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Abstract
Traditional crime prediction models based on census data are limited, as they fail to
capture the complexity and dynamics of human activity. With the rise of ubiquitous
computing, there is the opportunity to improve such models with data that make for
better proxies of human presence in cities. In this paper, we leverage large human
mobility data to craft an extensive set of features for crime prediction, as informed by
theories in criminology and urban studies. We employ averaging and boosting
ensemble techniques from machine learning, to investigate their power in predicting
yearly counts for different types of crimes occurring in New York City at census tract
level. Our study shows that spatial and spatio-temporal features derived from
Foursquare venues and checkins, subway rides, and taxi rides, improve the baseline
models relying on census and POI data. The proposed models achieve absolute R2

metrics of up to 65% (on a geographical out-of-sample test set) and up to 89% (on a
temporal out-of-sample test set). This proves that, next to the residential population
of an area, the ambient population there is strongly predictive of the area’s crime
levels. We deep-dive into the main crime categories, and find that the predictive gain
of the human dynamics features varies across crime types: such features bring the
biggest boost in case of grand larcenies, whereas assaults are already well predicted
by the census features. Furthermore, we identify and discuss top predictive features
for the main crime categories. These results offer valuable insights for those
responsible for urban policy or law enforcement.

Keywords: Crime prediction; Urban computing; Spatio-temporal data; Human
mobility; Location-based social networks; Applied machine learning

1 Introduction
Crime prediction is inherently difficult. Crime analysis has already confirmed that crimes
are unequally distributed in time and space [1]. Furthermore, crime is a highly dynamic
and complex phenomenon driven by the people and the environment where they meet [2],
and scholars in different disciplines are still investigating various elements for predictive
power. Knowing when and where crime is more likely to occur can help various actors
engaged in crime reduction: urban planners to design safer cities [3] and police forces to
better direct their patrols [4].

Initially, criminological studies have focused solely on socio-demographic attributes
as factors correlating with victimization and have noticed that specific groups of peo-
ple tend to have lifestyles that exposed them to higher risk of victimization compared to
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other groups—as explained by the Lifestyle Exposure Theory [5]. For instance: men, young
adults, and African Americans have been found to experience higher risk of victimiza-
tion in general [5]. Under the umbrella of the Social Disorganization Theory, a series of
criminological studies have explained crime as a product of the ecological attributes of the
neighborhood: ethnicity, income level, and residential stability [6, 7].

Cohen and Felson extended the model beyond the attributes of the underlaying popula-
tions towards opportunity—according to their Routine Activity Theory [8] there are three
elements which need to be present in time and space for a crime to occur: a motivated
offender, a suitable target, and a lack of guardianship. Finally, Brantingham and Branting-
ham analyzed criminogenic places in cities—places that make crime easy and profitable
and are the by-products of the environments we build to support the requirements of ev-
eryday life (e.g. homes, shops, offices, government buildings, parks, bus stops or sports
stadia) [9]—and divided them into crime attractors and crime generators. Crime attrac-
tors are places which attract criminals, because there are known opportunities in those
areas. As a consequence, the probability of a crime happening in those places is higher
compared to other places (e.g. night life district). In turn, crime generators are places in
which crime emerges at times where large number of people are attracted to those places
for reasons other than to offend (e.g. massive sports events).a

Other, more qualitative works in urban planning, have also looked at the relationship
between the built environment, population and safety. Specifically, two notable works do
not agree whether the density and diversity of human activity within an area are attracting
crime or not. In the Eyes on the Street Theory [10], Jacobs postulates that higher densities
of people and buildings, pedestrian areas and a mix of activities in the neighborhood act
as crime deterrents. On the other hand, Newman suggests that less built areas with more
segregated activities are safer [11].

In terms of data, traditionally, quantitative models explaining crime have leveraged the
socio-demographic and economical data available from the census, describing the resident
population of a given neighborhood [5, 7]. From a theoretical point of view, these models
have relied on the initial victimization theories in criminology.

But census data has an intrinsic limitation, in that it only offers a static and sometimes
obsolete image of the city, without capturing the people dynamics over time and space.
There is now the opportunity for non-conventional factors to be integrated in crime pre-
diction models by tapping into novel data sources that reflect the structure and dynam-
ics of our cities. With the emergence of mobile phones and other types of ubiquitous
computing, a plethora of geo-tagged crowd-generated data can now offer an approxima-
tion of the ambient population. In particular, location-based social networks (LBSNs) like
Foursquare offer a very vivid image of the city, being able to not only provide time and
location of human activity, but also the context (like traveling, shopping, working, going
out, etc.) in which activities occur. For example, researchers have successfully showed that
Foursquare can be used to automatically infer urban clusters which reflect the local dy-
namics and character of life of the area [12]. Furthermore, mobility data, such as public
transportation or taxi data, have the capability of capturing the population in and outer
flows in different parts of the city. For example, researchers have mined subway usage data
to identify deprived areas in the city [13]. All this leads to the current unique chance of
empirically measuring aspects of criminological theories relying on dynamic data which
was previously prohibited at large scale.
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Hence, in this work, we investigate the potential of geo-tagged human dynamics data for
long-term crime prediction models. We use such data to model crime attractors, crime
generators and the ambient population in a neighborhood and add these factors on top of
the classical factors from census that model the resident population in a neighborhood.
The full models for the total number crime incidents achieve absolute R2 metrics of up to
65% when testing on neighborhoods of the same city which have not been used during
the training phase of the models, and up to 89% when testing on the full data of the next
year. In comparison to the census-only baselines, this translates to improvements of 30
percentage points (on a geographical out-of-sample test set) and of 7 percentage points
(on a temporal out-of-sample test set). Furthermore, we look at the major crime types
and show that we can achieve improvements of up to 43 percentage points and of up to 9
percentage points, respectively (for the case of grand larcenies).

2 Related work
2.1 Urban computing
Nowadays, sensing technologies and large-scale computing infrastructures produce a va-
riety of big data in urban spaces: geographical data, human mobility, traffic patterns, com-
munication patterns, air quality, etc. The vision of urban computing, an emerging field
coined by Zheng and collaborators [14], is to unlock the power of big and heterogeneous
data collected in urban spaces and apply it to solve major issues our cities face today. They
identify seven application areas of urban computing: urban planning, transportation sys-
tems, environmental issues, energy consumption, social applications, commercial appli-
cations, and public safety and security.

A special category of this urban data consists of human dynamics data and researchers in
the different application areas started to leverage it. For example, within the urban plan-
ning and transportation domains, the authors in [15] attempt to infer the functions of
different regions in the city of Beijing by analyzing the spatial distribution of commercial
activities and GPS taxi traces, while the authors in [16] mine different urban open data
sources including LBSNs in the cities of Washington, D.C. and Hangzhou for optimal bike
sharing station placement. Furthermore, for commercial purposes, researchers mine LB-
SNs for optimal retail store placement [17] or the London metro data for insights into the
financial spending of transport users [18], and a variety of urban big data sources for pre-
dicting commercial activeness [19]. Within the public safety and security sector, scholars
have just recently started to investigate the potential use of social media [20], of mobile
data [21], and of taxi flow data [22] for the purpose of crime inference/prediction. In a
related literature stream, authors in [23] exploit POIs from different sources to build clas-
sifiers of urban deprivation (a composite score of seven domains, with crime being just
one of them) for neighborhoods in the UK, while authors in [13], assess the potential of
subway flow data to identify areas of high urban deprivation in the city.

2.2 Crime prediction
Researchers in a wide range of fields like criminology, physics and data mining have looked
at predicting crime at various scales and using different techniques. In this section we
present a short overview of the existing literature.

One approach is to model crime and cities as complex systems, through the lenses of
urban scaling laws. A series of papers has found that crime indicators scale super-linearly
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with the population sizes of cities [24–27]. In general, these studies carry out uni-variate
[26, 27] or multi-variate [28] analysis of crime, i.e. crime as a function of population or
of other socio-economic variables, and at a high aggregation level (that of cities). Also, at
lower resolution, researchers have confirmed that crime concentrates regardless of city
[29] and have found relevant allometric relations between peace disturbance and the res-
ident population, as well as between property crimes and the floating population [30].

At intra-city level and using methods from statistical learning, we distinguish between
two types of prediction models. The first type of models, consisting of long-term crime
prediction models, aim at modeling long-term crime level by looking at aggregated crime
rates over 1 to 5 years. In terms of techniques, these models rely on classical inference
models like the, sometimes geographically-weighted [22, 31], Poisson [32, 33] and Neg-
ative Binomial [22] regressions, where the task is to predict crime levels and the perfor-
mance of the model is evaluated in terms of in-sample goodness of fit. In terms of data,
the traditional models in criminology make use of the classical demographic crime cor-
relates, such as residential instability, ethnic heterogeneity, poverty rates, or income rates
[31, 32]. Moving to the data mining community, authors in [33] use census data, Open-
streetMap POI data, and features of the road network to predict annual burglary levels for
municipalities in Switzerland by means of regularized linear regressions tested on a one
year left-out sample. Most recent work on long-term crime prediction [22] makes use of
novel nodal features (Foursquare POI data next to demographic data) and edge features
(geographical influence of direct neighbors or as computed by taxi flow data) to explain
crime rates at community level by means of geographical linear and negative-binomial re-
gressions. Similarly, authors in [34] employ spatial econometrics techniques where they
compare and contrast the explanatory power of a limited set of census and Foursquare
features for aggregated census tract crime levels.

The next category of models is the category of short-term crime prediction models, also
called spatio-temporal prediction models, where the dependent variable is aggregated
over short time periods varying from 1 day to 1 month. The most basic and widely ap-
plied model for that is the hot spot model [35]. It clusters past incidents into regions of
high risk (the so-called hot spots) using statistical methods like kernel density estimation
(KDE) or mixture models. In this case the past is prologue for the future: crime is likely to
occur where crime has already occurred! Another set of models that use crime data only
are repeat and near-repeat models. Here, researchers have characterized each location by
a dynamic attractiveness variable and have represented each criminal as a random walker
[36], or have adapted self-exciting point processes that were initially developed for earth-
quake modeling to crime modeling [37, 38]. The assumption is that some future crimes
will occur very near to current crimes in time and place. The biggest disadvantage of mod-
els exploiting solely the historical crime records is that they cannot be generalized to areas
without historical data. The spatio-temporal generalized additive model (ST-GAM) [39]
and the local spatio-temporal generalized additive model (LST-GAM) [40] start looking
at socio-demographic data (like population density, unemployment rate, education level,
net income, social aid, etc.), and spatial data (like spatial proximity to bus stations, govern-
mental buildings, pawn shops, night life establishments, stores, parks, etc.), and temporal
data (like time of day/week/year, temporal proximity to special events such as football
games, etc.) describing a criminal incident. These models are extensions of regression
models on grids, where the features can be indexed by time. Only very recent research has
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started to utilize human dynamics data in short-term crime prediction models. Gerber
[20] has shown that combining topics derived from the Twitter stream with the histori-
cal crime density delivered by a standard KDE under a logistic regression model leads to
an increase in the prediction performance of hotspots next day versus the standard KDE
approach for most of the tested crime types. Combining for the first time demographic
data and aggregated and anonymized human behavioral data derived from mobile data,
Bogomolov and colleagues were able to obtain an accuracy of almost 70% when predicting
whether a specific area in the city will be a crime hotspot or not within the next day [21].

3 Research gap and contributions
Our work lies within the category of long-term crime prediction models. Compared to
previous work in this literature stream, we make following contributions:

1. in terms of data, we are the first to craft a comprehensive set of spatial and
spatio-temporal features describing the dynamics of human activity in an area, as
captured by the usage of social networks, public transportation, and road
transportation and use this data describing the ambient population to enhance the
traditional set of features describing the resident population as modeled by the
census statistics.

2. in terms of techniques, we employ latest averaging and boosting ensemble
techniques from machine learning, which in comparison to the current linear
models in literature, can deal with the large number of features described above.

3. in terms of evaluation, we test the models on geographical and temporal
out-of-sample test sets, to prove generalization and compare them against a
weak-baseline based solely on census data and a against a strong-baseline based on
census and POI data. We furthermore compare the individual predictive power of
the considered data sources of human mobility: Foursquare venues/checkins, NYC
subway rides, and NYC yellow and green taxis rides.

4. in terms of unit of analysis, we analyze crime at a granular level, with counts of
various types of urban crime being effectively predicted at a high degree of
geographic resolution, namely census tracts. We notice different degrees of
predictive performance across the different crime types.

5. in terms of interpretability and unlike most studies within the urban computing
community, we motivate the choice of features in criminal theory and discuss and
interpret the results of the models in this context.

4 Datasets
New York City (NYC) is a city that has experienced crime across time, though the levels
have dropped since the 1990s [41], some attributing the success to new policing tactics
and the end of the crack epidemic [42]. Furthermore, as part of an initiative to improve
the accessibility, transparency, and accountability of the city government, the NYC Open
Data platformb provides massive data in machine-readable formats on buildings, streets,
infrastructure, businesses, permits, licenses, crime, 311 complaints, public transportation,
and many more. Furthermore, NYC’s 8.5 million inhabitants leave rich digital footprints of
their daily activity in various location-based online services, NYC being the most popular
city on Foursquarec with about 132 million checkins as of May 2016.d
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4.1 Crime data
The raw crime dataset was downloaded from the NYC Open Data platform. For anonymi-
zation reasons, in case the offense has not occurred at an intersection, the New York Police
Department (NYPD) projects the location of the incident to the center of the block (street
segment). Furthermore, crime complaints which involve multiple offenses are classified
according to the most serious offense.e Next to the total number of incidents, we concen-
trate on the following five felony types: grand larceny (which is the theft of another’s prop-
erty, including money, over a certain value), robbery, burglary, felony assault, and grand
larceny of motor vehicle—leaving out the murder and rape cases which have very differ-
ent underlying causal mechanisms and are also reported on a higher aggregation level.
We keep for analysis the data of the last 2 complete years (2014 and 2015). This yields
a total number of 174,682 incidents across the five boroughs of NYC: Bronx, Brooklyn,
Manhattan, Queens and Staten Island.

4.2 Census data
The census data for NYC was obtained from two separate sources, the 2010 Decennial
Census, as well as the 2010–2014 and the 2011–2015 American Community Survey (ACS).
In both cases, the data was fetched from the FTP sites of the US Census Bureau,f and was
filtered out to keep only the data on a census tract level.

The Decennial Census includes basic demographic figures, which are based on actual
counts of persons dwelling in the US and is conducted only once every 10 years. The Sum-
mary File 1, used for this study, includes items describing the population, such as gender,
age, race, origin, household relationship, household type and size, family type and size, etc.
In addition, housing characteristics are captured through the occupancy/vacancy status
and tenure. The ACS estimates are based on yearly collected survey data over a sample of
the US population. For the purposes of this study, the 5-year estimates were used, as the
largest and most reliable sample, where the data is available on a census tract (and smaller)
geography level. Apart from the demographics, ACS contains a rich set of social, housing
and economic features, with residential stability, poverty and income being of interest for
this study.

4.3 Foursquare venues data
The Foursquare dataset was collected via the Foursquare API, using the venues search and
venue details endpoints. The Foursquare API has been serving both the Foursquare 8.0
and the Swarm apps since the 2014 split of the original Foursquare app. While Foursquare
continues to provide a local search-and-discovery service for places near a user’s current
location, Swarm lets the user share their location with friends at different precision levels
(at city and neighborhood levels, or by checking-in to a specific venue).

The collected data consists of NYC venues with compact metadata like id, name, lo-
cation, checkins count (total checkins ever done in that venue), users count (total users
who have ever checked in), associated categories, menu, opening and popular hours, user-
generated tips, etc. We have queried the API by searching for venues in the proximity of
every incident location described previously, and this resulted into an extensive database
of 273,149 different venues, that have experienced in total over 122 million checkins since
their creation on the platform until the time of the data collection (June 2016). From these,
250,926 venues have an assigned category. The Foursquare categories span a broad ontol-
ogy, headed by the following top ten categories: Arts and Entertainment (11,794 venues),
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College and University (7082), Event (84), Food (47,590), Nightlife Spot (11,140), Outdoors
and Recreation (18,011), Professional and Other Places (64,055), Residence (14,632), Shop
and Service (62,627), Travel and Transport (13,911). The distribution of the top categories
across the venues is uneven and biased towards establishments where people go out for
services, working, shopping, or dining.

4.4 Subway usage data
Subway usage data, commonly referred to as turnstile data, is released regularly by the
Metropolitan Transportation Authority (MTA) and contains entries and exits audit data,
generated from the Control Areas from its three main divisions: Interborough Rapid Tran-
sit Company (IRT), Independent Subway System (IND) and Brooklyn-Manhattan Transit
Company (BMT). While the original dataset contains data from several other associated
agencies, for consistency reasons these were left out of the final dataset since the corre-
sponding stations were not located within NYC, or represent train, bus or cable car sta-
tions. We downloaded the turnstile data from the New York State Open Data portalg and
the MTA websiteh for the two full years of 2014 and 2015. In addition, a geocoded list of
MTA stations was also obtained from the same portal.i

To perform the preliminary data cleaning and combine the two data sources, a careful
manual examination of station names was conducted. The goal was to resolve situations
where the same station appeared with different names in the turnstile dataset, e.g. both
‘18 AV’ and ‘18 AVE’ where coded as ‘18 AV’, and to unify the names used in both datasets.
Once the data was cleaned and merged, each station was further examined for location
accuracy, by comparing and adjusting it with the corresponding station geolocation pro-
vided by Google Maps. In the end, 455 distinct subway station locations were compiled. In
the two years of analysis, they have experienced almost 21 million turnstile updates (the
turnstile counters updated every 4 hours).

4.5 Taxi usage data
The taxi dataset was downloaded from the official website of the City of New York, specif-
ically the Taxi and Limousine Commissionj and combines the 2014 and 2015 complete
records of both yellow and green taxi trips. These are the two types of services permitted
to pick up passengers via street hails, thus offering a great footprint of human activity.
Furthermore, yellow cabs are concentrated around Manhattan and the two main airports
(JFK International Airport and LaGuardia Airport), while green cabs are allowed above
the 110th Street in Manhattan and in the outer-boroughs of New York City. With the two
datasets joined, we obtain a good coverage of the whole city. The trip records include
fields capturing pick-up and drop-off timestamps and locations, next to other meta-data
like driver-reported passenger counts and trip distances. We have processed in total over
340 millions taxi drives for this work.

5 Model specification
5.1 Unit of analysis
We cast the problem as a regression task on the log-transformed crime counts in each
census tract. For each census tract, we sum all crime incidents (total and per crime type)
occurring in 2014 and in 2015 within the census tract. We opt for crime counts and not
crime rates (which are crime counts normalized by the census population), as we like to
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show the explicit effect of both the resident population (as recorded by census) and of the
ambient population (as recorded by the different proxies) on the raw counts. As a tech-
nical remark: we look in the following at points situated in the area of each census track,
buffered by 50 feet (which is half the width of the main Manhattan avenues), to account
for potential precision inaccuracies in the different spatial data types and to integrate the
crime locations that lie on the bordering streets. The same applies for venues, subway, and
pickup/drop-off locations.

Census tracts provide a stable set of geographic units for the presentation of statistical
data and generally have a population size between 1200 and 8000 people, with an optimum
size of 4000 people.k In the case of NYC they span a few blocks and offer a natural unit for
crime analysis at a detailed level. NYC has a total of 2167 official census tracts. A few of
these consist only of water or shoreline areas, which have not been experiencing any crime
incidents in either of the analysis years. Furthermore, some NYC census tracts consist
fully of military posts or jail facilities (like e.g. Fort Hamilton and Rikers Island) which
exhibit different crime reporting schemes, next to restricted human presence. We remove
these census tracts, and remain with a final of N = 2154 census tracts. Please note we still
include many census tract with no resident population, like parks or airports, as these still
experience crime, and now we have the possibility to model it by means of the ambient
population measured by the alternative data sources. For visualization purposes, Fig. 1
depicts the 2015 aggregated crime counts per census tract, together with some example
features computed at census tract level. All maps in this paper have been generated using
the open source software QGIS.l

Table 1 presents the descriptive statistics of crime counts of all types, while Fig. 2 is de-
picting the histograms of the total incidents counts per census tract. We can observe that
the distribution of the data is positively skewed with many observations having low count

Figure 1 NYC census tracts. From left to right and top to down: total number of 2015 incidents, percentage
of rented houses, number of food venues, number of checkins in shops, number of 2015 subway exits
(Mon–Fri average), number of 2015 picked up passengers (Mon–Fri average)
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Table 1 Descriptive statistics of the crime data: counts per census tract for each year

Incident type Min Q1 Median Mean Q3 Max

2015
Total incidents 1 29 52 68 91 661
Grand larceny 0 10 18 28 31 519
Robbery 0 4 8 12 18 90
Burglary 0 4 7 9 12 90
Assault 0 4 8 13 19 95
Vehicle larceny 0 2 4 5 6 38

2014
Total incidents 2 31 53 70 93 644
Grand larceny 0 11 19 29 33 512
Robbery 0 3 9 12 17 67
Burglary 0 5 8 10 14 83
Assault 0 3 8 13 19 92
Vehicle larceny 0 2 4 5 7 61

Figure 2 Histogram of the original and log-transformed total incidents per census track: 2014 (left) and 2015
(right)

values. The various crime types expose also similar power law distributions, so for the pre-
diction task below, we log-transform the dependent variable to correct for the positively
skewed distribution, and use this as our dependent variable y.

5.2 Prediction features
In what concerns the independent variables x, we craft an extensive set of features based
on the collected massive datasets. Each feature represents a numeric score that charac-
terizes a given census tract and is motivated by domain knowledge in criminology or ur-
ban computing, as explained below. We classify the features into three broad categories:
(1) socio-demographic and economical features derived from the census sources, (2) spa-
tial features which exploit solely the static information about the venues and subway
stations, and (3) spatio-temporal features which integrate knowledge about the way the
population moves around the city (by means of check-ins, subway entries/exits, taxi pick-
ups/drop-offs). We have imported all data into a PostGIS-enabled Postgres database,m

which offers in-built optimized temporal and spatial queries that are required to process
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the data for feature generation per unit of analysis, as described in the remainder of this
section.

5.2.1 Census features
To account for the fact that the units of analysis are heterogeneous, we include the census
tract’s area (in square miles) and total population as controls in the regression. We then
proceed with a standard set of factors deemed in past criminological studies as signifi-
cantly influential of crime and have been used also in related work in data mining, like
[22].

We start by operationalizing the concepts of the Lifestyle Exposure Theory and Social
Disorganization Theory. We start with indicators of population at risk and of concentrated
disadvantage [5–7]: fraction of male population, fraction of black population, fraction of
hispanic population, fraction of population under the poverty level. As violence has been
associated with residential instability of neighborhoods [7, 43], we compute the fraction
of vacant households, the fraction of rented households from the occupied ones, and the
fraction of stable population (individuals who moved in prior to 2010).

Furthermore, population diversity has been shown to play a role in the crime phe-
nomenon [10, 32, 43] so we computed several diversity indexes based on the socio-
demographic and economical information: a racial ethnic diversity index, an age index,
and an income diversity index. The racial ethnic index is defined by the plurality of multi-
ple ethnic and racial groups within a certain area and is computed based on five exhaustive
and mutually exclusive aggregates (non-Hispanic whites, non-Hispanic blacks, Hispanics
of any race, Asians, and others—Native Americans, members of other races, and multi-
racial persons) [44]. The age index measures the variance in ages of the residents across
four main age groups (under 18, 18–34, 35–64, and over 65 years), and the income in-
dex measures the variance in household income across three main income levels (low,
medium, and high-income households) [45].

5.2.2 Spatial features
This category of features describes the characteristics of a neighborhood, as captured by
the spatial distribution of the Foursquare venues and subway stations within its perimeter.
In general, the venues can be seen as crime attractors—particular places to which offenders
are attracted because of the known opportunities for particular types of crimes [9].

The number of venues of each category measures the venues counts within a census tract
and it is a static popularity metric of that area. The fractions of venues of each category
capture the specifics of the life within a census tract, and it is an empirical metric for the
functional decomposition of that particular area in the city. The venues diversity index
is then a single measurement capturing the diversity of this decomposition. Inspired by
[17], we use the entropy measurement from information theory [46] as a diversity metric.
Intuitively, the entropy quantifies the uncertainty in predicting the category of a venue
that is taken at random from the area. The final formula models the normalized Shannon
diversity index (also called the Shannon equitability index [47]), which is the Shannon
diversity index divided by the maximum diversity. For a given census tract ti, we denote the
count of included venues of category c with Vc(ti) and the total number of included venues
with V (ti) and formally define the venues diversity index of that census tract as follows (we
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employ smoothing by adding the constant 1 to the numerator and denominator to prevent
zero divisions):

–
∑

c∈C

(
1 + Vc(ti)
1 + V (ti)

× ln
1 + Vc(ti)
1 + V (ti)

)/
ln |C|.

The higher the index, the more heterogeneous the area is in terms of types of places, and
following that, in terms of functions and activities of the neighborhood, whereas a least
entropic area would indicate an area with a dominant function. For example, a census tract
dominated by venues from the College and University category, would indicate a part of
the city where people primarily study and would have a low diversity index.

Motivated by the work in [23], we generate a metric called the offering advantage which
denotes to what extent a particular neighborhood offers more venues of a particular cat-
egory in comparison to the average neighborhood. Intuitively, the presence of one venue
of an unpopular category, is more informative in profiling a neighborhood than the pres-
ence of one venue from a well-spread category. The offering advantage of category c in
each census tract ti of the total N census tracts in NYC, is computed with the following
formula:

1 + Vc(ti)
1 + V (ti)

× total_venues
∑N

i=1 Vc(ti)
,

where total_venues is the number of total venues in NYC with an assigned category.
Finally, based on the MTA dataset, we compute the total number of subway stations

within each census tract, to reflect whether the area is subject to high-volume population
transit from other parts of the city.

5.2.3 Spatio-temporal features
In this section, we derive metrics of human activity in that area. We compute, analog to
the census data, metrics of density and diversity—but, while the census features exploit
information about the reported residential population, the human dynamics features are
computed based on the ambient population, as measured by their usage of public venues
and transportation. Overall, the features in this categories describe possible crime genera-
tors. Crime generators produce crime by creating particular times and places that provide
appropriate concentrations of people and other targets [9]. These features can also be con-
nected to the Routine Activity Theory, as they model the activity nodes where motivated
offenders meet vulnerable targets.

The number of checkins per category measure the popularity of the area. The empirically
observed Foursquare checkins can be regarded as a more accurate measure of human
activity than the traditional population density statistics from the census.

We further exploit Foursquare usage in each census tract, by looking at the popular
hours of the venues (those times of the week where the venues experience most activity—
checkins, reviews, etc.) and compute the number of venues that are popular in a typical
morning, afternoon, evening or night—split by weekdays and weekends in each. These fea-
tures give valuable information about the temporal break-down of human activity in the
area.

We then compute, analog to the previous section, the fraction of checkins of each category
in the area. These can be seen as measurements of the intensity of the different activity
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contexts in which the population engages. For instance, an area with many checkins in the
Residence category would correspond to a residential neighborhood, which is very differ-
ent to an entertainment district, that would in turn be characterized by a high number
of checkins in the Food, Nightlife Spot, and Shop and Service categories. We proceed by
computing the checkins diversity index, as an index of the distribution of human activity
within the census tract. It can be seen, that the venues and checkins diversity indexes are
the best operationalization of Jacobs’ and Newman’s concept of mixed land use.

Inspired by recent work on digital neighborhoods [48], we compute local quotients of
(digital) social activity within an area. Let C(ti) denote the total number of checkins and
P(ti) the total population count within a census tract. We then compute the concentrations
of checkins relative to the number of businesses and to the reference census population:

1 + C(ti)
total_checkins

× total_venues
1 + V (ti)

,

1 + C(ti)
total_checkins

× total_population
1 + P(ti)

,

where total_checkins denotes the number of total checkins in NYC, and total_population
the total census population of NYC. Neighborhoods with local quotients � 1 can be re-
garded as (digital) hot spots, while neighborhoods with local quotients � 1 can be re-
garded as (digital) deserts.

It can be observed, that the offering advantage and the local quotient metrics are both
refined measures of the relative intensity of human activity in an area as opposed to the
whole city (one being based on the static distribution of the venues, and the other on the
more dynamic distribution of the checkins).

To make use of the temporal dimension of the turnstile subway data, we aggregate it
to weekly averages of the number of individuals entering and exiting the subway stations—
split into Mon–Fri and Sat–Sun intervals. We also compute a subway rides diversity index,
by considering these four different categories: subway entries/exists in week/weekend.

Finally, we exploit the taxi ride data and computed weekly averages of the number of pas-
sengers being picked up or dropped off in the census tracts—split into Mon–Fri and Sat–Sun
intervals. Complementary to the popular hours of the venues, and the subway features,
these features should give an additional indication of the average in- and out-flows of the
population traveling to and from the area. Finally, we compute a taxi rides diversity index,
by considering the numbers of pick-up/drop-off rides within the neighborhood.

Across all three feature categories, we end up with a total of 89 features. For exemplifi-
cation purposes, Fig. 1 depicts a selection of the 2015 features computed at census tract
level. Spearman correlation tests and linear regressions have revealed significant corre-
lations between many of the features and the different y variables—see Additional file 1
(section Descriptive Statistics). We decided to keep them all for the following step, where
the chosen machine learning algorithms, due to their internal structure, will be able to
deal with higher number of (potentially correlated) features and rank them according to
their predictive power.

We ought to acknowledge that other approaches to generating features would have been
possible, all the way to completely automatically generating higher-level features from the
raw data using techniques such as deep learning. We chose the middle way where we
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exploit a high number of features but use domain knowledge to generate them. This ap-
proach is prevalent in the urban computing and data science literature, used for instance:
to identify optimal retail store placement [17], to quantify the relationship between urban
form and socio-economic indexes [49], or to understand economic behavior in the city
[50].

6 Results
6.1 Model evaluation
We train three different tree-based machine learning models: a Random Forest regressor
[51], an Extra-Tree (Extremely Randomized Tree) regressor [52], and a Gradient-Boosting
regressor [53]—all known in the literature for their ability to yield competitive prediction
quality in high-dimensional heterogeneous feature spaces. Due to their non-parametric
nature, they make no assumption about the data and can work with many, collinear fea-
tures, while also requiring little preparation of the data [54]. On the other hand, linear
models assume that the explaining variables are non-collinear, which is not the case in
our data-rich setup. Furthermore, a linear model has proved to yield poor performance
on our datasets and is not reported.

Random forests are very popular in practice, as they are easy to use, robust, and yield
good performance. An entire set of decision trees are grown at training time, and their
mean prediction is output at testing time, thus lowering the variance of the individual
learners. The Extra-Trees add a third level of randomization in comparison to the ran-
dom forests, in that the split tests at each node of the decision trees are random, next
to the chosen sub-sets of samples and features. In practice, they yield sometimes better
performance thanks to the introduced smoothing effect, and also remove computational
burdens linked to the determination of optimal cut-points in random forests. While these
first two models are averaging models and build their constituent decision trees in parallel,
Gradient-Boosting builds the model in a stage-wise fashion. It constructs additive regres-
sion models by sequentially fitting a simple base learner on the current pseudo-residuals.
Boosted trees have been shown to be the best performing models across a variety of tasks,
at least in the pre-deep-learning era [55].

In addition, all these tree-based ensemble methods can be exploited to infer the rela-
tive importance of the input variables (based on the order in which they appear in the
constituent decision trees) and to rank them accordingly [54].

Internally, the regressors always optimize the mean squared error (MSE) total number of
log-transformed incidents y, and we report two metrics: MSE, as well as the coefficient of
determination (R2). The MSE metric is given by 1

n
∑n

i=1 (yi – ŷi)2, with lower scores being
preferred. The R2 metric measures the percentage of variance in the dependent variable
that the model at hand explains: 1 –

∑n
i=1 (yi–ŷi)2

∑n
i=1 (yi–ȳi)2 , where yi are the true values, ŷi are the

predicted values, and ȳi is the mean of the sample. Best possible score is 1.00 and it can
be negative (because the model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features, would get a score of 0.00.
It primarily helps us to compare models between the different feature configurations, but
it can also be used to compare the performance on the different incident types, as it is
independent of the sample range.

We look at the performance of the algorithms across different model specifications, uti-
lizing different subsets of the features introduced previously. The first model is a weak
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baseline consisting only of the socio-demographic and economical factors derived from
the census sources. The second model is a strong baseline consisting additionally of the
numbers of Foursquare venues/POIs per category. This model specification is designed to
reproduce the nodal features from [22]. We ought to note that the venues dataset might
be slightly different from a standard dataset of POIs inferred for example from Open-
StreetMap or Google Maps, as the Foursquare venues set is biased towards establish-
ments where people spend time, and map already better to the concept of crime attractors
then standard POIs. Hence, we expect that venues counts would outperform standard POI
counts as features in crime prediction models. The third model is making use of all human
dynamics features inferred from the mobility data sources, while the forth model is a full
specifications, exploiting the complete set of features.

Furthermore, in Additional file 1, we create three further model specifications, where
each makes use, additionally to the standard census features, of the full feature set of a
given data source: Foursquare, subway rides, and yellow/green taxi rides. This enables a
direct comparison of the ubiquitous data sources in terms of their predictive power for
the crime domain—in case in practice a model selection decision should be required.

For each machine learning model, incident type, and features subset combination, we
estimate the performance of the algorithms on new unseen data. To asses their geographi-
cal out-of-sample generalization, we do the following model evaluation experiment using
nested cross-validation. In a nested cross-validation, two cross-validation loops are per-
formed: one outer loop to measure the prediction performance of the estimator and one
inner loop to choose the best hyper-parameters of the estimator. We implement this ap-
proach with 5 outer loops for model assessment (i.e. setting the size of the test set to 20%),
and 2 inner loops for model selection (i.e. setting the size of the training and validation sets
to 40%, respectively). Table 2 presents the final average MSE and R2 scores and standard
deviations of the models on the left-out test subsets. The resulting scores are therefore
unbiased estimates of the prediction score on new geographical samples. We also pro-
vide a temporal evaluation of the approaches, by training a model on the complete 2014
data (with 5-fold CV for hyper-parameter tuning, i.e. model selection) and testing it on the
unseen 2015 data for model assessment.

Across all experiments, the hyper-parameters optimized in the validation phase of the
Random Forest and Extra-Trees are the number of trees in the ensemble (values rang-
ing from 50 to 400) and the maximal depth (values ranging from one third, to one half,
to the full set of features). The first parameter controls the model complexity, while the
second controls the level of pruning of the trees, in other words performing regulariza-
tion to avoid overfitting. For Gradient Boosting, we perform a grid search over the num-
ber of trees (values ranging from 100 to 400), the maximal depth (values ranging from 1
to 4), and also the learning rate (values ranging from 0.01 to 0.2). The models were imple-
mented in Python v2.7, with the help of the scikit-learnn and pandaso libraries. Additional
file 1 (section Model Assessment) presents validation and learning curves of the employed
models. The validation curves show that we have properly chosen the parameter ranges
for hyper-parameter tuning. Also, the learning curves show that, in our case, the models
keep improving with more data, so we should use all available samples.

6.1.1 Geographical evaluation
Looking at the 2015 geographical prediction in Table 2, we observe that the novel behav-
ioral features derived from the different data sources improve significantly the census-only
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and census + POI baselines for all incident types, with the exception of burglaries and as-
saults, where the models already saturate at the hard baseline of census + POI. For the
total number of incidents we achieve a competitive R2 score of 65%, followed by the grand
larcenies, robberies, and assaults categories with scores from 50% to 59%, while for bur-
glaries and especially for vehicle larcenies the scores are lower. This can be explained by
the fact that the latter categories of crime are not driven by the population characteristics,
but by the characteristics of the target: house and car, respectively. As we do not include
attributes of the built environment and of the stollen goods in the models, it was expected
that these specific two categories would generally perform worse in comparison to the
other categories.

For the total number of incidents, the best model on the full data set achieves scores
of 65%, which is 30 percentage points better than the best model in the weak-baseline
and 4 percentage points better than the hard-baseline. But the highest improvement that
we observe in comparison to the census-only baseline is in the case of grand larcenies:
roughly 41 and 7 percentage points, respectively. This crime category includes different
kinds of thefts, including pickpocketing. It was therefore expected that data describing
the popularity of an area would be most informative, yet the improvement is spectacular.
The weak baseline performs best for the assaults category. This category groups offenses
that involve inflicting injury upon others, and it is already well explained by the collected
socio-demographic and economical attributes of the neighborhood.

Furthermore, for the case of total incidents and grand larcenies, we observe that mod-
els based solely on attributes of the ambient population outperform the models based on
the classical demographic features—and, in the case of grand larcenies, even reach per-
formance levels comparable with those of the census + POI baseline. Finally, comparing
the datasource-specific models (provided in Additional file 1—section Additional Model
Specifications), we conclude that the census + FS consistently outperforms the census +
subway and the census + taxi models—with the exception of the vehicle larcenies crime
category, which performs poorly across the board. Comparing the additional predictive
power of the subway vs taxi rides, we notice a significant advantage of the taxi usage data
in case of the grand larcenies category.

Inspecting the results for the 2014 geographical prediction, we deduce very similar in-
sights: the full models for the total incidents, grand larcenies and the robberies categories
perform best, with their absolute achieved MSE/R2 scores being slightly bigger/lower than
on the 2015 data.

6.1.2 Temporal evaluation
Switching to the temporal prediction presented in Table 3 and in Additional file 1 (section
Additional Model Specifications), we can observe that predicting future crime aggregates
within the same neighborhoods appears to be easier than predicting crime aggregates in
new neighborhoods as the ecological attributes of a neighborhood, as well as the aggre-
gated crime levels, do not vary that much between the two years. The total number of
incidents proves to be the most predictable from one year to the other—with an R2 score
of 89%. In terms of crime sub-types: grand larcenies, robberies and assaults remain the
types that can be best predicted by the data. Similarly to the geographical evaluation, the
human dynamics only models outperform the census only models in the case of total in-
cidents and grand larcenies. With the exception of the census baseline, all model specifi-
cations including ubiquitous data perform similarly good, whereby the models including
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Table 3 Temporal out-of-sample results of the regressors using different subsets of the features:
trained on 2014 and tested on 2015

Census Census + POI Human
Dynamics

Census +
Human
Dynamics

MSE R2 MSE R2 MSE R2 MSE R2

Total incidents

Random Forest 0.11 0.82 0.07 0.88 0.09 0.84 0.07 0.88
Extra-Tree 0.11 0.82 0.07 0.89 0.08 0.87 0.07 0.89
Gradient Boosting 0.22 0.64 0.09 0.85 0.12 0.80 0.08 0.87

Grand larcenies
Random Forest 0.19 0.73 0.14 0.81 0.14 0.81 0.13 0.82
Extra-Tree 0.21 0.71 0.14 0.81 0.14 0.80 0.14 0.80
Gradient Boosting 0.28 0.61 0.17 0.77 0.16 0.78 0.15 0.79

Robberies
Random Forest 0.27 0.71 0.24 0.75 0.28 0.70 0.23 0.75
Extra-Tree 0.26 0.72 0.23 0.75 0.27 0.70 0.27 0.71
Gradient Boosting 0.38 0.59 0.29 0.69 0.32 0.66 0.28 0.70

Burglaries
Random Forest 0.25 0.47 0.24 0.50 0.25 0.47 0.24 0.49
Extra-Tree 0.25 0.47 0.24 0.50 0.33 0.32 0.32 0.34
Gradient Boosting 0.30 0.38 0.25 0.47 0.27 0.42 0.23 0.51

Assaults
Random Forest 0.24 0.75 0.22 0.77 0.28 0.72 0.22 0.77
Extra-Tree 0.24 0.76 0.22 0.78 0.28 0.71 0.27 0.73
Gradient Boosting 0.34 0.65 0.29 0.71 0.46 0.53 0.24 0.76

Vehicle larcenies
Random Forest 0.31 0.31 0.29 0.34 0.31 0.31 0.30 0.34
Extra-Tree 0.33 0.27 0.29 0.36 0.37 0.16 0.38 0.15
Gradient Boosting 0.32 0.28 0.31 0.30 0.34 0.23 0.30 0.33

FS-derived features (census + POI, census + FS, and the full model) achieve the highest
absolute scores.

6.2 Model interpretation
We now turn to model interpretation, where the focus will be (1) on examining the im-
portance and the contribution of the individual features defined in Sect. 5.2 and (2) on
understanding where in the city do the ambient population features improve the baseline
models.

6.2.1 Feature importance
This exercise will return those features that proved to be most discriminative for geo-
graphical crime prediction task. By examining them, we will be able to understand what
type of factors are most relevant for the predictive algorithms, and also identify those
criminological theories that have informed the best features. It is important to stress the
fact that, these techniques would not allow us to infer any causal relationships between
the features and the crime counts. The identified factors are most discriminative in the
context of the used model, but they not necessarily best explain crime levels.

Additional file 1 (section Feature Importances across Models) provides a complete view
of the feature importances plots of all machine learning models, while here we concentrate
on providing a stable ranking of the features within the most adequate model for this task:
Gradient Boosting. To test the stability of the features rank, we perform following boot-
strapping procedure: we calculate the importance of the features for 100 random different
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Figure 3 Variable importance plots (top one third of the variables) reported by the Gradient Boosting Models
(full specification). From left to right: 2015 total incidents, 2015 grand larcenies, and 2015 assaults

samples (80% of the data) and provide a box-plot ranked by the median importance of the
outputs returned by the different samples. Figure 3 visualizes the top one third variables in
these rankings: in white features inferred from the census, in blue features inferred from
human mobility data.

The traditional census features score indeed high across all three crime categories and
across all algorithms. Specifically, we observe their very high contribution in the assaults
model. As already hinted in the previous section, this type of violent crime remains best
predicted by the attributes of the residential population in an area.

Also the spatial features from Foursquare have significant contributions across all mod-
els. The shopping venues contribute most in the grand larcenies category, followed by
professional and travel venues. On the other hand, the food establishments, followed by
the shopping establishments have a significant contribution in the assaults models.

In terms of spatio-temporal features from Foursquare, we see importance assigned to
many features derived from checkins data, like checkins in food and shops and checkins
diversity index. We also see that the number of afternoon popular venues during the week
receives a high weight for the grand larcenies category.

In terms of human dynamics features inferred from the taxi data, we notice especially
high loadings for the diversity index of the taxi drives and the total number of pickups
and for the in the larcenies and total incidents categories. The human dynamics features
inferred from the subway data have in general a lower predictive contribution, with the
diversity index ahaving the relative higher scores in this features subgroup and making it
into the top features for total incidents and grand larcenies.

6.2.2 Partial dependence plots
The above feature importance rankings only tell us which features are predictive of crime,
but not how they contribute to the models. There are several approaches on how to achieve
that. One approach is to plot partial dependency plots of the gradient boosting learners,
another approach is to fit simple decision trees on the top discriminative features of the
full models and extract prediction rules.

Partial dependence plots visualize the marginal effect of a given single feature on the
crime outcome. Figure 4 depicts the contributions of some of the features identified in the
previous section as having higher predictive importance. We look at the same three types
of crime: total incidents, grand larcenies, and assaults. The tick marks on the x-axis rep-
resent the deciles of the feature values in the training data. We notice that census tracts
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Figure 4 Partial dependence plots as returned by the
Gradient Boosting regressors. From top to bottom: 2015
total incidents, 2015 grand larcenies, and 2015 assaults
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Figure 5 Absolute error of predicted vs actual values for the 2015 larcenies counts per census tract. From left
to right, and top to down: census (weak baseline), census + POI (strong baseline), FS + subway + taxi (human
dynamics), and census + FS + subway + taxi (full model)

with higher population numbers, higher poverty, and higher percentage of rented houses
tend to have higher crime levels. Also, neighborhoods in NYC with a higher percentage of
minorities tend to have higher crime levels, with a stronger effect noticed in the assaults
category. On the other hand, we also notice that highly diverse neighborhoods might be
slightly safer. The POIs features exhibit strong marginal effects: especially census tracts
with shopping establishments tend to experience more grand larcenies, and census tracts
with food establishments tend to experience more assaults. From the spatio-temporal fea-
tures, taxi drives diversity exhibits a positive relationship with the crime level across all
three categories. Finally, neighborhoods with more popular venues during working day
afternoons are associated with higher number of larcenies.

6.2.3 Geographical improvement
Finally, to understand the additive predictive power of the human dynamics features in the
case of the temporal prediction, we do a deeper analysis of the residuals. Figure 5 presents
the absolute error (computed as yi – ŷi, rounded to integer precision) of the best mod-
els (Random Forest regressors) on the different model specifications for the 2015 grand
larcenies crime category. There are 1652 (out of 2154) census tracts with an absolute er-
ror between –0.5 and 0.5 in the census weak-baseline. This number increases to 1838 in
the census + POI strong-baseline, and to 1850 in the full model specification. Notably, the
human dynamics specification achieves a competitive high number of 1808 census tracts
with low errors. Additional file 1 depicts the absolute errors achieved by the remaining
model specifications.

Looking at the different boroughs, the models incorporating features from FS and taxi
trips consistently perform better in comparison to the census baseline in the Manhat-
tan and Bronx boroughs, while some areas in Queens remain poorly predicted across all
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models. Looking at the function of the neighborhoods, these models bring improvements
for parks (e.g. Central Park or Prospect Park), entertainment areas (e.g. around the NY
Aquarium or the College Point Multiplex Cinemas) or the JFK airport. Between the hard-
baseline incorporating only FS venues information and the model incorporating also FS
check-in information, we notice improvements for instance in the Brooklyn promenade
recreational areas or in the shopping areas south-east of College Point.

7 Conclusions
7.1 Implications
In this paper, long term crime prediction has been investigated at a fine-grained level, with
yearly crime data being analyzed at census track level and across several crime categories.
In constructing the prediction features, we exploited census data, Foursquare venues data,
subway usage data, and taxi usage data by operationalizing different concepts from crim-
inological and urban theories. Our work has both theoretical and practical implications.

First, we have identified new crime predictors derived from massive ubiquitous data
sources and so extended the empirical literature in urban computing and computational
social science. Our results show that, enriching the traditional census features describing
the characteristics of the residential population with spatial and spatio-temporal features
describing the activities of the ambient population, substantially improves the quality of
the prediction models. Factors describing criminogenic places (crime attractors and crime
generators) [9] prove therefore essential for competitive crime prediction models. The
highest improvement they bring has been observed in predicting crime in busy public
parts of the city: recreational area and parks, shopping areas, entertainment areas, and
airports. The human dynamics features improve the baseline models for the total number
of incidents, for grand larcenies, and for robberies. In terms of the analyzed sources of
timestamped geo-referenced human activity data, LBSNs achieve the highest predictive
power. Enhancing the models with subway or with taxi data yields similar results, with the
exception of the grand larcenies category, where the taxi features exhibit a higher predic-
tive ability.

In general, the best performing novel features for all crime incidents have been: the total
number of shopping/eating/travel venues and checkins as proxy for the general popularity
of that area, the number of popular venues in a normal afternoon as proxy for the temporal
break-down of human activity in the area, the total number of taxi pick-ups as proxy for
the population outer flow to more remote areas, and the taxi drives index as proxy for the
entropy of the human movement in the area. Many of these top features can be mapped
as crime attractors or crime generators and have been informed by the theories that the
place and time where the offenders and victims meet are strong crime predictions [8, 9].
While the mixed land use concept theorized by Jacobs and Newman have not been found
as particularly discriminative for crime prediction in comparison to the other features,
Jacob’s metrics of raw human density and activity have been found to strongly improve
the models. Furthermore, specific novel predictors emerge for specific crime types.

From the census features, the metrics of concentrated disadvantage have scored highest
across all crime types, which is aligned with the findings within the frameworks of the
Social Disorganization Theory [6, 7].

On the practical side, a direct application of our results would be to have a first esti-
mation of the safety of new developments and public spaces, for instance shopping and
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recreational areas. So far, crime prevention through environmental design (CPTED) [56]
has concentrated mostly on the attributes of the built environment (e.g. lightning, visibil-
ity, access and height of buildings) and less so on the human activity that will be generated
within the new created space. A derived product can also be used by individuals (either
locals or tourists) to assess the incidents risk when traveling, going out or going shopping
to new areas that they are not familiar with. Furthermore, an extension of the presented
prediction models could be operationally deployed by local police agencies for short term
risk assessment and effective deployment of patrol resources. Forces on the ground could
better target specific types of crimes expected in a small geographical area. Current soft-
ware solutions like PredPolp only work effectively for burglaries and rely mostly on recent
crime (near-repeat victimization) and less on attributes of the environment or of the am-
bient population. Our findings therefore expand the scope to street crimes and utilize
further information on the time and place of potential crimes.

7.2 Discussion
Our results add to existing body of empirical literature. Compared to [57], we go beyond
correlation analysis between human dynamics features and crime counts, and explore a
highly multi-variate non-linear prediction setup. While our diversity and ratio metrics do
not match one-to-one, similar metrics to the ones used in this work make it also to our top
most discriminative features, e.g. the age diversity index. Yet, we are careful to interpret
the results as supporting or opposing Jacobs’/Newman’s theories, as the relationships be-
tween the population density and diversity and crime are non-causal and non-linear in our
case. Similarly to [22], we generally find that features derived from the venues consistently
improve the basis models based solely on census data. In comparison to their work, we go
beyond simple POI counts and derive second-order features from Foursquare informed by
works in criminology and urban computing, and also additionally exploit sources of mo-
bility patterns: subway and taxi drives. While they employed standard regression models,
we employed non-parametric machine learning models, which boosted the performance.
Also, similar to [21], we demonstrate the potential of human dynamics features for the
crime domain. In comparison to their work, we leverage Foursquare, subway, and taxi
data instead of telecommunication data, which is arguably easier to access for research
and poses less ethical questions. We also run a more comprehensive analysis leveraging:
(1) more extensive datasets in terms of temporal coverage of the collected data (weeks ver-
sus years) and (2) several machine learning techniques for a more difficult prediction task
(regression versus binary classification). Finally, compared to all of these previous works,
we are the only ones to take deeper dives into the different crime types and do careful
model interpretation.

We also contribute to the methodological literature. The main strengths of the employed
machine learning algorithms are their very high predictive power and their ability to deal
with heterogeneous data sources and potentially collinear factors. This opens the door for
future incorporation of new variables as features for which, a priori, there is no substan-
tive theory underlying their association with crime, but might be found to have a strong
predictive power. The model interpretation techniques available for tree-based ensemble
models (feature importance rankings, partial dependence plots) make the models more
transparent and offer insights in terms of the predictive power of each feature. On the
weaknesses side, as for any supervised learning technique, the presented models can be
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used for prediction, but not for inferring a causal effect between the features and the de-
pendent variable.

We should acknowledge the geographical (more urban areas) [58] and social bias
(younger, more educated, wealthier users) [12] of Foursquare in general, though the choice
of NYC (as the city with most activity on Foursquare) and of the complete aggregated in-
formation on venues level (as opposed to incomplete extracts of checkins on users level
which are common in literature) are good mitigation approaches. Quantifying such bi-
ases would become relevant once comparing different locations [59], but are for now out
of scope for this study.

Also, we ought to acknowledge the reporting bias present in the crime data itself. Bias in
police records can be attributed to: (1) levels of community trust in police, in case of self-
reported crimes, and (2) patrolling focus on certain ethnic groups and neighborhoods, in
case of police-reported crimes. Even if we do not have the ambition of solving the perpet-
uation of racial biases in police work, we should note that this can introduce dangerous
biases [60]. Training models on biased historical data and having police focus on certain
communities, will lead to even more arrests of minorities, but will not lead to solving the
crime problem. The solution is not trivial, as it lies at the heart of the interaction between
the police and the communities. At higher levels of aggregation, “ground truth” crime data
could be estimated from crime victimization surveys and demographically representative
synthetic populations [60].

Finally, to be aligned with previous work in criminology [6] and to be able to benchmark
against prior work on crime prediction [22], we have used the race of the inhabitants when
crafting several of the census features for the prediction problem. A potential mitigation
would be to show how well the models do without taking race into consideration, espe-
cially if planned to be used operationally. In this work, we have already shown that, for
certain types of crime, models using only human mobility data can out-perform the mod-
els based only on the census data. We believe this to be a significant contribution and an
important step towards more fairness in crime prediction.

7.3 Future work
For future work and to make more general claims about the predictive power of such fac-
tors for long-term crime prediction globally, we plan to apply the same methodology on
data from other major cities around the globe. Furthermore, the models can be enhanced
by exploiting further ubiquitous data sources describing the pulse of our cities, like ad-
ditional social media signals, 311 calls, and IoT devices. Especially for some specific type
of crimes, like burglaries and vehicles thefts, incorporating spatial features describing the
built environment (houses, streets, land use, etc.), has the potential to improve the mod-
els significantly. Finally, introducing temporal crime correlates (weather data, near-repeat
patterns, entertainment events, etc.) has support in criminology and the potential to im-
prove our prediction models towards short-term prediction.

Additional material

Additional file 1: Supplementary material for: Mining large-scale human mobility data for long-term crime
prediction (PDF 2.0 MB)

https://doi.org/10.1140/epjds/s13688-018-0150-z
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Endnotes
a We have limited our survey of theories in criminology to the main theories that look at victims and offenders and

their routine activities, and are relevant for this study. Indeed, there are also other factors that influence criminal
behavior, such the attributes of the built environment. For instance, Wilson and Kelling proposed in their Broken
Windows Theory [61] that degraded urban environments (such as broken windows, graffiti, excessive litter) enhance
criminal activities in the area.

b https://nycopendata.socrata.com/
c http://www.foursquare.com/
d http://www.4sqstat.com/
e https://data.cityofnewyork.us/Public-Safety/NYPD-7-Major-Felony-Incidents/hyij-8hr7
f http://www.census.gov/
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l http://www.qgis.org/en/site

m http://postgis.net/
n http://scikit-learn.org/stable/
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p http://www.predpol.com
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