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Abstract In this work we employ a perturbative approach
to study the gravitational collapse of a shear-free radiating
star. The collapse proceeds from an initial static core satisfy-
ing the time-independent Karmarkar condition and degener-
ates into a quasi-static regime with the generation of energy in
the form of a radial heat flux. The time-dependent Karmarkar
condition is solved together with the boundary condition to
yield the full gravitational behaviour of the star. Our model is
subjected to rigorous regularity, causality and stability tests.

1 Introduction

When considering the focus areas of cosmology and rela-
tivistic astrophysics, we focus on radiating stars in which the
centre of attention is gravitational collapse amongst many
other vital components such as stability, luminosity and tem-
perature profiles. The use of spherically symmetric space-
time geometries render them even more useful when describ-
ing dense objects such as neutron stars, pulsars and ultra-
compact strange stars in the strong gravity regime. Earlier
pioneering works by Vaidya [1], Santos [2], Kolassis et al.
[3] and Bonnor et al. [4] have subsequently led to the devel-
opment of numerous ideas furthering our understanding of
non-adiabatic gravitational collapse, the formation of super
dense stars, black holes and the Cosmic Censorship Conjec-
ture (CCC). Di Prisco et al. [5], studied non-adiabatic col-
lapse processes on time scales shorter than the relaxation
period. The relativistic heat equation was analysed and it
was found that the luminosity during the early pre-relaxation
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stage was substantially different from that measured in the
absence of relaxation. In an earlier treatment Tomimura and
Nunes [6] investigated a model for a spherical radiating fluid
with shear and expansion. By performing a process of match-
ing across the surface they were able to show that at this
interface, the energy density of the outgoing null radiation
is exactly equal to the pressure. An imperfect stellar fluid
with zero shear and zero acceleration was considered as the
basis for a collapse scenario presented by Govender et al. [7].
They employed an exact solution to compute the fluid tem-
perature for constant as well as variable collision time, and
demonstrated that the central temperature in the causal limit
is significantly higher than that measured in the non-causal
case. A generalisation of this work which included the influ-
ence of shearing stresses was later carried out by Chan [8]. It
was suggested that in the initial stages of radiative collapse
the pressure of the stellar fluid is isotropic and that it becomes
increasingly more anisotropic as the collapse proceeds. This
is attributed to the effect of the shearing motion of the fluid
distribution. The solution therein was used to comment on
the physical features of a six times solar mass star. Rela-
tivistic models that are to be utilized in the description of
systems with astrophysical importance should also include
an acceptable equation of state (EoS). Consequently, numer-
ous efforts have been made to incorporate an EoS along with
other reasonable conditions that are suitable for more detailed
investigations. Govender et al. [9] focused on radiative grav-
itational collapse with radial heat flux which described the
stages that were close to the formation of a super dense cold
star. In their model, they specified the temporal evolution
by solving the junction conditions for radiating gravitational
collapse. Their model also generates solutions for the earlier
evolution stages of the star by a perturbative approach given
that there is a known static configuration of a star. Hussain
[10] generated exact solutions for a collapsing null fluid with
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pressure P , and density ρ related by a polytropic (EoS) of
the form P = kρa . All of the reported solutions were in
good agreement with the CCC. Static spherically symmet-
ric relativistic stars were explored by Sharma and Maharaj
[11]. They assumed pressure anisotropy along with a linear
equation of state p = n(ρ − ρs), formulated earlier by Dey
et al. [12], for applications to strange stars consisting of a
quark gluon mixture. Non-singular and regular solutions for
the stellar interior were generated by solving the modified
Tolman–Oppenheimer–Volkoff (TOV) equation. The impos-
ing of an arbitrarily linear barotropic EoS was a key factor
in a shear-free model having nonzero radial heat flux pro-
posed by Wagh et al. [13]. The exact solution resulting from
the analysis of the simplified junction condition p = qB
was used to probe the temporal evolution of the thermody-
namic and matter variables. A recent project by Brassel et
al. [14] involved a comprehensive examination of collapsing
stars while considering a wide variety of equations of state.
The mass function corresponding to each EoS was interro-
gated and localised naked singularities were predicted for
the end stage of the collapse process. Some work, although
not much, has also been devoted to special cases of the more
general and astrophysically relevant polytropic equation of
state, mentioned earlier. Mafa Takisa and Maharaj [15] stud-
ied static (non-rotating and adiabatic) spherical fluid masses
with the inclusion of electric field and anisotropic pressure
effects. They closed the Einstein–Maxwell system of equa-
tions with a general polytropic equation of state and were
successful in obtaining new classes of solutions which inter-
estingly, contained the earlier results of Feroze and Siddiqui
[16] and Maharaj and Mafa Takisa [17] in the uncharged
limit. In a subsequent investigation, Ngubelanga and Maharaj
[18] imposed a polytropic equation of state to study com-
pact stars. Their results contained the mass of the star PSR
J1903+327.

Much recent investigations which coupled the gravita-
tional collapse and dissipative processes were explored in
greater detail by Ivanov [19] and Tewari [20,21], Sarwe and
Tikekar [22] and Sharma and Tikekar [23]. These investiga-
tions focused on the interior energy momentum tensor which
was a neutral relativistic anisotropic fluid with heat flow. This
then led to the understanding of there being an electromag-
netic field which could possibly alter the physical features
in a relativistic radiating star and in turn will disrupt the
nature of gravitational interactions. The junction conditions
which matched the interior radiating matter distribution to the
Vaidya exterior for neutral matter were achieved by Santos
[2]. A generalization of the junction conditions were com-
pleted by De Oliveira and Santos [24] which consisted of
the electromagnetic field. Di Prisco et al. [25] in their work
utilized a systematic approach in their investigation of nona-
diabatic charged spherical gravitational collapse for diffusion
and free-streaming limits. A class of charged anisotropic col-

lapsing models were established by Cipolletta and Giambo
[26] in which it was revealed that the shell focussing sin-
gularities could be avoided. When looking at the Karmarkar
condition [27], it is important to note indirectly, a curved
four-dimensional metric can be embedded within a five-
dimensional pseudo-Euclidean space-time. This valuable
condition gives a geometric relationship between the met-
ric functions and their derivatives respectively. This allows
one of the metric functions to be selected and the other can be
determined. The Karmarkar condition gives a Kohler–Chao
solution which is a non-conformally flat unbounded solution
[28] or the Schwarzschild solution which is the homogeneous
conformally flat bounded solution for the case in which one
is presented with an isotropic static fluid sphere. When look-
ing at static anisotropic matter, these arrangements give a
geometrical mechanism in which equations of state can form
a relationship between the radial and tangential pressures.

In more recent works established in the literature, Naidu
et al. [29] engaged the Karmarkar condition in their model
which consisted of a spherically symmetric radiating star
undergoing dissipative gravitational collapse in the form of
a radial heat flux. This gives more detailed insight into the
Karmarkar condition as they determined a particular solution
of the boundary condition which made the Karmarkar con-
dition independent of time. Govender et al. [30] presented
in their model that the dissipative gravitational collapse as a
result from an initial static core satisfies the Karmarkar condi-
tion in isotropic coordinates, and proceeds non-adiabatically
by releasing energy in the form of a radial heat flux to the
exterior Vaidya spacetime. The Karmarkar scalar condition
was used in the model by Ospino et al. [31], where they had
executed a method to obtain all possible embedding class I
static spherical solutions. An analysis was carried out on the
incompatibility of the Kamarkar condition with several com-
monly assumed simplifications to the study of gravitational
collapse. In the work done by Jaryal [32], a class of exact
spherical symmetric solutions of the Einstein equations was
presented which revealed heat conducting anisotropic fluid
as a collapsing matter. The class of solutions presented not
only satisfy all energy conditions throughout the interior of
the star but also show that the luminosity is independent of
time. Radiating collapse invoking the Karmarkar condition in
modfied gravity theories such as f (R) and f (R, T ) gravity
have also been explored [33–35]. The dynamics of dissipa-
tive collapse in f (R) gravity has been investigated by Abbas
et al. [36] in which they employed a full causal heat transport
equation coupled to the matter profiles. In the model estab-
lished by Herrera [37], the conditions for instability/stability
of the isotropic pressure condition for collapsing spherically
symmetric, dissipative fluid distributions were looked at. In
this model, he found that dissipative fluxes, energy density
inhomogeneities as well as the appearance of shear in the fluid
flow, forces any initially isotropic configuration to relinquish
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that condition which then generates anisotropy in the pres-
sure. Pretel et al. [38] configured a model in which they dis-
cussed the stability and constructed dynamical configurations
describing the gravitational collapse of unstable neutron stars
with realistic equations of state that are compatible with the
LIGO-Virgo constraints. They carried out an analysis on stel-
lar stability for equations of state. Numerical solutions were
found that agree with the temporal and radial behaviour dur-
ing the evolution of the collapse for precise relevant physical
quantities which included the mass, luminosity and energy
density amongst many others.

This paper is structured as follows. In Sect. 2 we introduce
the field equations describing the geometry and matter con-
tent for a star undergoing gravitational collapse. In Sect. 3 we
present the Riemann tensor components and show how the
Karmarkar condition for the shear-free metric can be written.
In Sect. 4 the exterior spacetime together with the junction
conditions are presented. In Sect. 5 the perturbed equations
are determined and the metric functions and the material
functions are presented. In Sect. 6 the perturbation of the
Karmarkar condition is carried out. In Sect. 7 we present the
radiating solution in which we model a radiating star that
collapses from an initial static configuration. In Sect. 8 we
consider the physical viability of our model coupled with
graphical representations of our results. Some concluding
comments are made in Sect. 9.

2 Interior spacetime

The line element for the interior of the collapsing star is given
by the general spherically symmetric, shear-free metric in
comoving coordinates

ds2 = −A2dt2 + B2[dr2 + r2(dθ2 + sin2 θdφ2)], (1)

where A = A(r, t) and B = B(r, t).
The interior matter content is that of an isotropic spherical

fluid undergoing dissipation in the form of a radial heat flow
and producing pure radiation. The energy momentum tensor
for the interior matter distribution is given by

Tab = (μ + pt )wawb + pt gab + (pr − pt )XaXb

+qawb + qbwa, (2)

where μ is the energy density, pr the radial pressure, pt
the tangential pressure and qa the heat flux, wa is the four-
velocity of the fluid and Xa is a unit four-vector along the
radial direction. These quantities must satisfy waw

a = −1,
waqa = 0, XaXa = 1 and Xaw

a = 0. Furthermore, in
comoving coordinates we have

wa = A−1δa0 , (3)

qa = qδa1 , (4)

and

Xa = B−1δa1 . (5)

The nonzero components of the Einstein field equations
for the line element (1) and the energy momentum (2) are
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(
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)]
, (9)

where the dots and primes represent the partial derivatives
with respect to t and r respectively.

3 Karmarkar condition

The Riemann tensor components which are nonzero are given
by

R1212 = r

A2

(
r A2B ′2 − A2BB ′ − r A2BB ′′ + r B2 Ḃ2

)
,

(10)

R1220 = r2

A

(
AB Ḃ ′ − A′B Ḃ − AB ′ Ḃ

)
,

(11)

R1313 = r sin2 θ

A2

(
r A2B ′2 − A2BB ′ − r A2BB ′′ + r B2 Ḃ2

)
,

(12)

R1330 = r2 sin2 θ

A

(
−A′B Ḃ − AB ′ Ḃ + AB Ḃ ′

)
,

(13)

R1010 = −1

AB

(
A′A2B ′ − ȦB2 Ḃ − A′′A2B + AB2 B̈

)
,

(14)

R2323 = r3 sin2 θ

A2

(
−r A2B ′2 − 2A2BB ′ + r B2 Ḃ2

)
,

(15)

R2020 = −r

AB

(
−r A′A2B ′ − r ȦB2 Ḃ − A′A2B + r AB2 B̈

)
,

(16)
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R3030 = −r sin2 θ

AB

(
−r A′A2B ′ − r ȦB2 Ḃ − A′A2B + r AB2 B̈

)
,

(17)

for the shear-free metric (1).
The Karmarkar condition for the shear-free metric (1) can

be written as

R1220R1330 + R1010R2323 − R1212R3030 = 0. (18)

From the component equations (10)–(17), the Karmarkar
condition (18) takes the form

0 = r2AB
(−A′B Ḃ − AB ′ Ḃ + AB Ḃ ′)2

−r
(
−r A2B ′2 − 2A2BB ′ + r B2 Ḃ2

)
×

(
A′A2B ′ − ȦB2 Ḃ − A′′A2B + AB2 B̈

)
+

(
r A2B ′2 − A2BB ′ − r A2BB ′′ + r B2 Ḃ2

)
×

(
−r A′A2B ′ − r ȦB2 Ḃ − A′A2B + r AB2 B̈

)
, (19)

a highly nonlinear equation.

4 Exterior spacetime and junction conditions

Spacetime is divided by the boundary of a star into two dis-
tinct regions, the interior spacetime described by the metric
(1) and the exterior spacetime. Since the collapsing star is
radiating energy, the exterior spacetime is not a vacuum and
is therefore described by Vaidya’s metric

ds2+ = −
[

1 − 2m(v)

r

]
dv2 − 2dvdr + r2dθ2

+r2 sin2 θdφ2, (20)

where m(v), the total energy inside �, is a function of the
retarded time v.

The two junction conditions to be satisfied across the
boundary are(
K+
i j − K−

i j

)
�

= 0, (21)

and(
ds2+ − ds2−

)
�

= 0, (22)

where Ki j is the extrinsic curvature on the two sides of the
boundary. Following similar calculations as in de Oliveira et
al [24] we obtain

(pr )� = (qB)� , (23)
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(

2
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and
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(
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r
+ 2

dr
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)1/2

�

dv. (27)

Equations (23)–(27) represent respectively the following
conditions across the boundary �: conservation of momen-
tum flux, conservation of radiation flux, radius of � in both
coordinate systems, total energy inside � and the relationship
between the two times t and v. The total energy entrapped
up to a radius of r inside � is given by

m(r, t) = r3B Ḃ2

2A2 − r2B ′ − r3B ′2

2B
. (28)

5 The perturbed equations

We assume that the fluid is initially in static equilibrium,
hence the fluid is described by quantities that have radial
dependence only. We then assert that the static system is
perturbed, undergoing slow shear-free collapse and produc-
ing pure radiation. We denote the quantities such as energy
density, radial pressure and tangential pressure of the static
system by a zero subscript and those of the perturbed fluid
by an overhead bar. We further assume that the metric func-
tions A(r, t) and B(r, t) have the same time dependence in
their perturbations. This assumption would imply that the
perturbed material functions also have the same time depen-
dence. Therefore the metric functions and the material func-
tions are given by

A(r, t) = A0(r) + εa(r)T (t), (29)

B(r, t) = B0(r) + εb(r)T (t), (30)

μ(r, t) = μ0(r) + εμ̄(r, t), (31)

pr (r, t) = pr0(r) + ε p̄r (r, t), (32)

pt (r, t) = pt0(r) + ε p̄t (r, t), (33)

m(r, t) = m0(r) + εm̄(r, t), (34)

where we assume that 0 < ε � 1.
Einstein’s field equations for the static configuration are
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(37)
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The perturbed field equations up to first order in ε can be
written as

μ̄ = −3μ0
b
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−
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B ′
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The total energy entrapped up to radius r inside � for the
static and perturbed configurations are respectively given by
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The smooth matching of the interior spacetime to the Vaidya
exterior is facilitated by using the junction conditions derived
by Santos [2], and we may rewrite Eqs. (39) and (41) as
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6 Perturbed Karmarkar condition

Using (19) together with Eqs. (30) and (31) yields
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(48)

At this point we should point out that the time-dependent
Karmarkar condition is a nonlinear partial differential equa-
tion. It is highly nonlinear in the radial component and holds
at each interior point of the collapsing sphere. It is also evi-
dent from (48) that the Karmarkar condition separates out
into a static part and a nonstatic part. If we assume that the
initial static configuration (A0, B0) satisfies the static part of
the Karmarkar condition (48), then we are able to write

A0 = k1 + k2

∫ √
(r2B0)′B0

′dr, (49)

which relates the potentials A0(r) and B0(r) with k1 and k2

being integration constants. Substituting (49) into (48) yields
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This has the separable form

T̈ f (r) + Tg(r) = 0, (51)
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or

T̈

T
= − g(r)

f (r)
= ψ, (52)

where ψ is a dimensionless constant and the functions f (r)
and g(r) are given by
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It is worthwhile noting that (52) is true for all r , and not just
at the boundary of the star. This result is purely geometric in
nature and holds true for any energy momentum tensor. This
allows us to state our result in the form:

Theorem 1 Any perturbed spherically symmetric shear-free
metric of the form

ds2 = −(A0 + εa(r)T (t))2dt2

+(B0 + εb(r)T (t))2[dr2 + r2(d�2)], (55)

where (A0(r), B0(r)) satisfies the static Karmarkar condi-
tion, the temporal dependence, T (t) always satisfies

T̈ = ψT,

where ψ is a constant.

7 A radiating model

In this section we seek to model a radiating star collapsing
from an initial static configuration. As the star collapses the
core is always close to quasi-static equilibrium while dissi-
pating energy to the exterior spacetime in the form of a radial
heat flux. The interior spacetime must match smoothly to

the Vaidya exterior. We make use of the junction condition
( p̄r )� = (qB)� together with the fact that (pr0)� = 0 to
obtain

α�T − T̈ = 2β� Ṫ , (56)

which has the general solution given by

T (t) = − exp

[(
−β� +

√
α� + β2

�

)
t

]
, (57)

where we have assumed that α� > 0 and β� < 0. This
solution represents a system in static equilibrium that starts to
collapse at t = −∞ and continues to collapse as t increases.
We choose the Schwarzschild interior solution as the initial
static configuration of our model. The gravitational potentials
for the interior Schwarzschild solution are [40]

A0(r) = c1 − c2
(
1 − r2

)
1 + r2 , (58)

B0(r) = 2R

1 + r2 , (59)

where c1 , c2 and R are constants. We immediately obtain
the thermodynamical quantities for the static solution. Then
(36), (37), (37) and (43) can be written as

μ0 = 3

R2 , (60)

pr0 = pt0 = − c1 − 3c2 + r2 (c1 + 3c2)

R2
(
c1 − c2 + r2 (c1 + c2)

) , (61)

m0(r) = 4r3R(
r2 + 1

)3 . (62)

The initial static configuration is isotropic with constant den-
sity and slowly exits an anisotropic regime as the collapse
proceeds. The instability of the isotropy condition has been
pointed out in a recent paper by Herrera [37]. It was shown
that an initially isotropic configuration will evolve towards
an anisotropic regime as the system loses equilibrium. The
degree of anisotropy is driven by contributions from the Weyl
stresses, dissipative fluxes and density inhomogeneities.

Study of static class I spacetimes via an embedding
approach show that the only bounded solution that satisfies
both the pressure isotropy condition and the Karmarkar con-
dition is the interior Schwarzschild solution. Substituting Eq.
(58) and (59) into (50) yields

0 = 8r3bc2 + 2
(
1 − 3r2)Ra′ + c2b

′

+r

(
−2

(
1 + r2)Ra′′ + c2

[
7r3b′ + (r4 − 1)b′′]). (63)

Using a well motivated form for b(r) [40,41] , viz.

b(r) = (
1 + ζr2)A0(r)B0(r), (64)

123



Eur. Phys. J. C (2021) 81 :177 Page 7 of 10 177

where ζ is a constant, and we are in a position to solve equa-
tion (63) to obtain

a(r) = ζc2
(
c1 + c2

)
(1 + r2) − c3

2(1 + r2)

−4(ζ − 1)c2
2

(1 + r2)2 + c4, (65)

where c3 and c4 are constants of integration. With the poten-
tials (58), (59), (64) and (65) the radial dependence of our
model is fully determined. The matter variables become

μ(r, t) = εeλt

R2

(
c1

(
ζ

(
r4 + 10r2 + 3

)
+ 6

)

+c2ζ
(
r4 + 10r2 − 3

))
+ 3

R2 , (66)

pr (r, t) =
(

2R2
(
c1

(
r2 + 1

)
+ c2

(
r2 − 1

))
2
)−1

×
(

εeλt
(

2c3
1

(
r2 + 1

)2 (
ζ

(
r4 − 2r2 − 1

)
− 2

)

+c1

(
c3

(
r4 − 1

)
+ 2c2

2

(
−9ζ + r2

×
(

12ζ + r2
(
ζ

(
5r4 − 24r2 + 8

)
− 10

)
+ 4

)
− 2

)

+4λ2
(
r2 + 1

)2
R2

(
ζr2 + 1

))

+c2

(
r2 − 1

) ((
r2 + 1

)
(c3 − 4c4

+4λ2R2
(
ζr2 + 1

)
)

+4c2
2

(
r2

(
ζ

(
r4 − 6r2 + 3

)
− 2

)
− 2(ζ + 1)

))

+4c2c
2
1

(
r2 + 1

) (
ζ + 2ζr6 − 7ζr4 − 4r2 + 4

))

−2
(
c1

(
r2 + 1

)
+ c2

(
r2 − 1

))
(c1

(
r2 + 1

)
+3c2

(
r2 − 1

)))
, (67)

pt (r, t) =
(

2R2
(
c1

(
r2 + 1

)
+ c2

(
r2 − 1

))
2
)−1

×
(

εeλt
(

−2c3
1

(
r2 + 1

)2 (
ζ

(
r4 + 4r2 + 1

)
+ 2

)

−4c2c
2
1

(
r2 + 1

) (
−ζ + r2(ζ(2r4 + 9r2 − 2)

+4) − 4

)
+ c2

(
r2 − 1

) ((
r2 + 1

) (
c3 − 4c4

+4λ2R2
(
ζr2 + 1

))
− 4c2

2

(
2(ζ + 1)

+r2
(
ζ

(
r4 + 6r2 − 5

)
+ 2

)))

+c1

(
c3

(
r4 − 1

)
− 2c2

2

(
9ζ + 5ζr8 + 26ζr6

+2(5 − 9ζ )r4 − 2(7ζ + 2)r2 + 2

)

+4λ2
(
r2 + 1

)2
R2

(
ζr2 + 1

)))

−2(c1

(
r2 + 1

)
+ c2

(
r2 − 1

)
)

(
c1

(
r2 + 1

)

+3c2

(
r2 − 1

)))
, (68)

�(r, t) = 1

R2
(
c1

(
r2 + 1

) + c2
(
r2 − 1

))
×

[
2 (c1 + c2) ζr2

(
r2 + 1

)
ε

(
c1

(
r2 + 1

)

+2c2

(
r2 − 1

))
eλt

]
, (69)

qB(r, t) = −R−1
(

2ζλr
(
r2 + 1

)
eλt

)
, (70)

m(r, t) = 4r3R(
r2 + 1

)4

×
((

−εeλt
(
c2

(
r2 − 1

) (
ζ

(
r4 + 3r2 − 1

)
+ 3

)

+c1

(
r2 + ζ

(
r6 + 2r4 − 1

)
+ 1

))
+ r2 + 1

))
,

(71)

where λ is given by

λ = −β1(r0) +
√

α1(r0) + β1
2(r0), (72)

where r = r0 defines the boundary of the star. We are in
position to write

α1(r0) = −
(

4
(
r2

0 + 1
)

2R2((c1 + c2) r
2
0 + c1 − c2)

×(ζr2
0 + 1)

)−1(
2c3

1ζ
(
r2

0 − 1
) (

r2
0 + 1

)
4

+4c2
1c2(r

2
0 + 1)2(ζ + r2

0 (−5ζ + 2ζ
(
r2

0 − 1
)
r2

0

+1) − 1) + c1

(
r2

0 + 1
)

×
(

2c2
2

(
−9ζ + r2

0

(
26ζ + r2

0

(
−20ζ + 5ζ

(
r2

0 − 2
)

r2
0 + 4

)
− 24

)
+ 12

)
+ c3

(
r4

0 − 1
))

+c2

(
r2

0 − 1
) (

4c2
2

(
−2ζ + r2

0

(
4ζ + r2

0 (−9ζ

+ζ
(
r2

0 − 2
)
r2

0 + 1) − 10

)
+ 1

)
+ (c3 − 4c4)

×
(
r2

0 + 1
)

2
))

, (73)
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Fig. 1 Total density, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

β1(r0) = ζr0
(
(c1 + c2) r2

0 + c1 − c2
)

2
(
ζr2

0 R + R
) , (74)

for our model.

8 Physical viability

In order to test the physical viability of our model, we have
plotted the relevant thermodynamical quantities which allow
us to gain insight into the collapse process.

In Fig. 1 we present the density as a function of the
radial and temporal coordinates. We observe that the den-
sity remains fairly constant for a large period of the collapse
epoch. This is expected as the fluid is always close to hydro-
static equilibrium. For late times we observe an increase in
the density. This is a result of the collapsing core where the
mass becomes confined to smaller volumes as the collapse
proceeds.

An observation of the radial pressure plotted in Fig. 2
shows that the pressure is regular at each interior point of
the collapsing core. The pressure decreases smoothly to the
boundary. A time slice of Fig. 2 (r = constant) shows that
the radial pressure remains fairly constant for a large portion
of the collapse. During this period the heat generated will
be very little as the core is in quasi-static equilibrium. For
late times the generation of heat resulting from a denser core
leads to higher pressure. This pressure is reduced as core
radiates to the exterior in the form of a radial heat flux.

A snapshot of Fig. 3 in time shows that the tangential pres-
sure decreases smoothly towards the boundary of the star.
As the collapse proceeds, the tangential pressure decreases,
almost mimicking the temporal trend in the radial pressure.
We can understand this by observing that for a collapsing
core the inner shells (smaller radii) would possess a higher
surface tension which can be ascribed to a higher tangen-
tial pressure. Since the core is collapsing and simultaneously

Fig. 2 Total radial pressure, c1 = 0.81, c2 = 0.5, c3 = −10, c4 =
−10, ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

Fig. 3 Total tangential pressure, c1 = 0.81, c2 = 0.5, c3 = −10,
c4 = −10, ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

Fig. 4 Heat flow, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10, ζ =
−0.2, R = 6.62, r0 = 0.55 and ε = 0.1

radiating energy, each concentric shell relaxes thus resulting
in a decrease in the tangential pressure.

The heat flow is displayed in Fig. 4. The heat generation
is highest at the center (highest density) and decreases in the
cooler surface layers of the stellar configuration. The heat
production increases as the collapse proceeds.

The mass profile of the collapsing core is presented in Fig.
5. The mass increases radially outwards as we expect as larger
concentric shells contain more mass. The mass decreases as
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Fig. 5 Total mass, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

Fig. 6 � = pr − pt , c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

Fig. 7 Energy condition 1, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

a function of time since the star is radiating and losing mass
in the form of a radial heat flux.

The anisotropy parameter is presented in Fig. 6. We
observe that for early times the anisotropy parameter van-
ishes. This is expected as the collapse starts off from an
isotropic static core. As the collapses proceeds and heat is
generated, the anisotropy increases. When � > 0, it signifies

Fig. 8 Energy condition 2, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

Fig. 9 Energy condition 3, c1 = 0.81, c2 = 0.5, c3 = −10, c4 = −10,
ζ = −0.2, R = 6.62, r0 = 0.55 and ε = 0.1

that the radial pressure dominates the tangential pressure thus
making the force due to anisotropy attractive. This attractive
force couples with the inwardly driven gravitational interac-
tion thus enhancing collapse for late times.

From Figs. 7, 8, 9, we observe that all three energy con-
ditions

E1 = (μ + Pr )
2 − 4q2 ≥ 0, (75)

E2 = μ − Pr ≥ 0, (76)

E3 = μ − Pr − 2Pt +
√

(μ + Pr )2 − 4q2 ≥ 0, (77)

are satisfied throughout the stellar configuration.

9 Discussion

The Karmarkar embedding condition is an interesting geo-
metrical condition that relates the two gravitational poten-
tials. This has been extensively studied in static relativis-
tic spheres, see for example the recent work by Ospino and
Nunez [31] and Hansraj and Moodly [39]. The solutions of
Naidu et al. [29] and Jaryal [32] show that nonstatic models
are possible, and these can be used to describe radiating rela-
tivistic spheres. We have showed that a perturbative approach
can be used to find a new radiating model which has a simple
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time dependence. The physical analysis shows that the crite-
ria for physical acceptability are satisfied. The advantage of
the perturbative approach is a clear physical representation
corresponding to a realistic model: a model that is initially
static and then perturbations lead to loss of radiation as is
observed in real astronomical bodies.
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