends towards the equilibrium length. This in turn causes
the amount of polymerised material to be more than the
equilibrium value and hence leads to the disintegration of
some of the polymers in the end to satisfy the law of mass
action. This is what we indeed observe as an overshoot in
the polymerised fraction, which first increases to a value
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Fig. 2. “Phase diagram” showing the linear response of poly-
mer fraction f and N̂a ≡ KaN̄2

a as a function of their initial
conditions. Different regions correspond to different kinds of
transient kinetic responses. a) X = 1.5 and γ = 2, b) X = 1.5
and γ = 10.

greater than equilibrium value and then decays towards
equilibrium. We conclude that the overshoot in f is di-
rectly connected with polymers being able to fragment by
random scission.

Figure 2a and b show that conditions where overshoot
happens depend quite strongly on the values of γ, our
kinetic parameter. This is shown more clearly in fig. 3a,
where we show results obtained by numerically integrating
our dynamical equations for different values of the param-
eter γ. For large enough γ, any transients in f disappear
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Fig. 3. a) Polymer fraction as a function of the dimension-
less time, τ , for values of our pathway controller γ = 3, 4, 50.
X = 2, f(0) = 0.01 and N̂a(0) = 5. The renormalised mean

polymer length, N̂a ≡ KaN̄2
a , for the same set of parameters

shows monotonic response. Notice that increasing γ suppresses
overshoot, eventually suppressing it for γ � 1. For further ex-
planation see the main text. b) Polymer density as a function
of dimensionless time, τ , for the same set of parameters as a).
See the main text for further explanation.

completely. This suggests γ regulates how prevelent scis-
sion is in the kinetic pathways. To substantiate this inter-
pretation, we calculate the polymer density, ρa = fφ/N̄a,
where the active degree of polymerisation, N̄a, is related
to the renormalised active degree of polymerisation via the
relation, N̂a = KaN̄2

a . As the activation constant, Ka, and
the total monomer concentration, φ, are not explicit pa-
rameters in our theory, we rewrite ρa = Kf/

√
N̂a, where

K ≡ φ
√

Ka. In fig. 3b we show the scaled polymer den-
sity, ρa/K. From fig. 3b, we see that ρa also overshoots
along with f , supporting our interpretation of the scis-
sion dominated polymer fraction overshoot. Also notice a
sharp increase of polymer density for γ � 1 at short times.
We do not fully understand the physical mechanism giving
rise to this shape increase in the polymer density for short
times.
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Fig. 4. Polymer fraction, f , as a function of dimensionless
time, τ , for different values of the initial polymer fraction, f(0).

System parameters are X = 2, γ = 2 and f(0) = N̂a(0).

4 Lag time analysis

Sigmoidal response is a key characteristic of activated self-
assembly and hence it should follow from our theory. In-
deed, if we start off self-assembly with a very small initial
fraction of polymerised material, we do find the sigmoidal
behavior. This kind of response is characterized by a lag
phase due to the time required to overcome the activation
barrier, Δfa > 0, and hence should become more pro-
nounced as the height of this activation barrier increases
or the initial polymer fraction, f(0), decreases. To analyse
the lag time from our model, we use the conventional defi-
nition, that is, we find the time at which we have the maxi-
mum growth rate, determine the tangent at that point and
identify its time intercept as the lag time [46]. Of course,
to be able to do this we have to supply the dynamical
equations with initial conditions. The equilibrium relation
between the polymerised fraction and the mean polymer
length is f = KaN̄a(N̄a − 1)/X, but we arbitrarily choose
f(0) = KaN̄2

a (0) for X = 2, and hence we start off with
out-of-equilibrium initial conditions. It turns out that our
results are qualitatively insensitive to the precise choise
of initial conditions as long as we confine ourselves to the
lower left part of the phase diagram fig. 2.

In fig. 4 we show by numerical solution that for in-
creasing values of the initial polymerised fraction, f(0),
the lag time for assembly decreases and above a certain
value the lag phase disappears completely. In fact, above a
critical value we retrieve the transient behavior discussed
in the previous section, see again fig. 2. The origin of the
lag time is the time required to create nucleation centers,
which then grow into equilibrium polymers. Indeed, in-
creasing the initial polymerised fraction is equivalent to
seeding the system [47], and hence these pre-nucleation
seeds then start elongating straight away, reducing the
overall time required for nucleation.

From fig. 4, which we obtained by means of numerical
solution, we see that the lag time only occurs for initial
polymerised fractions f(0) close to zero, i.e., far away from

the equilibrium value. If we want to obtain an analytical
expression for the lag time, which will help us to com-
pare with experimental data, we cannot rely on a linear
analysis. Instead, we resort to perturbation theory1. Per-
turbation theory demands an expansion parameter around
which an exact solution can be Taylor expanded. In princi-
ple, our phenomenological equations have two parameters,
the mass action variable, X, and the pathway controller,
γ. However, γ seems to be the only sensible parameter
to play the role of expansion parameter, as it is the only
kinetic parameter. It turns out that a lag time is very
weakly dependent on the value of γ. To illustrate this, we
solve our non-linear equations numerically for fixed initial
conditions and mass action variable, X, for different val-
ues of this parameter γ, and present results in fig. 5. As
fig. 5 confirms, the lag time is relatively insensitive to γ,
giving us a free choice of large or small γ and still obtain
the reliable estimate for the lag time. Notice that in fig. 5,
we have plotted the fraction of polymerised material as a
function of the logarithm of time to see the behavior at
large times, that is, to highlight the pseudo plateau that
appears at intermediate times. The pseudo plateau even-
tually equilibrates to true equilibrium, f = 1 − X−1, for
large times. It appears that for small values of γ, our sys-
tem of self-assembling monomers experiences a second lag
phase, the origin of which eludes us. On the other hand,
it points at two-stage nucleation seen in models where a
disordered aggregate has to be nucleated before this in
turn can nucleate in an ordered assembly which then can
polymerize [49]. It shows again how rich the temporal be-
haviour of our model is.

After identifying γ as our expansion parameter,
eqs. (8) and (9) give us the two options of γ � 1 and
γ � 1. We notice that for the limiting case γ � 1, our
system of differential equations is regular whilst for the
opposite limiting case γ � 1 it is singular. This means
that for the former we can put γ = 0 and hopefully
get a convergent solution in powers of γ by straightfor-
ward perturbation expansion. Because of its singular na-
ture, for the latter we cannot put γ → ∞ and calculate
perturbatively corrections in powers of 1/γ. It turns out
that, in spite of this, solving the singular version of our
dynamical equations, i.e., for the case γ � 1, is much
more simple. As from the numerical solutions we show
that the short-time behavior of the system is different
from the long-time behavior. Regular perturbation expan-
sion breaks down for this kind of behavior whereas the
technique known as the Matched Asymptotic Expansion
takes care of this [33]. Matched Asymptotic Expansion
has proven a useful scheme to provide reliable asymptotic
solutions but only applies to singular problems. Hence, we
choose to do our perturbation theory in the limit γ � 1,

1 One possible alternative would be recursive iteration that
requires initial guess for an approximate solution. The advan-
tage of such an approach is that it is free of any small param-
eter but the convergence of the iteration is highly dependent
on the trial solution [23–25]. Unfortunately, we have not been
able to find a suitable trial solution that converges to an exact
solution.
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Fig. 5. Polymerized fraction, f , as a function of logarithm
of dimensionless time, τ , for X = 2, f(0) = N̂a(0) = 10−6,
showing that the lag time is extremely weakly dependent on γ.
Also notice the pseudo plateau post lag time for small values of
our pathway controller γ. Also see the main text for discussion.

yet we expect accurate results for our lag time for all val-
ues of γ. Of course, our analysis for the behaviour at late
times is only accurate for large γ and completely misses
the pseudo plateau shown in fig. 5. We return to this issue
below.

Invoking the method of Matched Asymptotic Expan-
sion described in the appendix, we find from eqs. (17)
and (18), the following leading-order solutions for f(τ)
and N̂a(τ):

f(τ) =
(1 − X−1)

1 +
(

1−X−1−f(0)
f(0)

)
e−4(1−X−1)τ

, (18)

and

N̂a(τ) = Xf(τ) − e−
γ
X τ (f(0)X − N̂a(0)), (19)

valid for X > 1 and f(0) � 1 − X−1. Equation (18) is
evidently a sigmoidal (logistic) function, which in fact we
expect from eqs. (8) and (9) taking the limit γ → ∞. As
the function form that we obtain for f(t) is sigmoidal, it
does not exhibit the transient phenomena of overshoot
or undershoot. Notice that eq. (18) indeed is indepen-
dent of γ as we found from the numerical results shown
in fig. 5. In the limit γ → ∞ we obtain the equality
f(τ) = N̂a/X = KaN2

a (τ)/X valid for all time, which
in fact is the equilibrium condition for the fraction of
polymerised material and the degree of polymerisation
of the active material. The other equilibrium condition,
f = 1 − X−1 for X > 1, is only reached for infinite time.
Also, taking the limit X → ∞ in eqs. (18) and (19), we
find that the sigmoidal response is preserved. This will
turn out to have important consequences that we return
to below.

As is done generally to analyse experimental assembly
data, we can cast our sigmoidal relation in to following

form and define an effective growth rate and lag time [46]

f(τ) =
A

1 + e−kapp(τ−τ1/2)
, (20)

where from eq. (18) we read off that A = 1 − X−1 is
the equilibrium value, i.e., the saturation value, kapp =
4(1 − X−1) is the effective growth rate and τ1/2 = (1 −
X−1)−1 ln[(1 − X−1 − f(0))f(0)−1] is the time at which
the maximum growth rate occurs, which turns out to be
at the halfway point of assembly. Note that for X → 1
the growth rate goes to zero and the half-time, τ1/2, di-
verges, signifying what one may call critical slowing down
by analogy to what happens in phase transitions near the
critical point [48].

From eqs. (17) and (19) we can now simply calculate
the lag time, τlag, by the method advertised above, i.e.,
by i) finding the time at which we have the maximum
growth rate, ii) determining the tangent at that point,
and iii) identifying the time intercept as the lag time. We
find

τlag =
1

4(1 − X−1)

[
ln

(
1 − X−1 − f(0)

f(0)

)
− 2

]
. (21)

Equation (21), being the lag time calculated from the
leading-order solution for the polymerised fraction, f , is
independent of γ. However, N̂a does weakly depend on
our pathway controller γ. As a consequence, this quantity
can exhibit overshooting and undershooting in the large γ
limit. Note that strictly speaking our asymptotic solution
is accurate in the limit γ � 1 implying that N̂a is enslaved
by f and hence has the same lag time. The conditions for
obtaining the transient response in the renormalised mean
polymer length, N̂a, have been evaluated in the previous
section.

To verify that the lag time is weakly dependent on the
pathway controller, as we deduced from fig. 5, we compare
in fig. 6 τlag for the polymerised fraction, f , from our ana-
lytical solution, eq. (20), and the results from a numerical
solution of the governing equations. As the figure confirms,
this turns out to be justified, indicating that our asymp-
totic solutions for the analysis of the lag time are correct.
This in turn implies that eq. (21) is a good estimate for
any value of the pathway controller and determines un-
der what conditions the lag phase exists. Equation (21) is
real and positive only provided f(0) < 1 − X−1 = f(∞),
otherwise we lose the lag phase. This is particularly high-
lighted if we let X → 1+, where the lag phase vanishes
unless f(0) → 0 more quickly than X goes to unity.

Equation (21) and fig. 6 point at a remarkable prop-
erty of our lag time, which is that it does not vanish in the
limit of an infinitely deep quench corresponding to taking
the limit X → ∞. This is remarkable, because naively one
would expect that if the thermodynamic driving force be-
comes very large, this suppresses any phenomenon associ-
ated with nucleation. In our phenomenological theory the
lag phase is the only response associated with nucleation
and hence we expect it to vanish. Instead, in the limit
X → ∞, we find τlag → ln((1−f(0))/f(0))/4−1/2 ≡ τoff ,
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Fig. 6. The dimensionless lag time, τlag, as a function of the
mass action variable, X, for values of the pathway controller
γ = 0.05 (red diamonds), γ = 5 (blue diamonds) and γ = 500
(green open circles), and initial conditions for the polymerised

fraction, f , and the renormalised mean polymer length, N̂a,
of f(0) = N̂a(0) = 10−6. See also the main text. Symbols are
numerical results while the continuous line is our analytical
solution.

i.e., the lag time tends to a finite non-zero value that we
call the “off time”, τoff .

5 Discussion

We have seen in the previous section that depending, e.g.,
on the initial conditions, we can have a lag phase before
assembly takes off. What we have not shown, however, is
that in disassembly a lag phase is always absent. Hence,
there is an inherent asymmetry between the polymerisa-
tion and depolymerisation kinetics. We call this asymme-
try in the kinetics temporal hysteresis. It is of interest to
study in more detail in what way assembly is different
from disassembly and what the parameters are that affect
this. We confine ourselves to the hysteresis under condi-
tions characterized by a lag phase in the assembly and use
analytical solution for polymerised fraction, eq. (18), for
that purpose.

To be able to compare the assembly and disassembly
kinetics in a quantitative fashion, we perform a theoreti-
cal cyclic quench experiment, using our model. For this,
we quench the system from one equilibrium state X1 to
another equilibrium state X2 > X1, and after equilibra-
tion has taken place we quench back from X2 to X1 < X2.
The former is an assembly process that potentially expe-
riences a lag phase and the latter a disassembly process
that does not have a lag phase. For a meaningful com-
parison between assembly and disassembly, we define the
quantity Δf(τ) =| f(∞)−f(τ) |, where f(∞) is the long-
time (equilibrium) value of the polymerised fraction, f ,
after the quenching. If assembly and disassembly do not
exhibit hysteresis, the function Δf(τ) is identical for the
two processes in our cyclic quench experiment. If there
is hysteresis, this is no longer the case. We find that the

magnitude of temporal hysteresis, to be specified in more
detail below, depends on two factors: i) the width of the
quench interval, ΔX = X2−X1, and ii) the distance of the
quench interval from the critical point X = 1. As to be ex-
pected, in the limit ΔX → 0, we do not find any hysteresis
as the quench experiment is perturbative and hence the
problem becomes a linear one. Also, as X1 moves away
from the critical point at X = 1, the level of hysteresis
decreases and, indeed, in the limit X1 → ∞ hysteresis is
absent. The reason is that, as we have seen in the preced-
ing sections, the lag phase for the assembly ceases to exist
for the large initial polymerised fraction. In this case ΔX
need not be very small for the hysteresis to vanish.

To support these two statements, we define a quantity
that we call the hysteretic area, Ah, defined as the area
between the kinetic curves, Δf(τ), for the assembly and
disassembly in a cyclic quench experiment up to the point
of intersection of the two, see also fig. 7. To understand the
reason for the existence of the hysteretic area, we revisit
eq. (18), and note that the polymerised fraction, f , has two
time scales: one associated with the apparent growth rate
kapp independent of initial conditions, and the half time
τ1/2 that does depend on the initial polymerised fraction.
The latter quantity becomes negative if the initial condi-
tions are such that the system evolves to equilibrium via
disassembly. As a consequence, disassembly evolves with
only one of these two relaxation times, whereas assembly
has both of them. This difference in time scales between
assembly and disassembly gives rise to non-overlapping ki-
netic curves, and hence to a non-zero hysteretic area and
also an intersection point. For this reason, it makes sense
to focus on area between the two curves upto the point of
intersection that gives us the quantitative measure for the
level of hysteresis.

This is illustrated in fig. 8, showing the hysteretic area,
Ah, for various quenches between X1 and X2. We find
that if we keep X1 at some constant value but increase
the quench interval, ΔX = X2 − X1, by increasing X2,
the hysteretic area increases as a function of ΔX. The
figure also shows that the hysteretic area decreases as X1

moves away from the critical point, X = 1. This confirms
that we can indeed conclude that the hysteretic response
of polymerisation vs. depolymerisation disappears as we
move away from critical point X = 1 and hence is a char-
acteristic of nucleated or activated self-assembly.

We used our results of sect. 4 for the lag phase to study
the potential kinetic asymmetry between the assembly and
disassembly. Our analysis of the lag phase along with that
of the transient response, discussed in sect. 3, turns out
to allow us to provide a physical or molecular interpre-
tation of the phenomenological parameters in our theory.
Our phenomenological model has two important param-
eters: the thermodynamic mass action variable, X, and
the phenomenological kinetic parameter, γ. X describes
the final thermodynamic state of the solution, as we have
shown in sect. 2, whereas γ controls the temporal evolu-
tion of the polymerised fraction, f , and the mean polymer
length of active material, N̄a, towards that final thermo-
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Fig. 7. a) Mass action curve for polymer fraction, f , as a function of dimensionless mass action variable, X. Arrows show the
quench cycle from X1 to X2 > X1 (polymerisation) and vice versa (depolymerisation). b) Time dependence of the quantity
Δf(τ) =| f(∞) − f(τ) |, for the polymerisation (blue dashed curve) and depolymerisation (pink curve) dynamics when we
quench the system from one equilibrium (X1 = 1.01) to another equilibrium (X2 = 1.5) point and back, for the pathway control
variable, γ = 2 and an activation constant, Ka = 10−5.

dynamic state that potentially takes place via a plethora
of pathways [22].

The relative weight of each of the pathways governs in
the end the precise kinetics of our linearly polymerizing
system, and this suggests that there must be a connection
between the parameter γ and the relative weight of these
pathways. This is why we referred to it as the pathway
controller. To justify that γ must indeed be a pathway
controller, we revisit fig. 5 showing how the parameter γ
influences in what way the polymerised fraction evolves as
a function of time. Initial conditions are such that at zero
time the fraction of polymerised material is vanishingly
small and (eventually) equilibrates to the value of one half.
In the limit γ → 0, however, we obtain a pseudo plateau
that arguably hints at how the pathways and the value of
γ are related. This pseudo plateau emerges because of a
diverging time scale that emerges post lag-phase, in the
late stages of the assembly process. We also find a similar
pseudo plateau for the mean polymer length, N̄a.

The reason that we associate this psuedo plateau
with a specific reaction pathway, is that Semenov and
Nyrkova find within the rate equation approach a similar
late-stage diverging time scale for the so-called scission-
recombination pathway [44]. They conclude that in the
limit Ka → 0, the mean polymer length of the active ma-
terial displays a signature of critical slowing down in par-
ticular for X → 1+. However, the critical region vanishes
in that same limit Ka → 0 and hence should not be observ-
able in the limit where our theory is valid. What remains
in the Semenov-Nyrkova theory is the time scale that
scales as K

−2/3
a and that time scale diverges irrespective of

the value of the mass action variable, X, which is also true
for our model [44]. So, this suggests that our γ → 0 limit
should represent reversible scission-recombination path-
way. Other aspects of the kinetics point in the same di-
rection, in particular the transients. Indeed, we observe in
fig. 3 that the magnitude of the overshoot increases with
decreasing value of the pathway controller, γ. In sect. 3,
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Fig. 8. Absolute area between polymerisation and depoly-
merisation curves, Ah, obtained from analytical solutions for
polymerised fraction, f , eq. (17), for quench interval ΔX =
X2 − X1, where X1 = 1.01, 1, 02, 1.03, 1.5 are kept constant
but ΔX increases as a consequence of an increasing X2. See
also the main text.

we rationalized the existence of an overshoot in terms
of almost instantaneous scission of very few, very long
polymers combined with a somewhat slower unspecified
growth mechanism. As γ increases, overshooting becomes
less prominent and disappears completely for γ � 1:
this ties in with a decreasing ability of the polymers to
break and create nucleation centers that then can grow.
As γ → ∞, scission must be absent within our interpre-
tation. The polymers will in that case be nucleated from
inactive monomers and hence we see the lag phase emerg-
ing instead of an overshoot.

In conclusion, we have a kinetic parameter in our phe-
nomenological theory that plausibly acts as a pathway
controller. A natural question that now arises is: if γ is
indeed the pathway controller, then why is the lag time
independent of it? To answer this question, we need to un-
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Fig. 9. Lag time as a function of φ. Dots are experimental
results from Erik Hellstrand et al. while continuous line is an-
alytical solution. Fit parameters are Γ1 = 5.21, Ke = 5.8×106

and f(0) = 10−6; purple curve is the τlag asymptotic solution
and the green curve is τlag − τoff .

derstand that the lag time arises as a consequence of the
existence of a nucleation barrier and effectively takes place
at the monomer level, i.e., does not involve any polymers.
The reason is that an assembly inactive monomer needs
to transition to an assembly active state before it can par-
take in a polymerisation reaction. Naively, the lag phase
is controlled on the one hand by the free-energy difference
between the active and inactive monomer states, and on
the other by the thermodynamic driving force towards the
polymerised state. This explains why, as X → 1, the lag
time diverges as the thermodynamic driving force becomes
zero. It does not explain, however, why in our model, even
for infinite thermodynamic driving force, so for X → ∞,
the lag time does not vanish.

Let us now confront our predictions for the lag time
with actual experimental data on Amyloid-β assembly.
(Because of a lack of data we cannot do the same for
the transient response and hysteresis.) Hellstrand et al.
obtained lag times as a function of the concentration of
Amyloidβ(M1-42) protein in aqueous solution at pH =
8, containing 20mM sodium phosphate, 200μM EDTA,
0.02% NaN3, and 20μM ThT [46]. The experimental data
together with our theoretical fits are shown in fig. 9.
To obtain our theoretical fits, we need to fix our mass
action variable, X, the initial value for the fraction of
polymerised material, f(0), and the relaxation rate Γ1

as defined in sect. 2. The mass action variable, X =
φ exp(−Δfe/kBT ), we determine by realizing that the ex-
periments are done at constant physico-chemical condi-
tions, and hence that the elongation constant, equal to
exp(−Δfe/kBT ) is fixed. Because the critical point is at
X = 1, we deduce that the elongation constant must be
equal to the reciprocal of the critical concentration, φc.
Hence, X = φ/φc = C/Cc where C and Cc are now
the dimension bearing molar concentrations. The criti-
cal concentration Cc ∼ 0.18μM we determine from the
experimentally determined concentration below which no
polymers are is detected [46]. The corresponding value of

the dimension-bearing elongation constant turns out to be
5.6×106 M−1, which corresponds to a binding free energy
Δfe of about −20kBT .

Our lag time expression eq. (21) depends logarithmi-
cally on the initial polymerised fraction, f(0). From the
experiments of Hellstrand et al., we do not know its value.
Hence, we choose f(0) as well as our phenomenological ki-
netic parameter Γ1 in such a way to get the best agreement
for low and high concentrations. We recall that Γ1 is the
fundamental relaxation rate for the polymerised fraction
in our model, see eq. (5). As we have discussed in previ-
ous section, our lag time remains non-zero even for infinite
concentration, whereas in the experiments the lag time
does tend to zero with increasing concentration. Hence, to
fit our theoretical results to the experimental data we need
to subtract the off time τoff = ln((1− f(0))/f(0))/4− 1/2
that we defined in the preceding section and that depends
only on the initial condition. We get reasonable agree-
ment with the experiments if we set f(0) = 10−6 and
Γ1 = 5.211/hour, telling us that a theory captures in
essence the concentration dependence of the lag time of
this particular system.

Clearly, the fact that we have to subtract a known
off time is unsatisfactory, although this does not preclude
the possibility of systems that do show such a response.
Mathematically, the off time in our theory is caused by
the specific form of the free energy that we constructed.
This leads to kinetic equations that remain of a logistic
form even in the limit, X → ∞. We have not been able
to reformulate the theory in such a way that it suppresses
the existence of an off time. The advantage of the model
is that it is simple, that it exhibits a very rich kinetic
behavior and that it can relatively straightforwardly be
extended to include other macroscopic phase transitions.
In future work, we connect this theory to the Landau-de
Gennes theory for the isotropic-nematic phase transition,
allowing us to model phase ordering kinetics in solutions
of chromonics or surfactants.

6 Conclusion

In this work we present a phenomenological Landau the-
ory for nucleated linear self-assembly. Our model is con-
sistent with the thermodynamics of linear polymerisation
in the limit Ka → 0, i.e., for small values of the activation
constant, and is able to produce all transient behaviours
observed experimentally, i.e., a lag phase to assembly as
well as overshoot and undershoot. We show that the tran-
sient response of overshoot and undershoot is not caused
by the non-linearity of the problem in hand but instead a
consequence of the competition between the polymerised
fraction, f , and the mean polymer length, N̄a. Both the
types of transient behaviour can be obtained from the
linearised version of our theory. We pinpoint the initial
conditions required to observe overshoot or undershoot in
the polymerised fraction, f and that in the mean polymer
length, N̄a.

Solving our non-linear dynamical equations for the
limit γ → ∞ using the method of Matched Asymptotic
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Expansion, we obtain an analytical expression for the lag
time, τlag, which presents itself only when at time zero
very little of the material is polymerised. The lag phase
can only be found as a non-linear response, so does not
follow from the linearised theory. By comparing numer-
ical and analytical solutions we show that the lag time
is for all intends and purposes independent of our phe-
nomenological kinetic parameter γ that we identified as
the pathway controller. We find different kinetic profiles
for polymerisation and depolymerisation, call this a tem-
poral hysteresis, and show that this temporal hysteresis is
due to the inherent asymmetry involved in the polymeri-
sation and depolymerisation. The reason, of course is that
a nucleation barrier needs to be crossed only upon poly-
merisation. When we move deeply into the polymerised
regime, hysteresis becomes less prominent.

By comparing the temporal behavior of the poly-
merised fraction in the limit γ → 0 with microscopic
theory for the scission and recombination kinetic path-
way [44], we argue that in this limit our model is dom-
inated by scission and recombination. We find that the
magnitude of transient overshoot and undershoot in-
creases with decreasing value of γ. This finding, explains
why γ indeed must regulate the predominance of scission
kinetics.

If we compare our theoretical lag time with experi-
mental data on Amyloid-β, our theory agrees well with
the experiments, apart from an additive constant that we
need to remove. The additive constant that we call the off
time, τoff , turns out to be an asymptotic value of the lag
time for very large supersaturation. We do not fully un-
derstand the origin of this off time in our phenomenologi-
cal theory. Finally, our phenomenological Landau theory,
whilst much simpler than more conventional rate equa-
tion approaches to self-assembly, mimics many, if not all
of the generic features, seen in theory and experiments,
including hysteresis.
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Appendix A. Specific heat calculation

Here, we calculate specific heat at constant volume, and
show its agreement with the same quantity obtained from
mass action theory. As in conventional Landau theory
there is a linear relation between the Landau free energy
and the temperature. Therefore, we start out with a linear
approximation in the vicinity of the polymerisation point.
Using the definition X = φe−Δfe/kBT , in the vicinity of
the polymerisation point at X = 1, this quantity can be
expressed as

X = φe
Δfp/kBTp+ 1

kBT2
p

Δhp(T−Tp)
(A.1)

by Taylor expanding Δfe/kBT areound the polymerisa-
tion temperature Tp, where Δfp and Δhp are the free

energy and enthalpy of binding at Tp. Evidently X at the
polymerisation point is given by

Xp = φe−Δfp/kBTp = 1.

This yields

X ≈ e
Δhp

kBT2
p

(T−Tp)
≈ 1 +

ΔhP

kBT 2
p

(T − Tp), (A.2)

provided |Δhp(T − Tp)/kBT 2
p | � 1. If the Landau free-

energy density is considered, it follows from eq. (4) that in
equilibrium S2

1 = S2, and therefore the free-energy density
can be expressed as, so inserting (A.2) then gives

F

kBTp
≡ − Δhp

kBT 2
p

(T − Tp)S2
1 +

1
2
S4

1 . (A.3)

Note that the free-energy function is dimensionless, and
we make a choice of thermal energy at the polymerisation
temperature, i.e., kBTp to non-dimensionalise our free en-
ergy. In equilibrium

S1 = 0 ∨ S2
1 =

Δhp

kBT 2
p

(T − Tp). (A.4)

Note that for hp > 0, the second equality of eq. (A.4)
holds for T > Tp, whilst if hp < 0, it holds for T < Tp.

We arbitrarily assume that hp < 0, and the free-energy
density can now be computed for T ≤ Tp,

F

kBTp
= −1

2

(
Δhp

kBT 2
p

)2

(T − Tp)2, (A.5)

where F = 0 for T > Tp.
Hence, the isochoric heat capacity per unit of particle

cv can then be computed from

cv = −T
∂2F

∂T 2
= T

Δh2
p

kBT 3
p

, (A.6)

for T ≤ Tp and cv = 0 for T ≥ Tp. Equation (A.6) agrees
with specific heat at the critical temperature, Tp, calcu-
lated by van Jaarsveld et al., after some algebra, for the
so-called thermally activated polymerizing systems [26].

Appendix B. γ � 1 solution using matched
asymptotic expansion

In this appendix we outline the method of Matched
Asymptotic Expansion [33], by virtue of which we ob-
tained analytical solutions for our dynamical eqs. (8)
and (9), in the limit γ → ∞. The method of matched
asymptotic expansion, principally involves four steps:
1) obtaining the outer solution for long times τ � 1/γ,
2) finding the inner solution for short times τ � 1/γ,
3) matching the inner and outer solutions in the interme-
diate time domain and 4) obtaining a composite solution
valid for the whole time domain.
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Starting with the outer solution, we first assume that
the solution has a regular Taylor expansion for ε

fout(τ, ε) = fout
0 (τ) + εfout

1 (τ) + O(ε2), (B.1)

and

N̂out
a (τ, ε) = Ñout

a0 (τ) + εÑout
a1 (τ) + O(ε2). (B.2)

Substituting this into eq. (8), we obtain the zeroth-order
equations,

dfout
0 (τ)
dτ

= 4(1 − X−1)fout
0 (τ) + 4X−1fout

0 (τ)Ñout
a0 (τ)

−8fout
0 (τ)2 (B.3)

and
0 = Xfout

0 (τ) − Ñout
a0 (τ), (B.4)

where the subscript “0” refers to the order of the solutions.
We cannot impose both initial conditions on the

leading-order outer solutions. We therefore take most gen-
eral solution of these equations. As we shall see, when we
come to matching that to the inner solution, the natural
choice of imposing the initial condition fout

0 (0) = f(0) is
in fact correct. From the eq. (B.4), we conclude that

Ñout
a0 (τ) = Xfout

0 (τ),

for all τ ≥ 0. The zeroth-order degree of polymerisation
Ñout

a0 corresponds to quasi-equilibrium for the fraction of
active material fout

0 , in which the degree of polymerisation
increases because of an increase in active material. The de-
gree of polymerisation decreases also because of breaking
of long filaments, hence increasing number of polymers.

Substituting this result into eq. (B.3), we get a first-
order differential equaiton for f0(τ),

dfout
0 (τ)
dτ

= 4(1 − X−1)fout
0 (τ) − 4fout

0 (τ)2. (B.5)

The solution of this equation is given by

fout
0 (τ) =

4(1 − X−1)αe4(1−X−1)τ

4(1 − X−1) − 4α + 4αe4(1−X−1)τ
, (B.6)

and hence

Ñout
a0 (τ) =

4(X − 1)αe4(1−X−1)τ

4(1 − X−1) − 4α + 4αe4(1−X−1)τ
. (B.7)

Here α is a constant of integration. This solution is invalid
near τ = 0, because no choice of α can satisfy the initial
conditions for both fout

0 and Ñout
a0 .

To solve the problem for short times, we surmise that
there is a short initial layer, for times t = O(ε), in which f

and N̂a adjust from their initial values to values that are
compatible with the outer solution found above. We in-
troduce the inner variables T = τ/ε, f in(T, ε) = fout(τ, ε)

and N̂ in
a (T, ε) = N̂out

a (τ, ε). The inner equations then be-
come,

df in(T, ε)
dT

= ε(4(1 − X−1)f in(T, ε)

+4X−1f in(T, ε)N̂ in
a (T, ε) − 8f in(T, ε)2),

(B.8)

and

dN̂ in
a (T, ε)
dT

= Xf in(T, ε) − N̂ in
a (T, ε), (B.9)

with boundary conditions, f in(0, ε) = f(0) and N̂ in
a (0, ε) =

N̂a(0).
We look for an inner expansion of the form

f in(τ, ε) = f in
0 (τ) + εf in

1 (τ) + O(ε2), (B.10)

and

N̂ in
a (τ, ε) = Ñ in

a0(τ) + εÑ in
a1(τ) + O(ε2). (B.11)

The leading-order inner equations then become

df in
0

dT
= 0, (B.12)

and
dÑ in

a0

dT
= Xf in

0 − Ñ in
a0, (B.13)

with boundary conditions, f in
0 (0, ε) = f(0) and

Ñ in
a0(0, ε) = N̂a(0).

The solution of eqs. (B.12) and (B.13) are

f in
0 (T ) = f(0), (B.14)

and

Ñ in
a0(T ) = e−T

(
−f(0)X + eT f(0)X + N̂a(0)

)
. (B.15)

Now that we have obtained expressions for the inner and
outer solution, we assume both valid for intermediate
times of the order ε � τ � 1. We require that the expan-
sions agree asymptotically in this regime, where T → ∞
and τ → 0 as ε → 0. Hence, the matching conditions
must read, limT→∞ f in

0 (T ) = limτ→0+ fout
0 (τ) = f(0) and

limT→∞ Ñ in
a0(T ) = limτ→0+ Ñout

a0 (τ) = f(0)X.
The condition implies that, fout

0 (0) = α = f(0) and
Ñout

a0 = f(0)X.
This implies that the outer solutions become

fout
0 (τ) =

4(1 − X−1)f(0)e4(1−X−1)τ

4(1 − X−1) − 4f(0) + 4f(0)e4(1−X−1)τ
,

(B.16)
and

Ñout
a0 (τ) =

4(X − 1)f(0)e4(1−X−1)τ

4(1 − X−1) − 4f(0) + 4f(0)e4(1−X−1)τ
.

(B.17)
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Having now obtained expressions for the first terms of
both the inner and the outer expansions, they must now be
matched together to obtain one composite expansion that
approximates the solution over the whole time domain.
To get the composite expansion, the inner and outer ex-
pansions are simply added together and the common limit
found in (B.16) is subtracted, for otherwise it would be in-
cluded twice in the overlapping region. So our composite
solution finally reads

f ∼ fout
0 (τ) + f in

0

(τ

ε

)
− f(0), (B.18)

for the fraction of active material

N̂a ∼ Ñout
a0 (τ) + Ñ in

a0

(τ

ε

)
− f(0)X, (B.19)

for the renormalised degree of polymerisation of the active
material.

Keeping in mind that ε = 1/γ, gives us the full zeroth-
order solution given in eqs. (18) and (19).
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