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Abstract In this work, we mainly explore the possibility
of charged rho (ρ±) superconductor in the presence of par-
allel magnetic field and rotation within three-flavor Nambu–
Jona-Lasino model. By following similar schemes as in the
previous studies of charged pion (π±) superfluid, the ρ±
superconductor is found to be favored for both choices of
Schwinger phase in Minkowski and curved spaces. Due to
the stability of the internal spin structure, charged rho begins
to condensate at a smaller threshold of angular velocity than
charged pion for the given large magnetic fields. Even the
axial vector meson condensation is checked – the conclusion
is that ρ± superconductor is the robust ground state at strong
magnetic field and fast rotation, which actually sustains to
very large angular velocity.

1 Introduction

Nowadays, several extraordinary conditions can be realized
in the terrestrial relativistic heavy ion collisions (HICs), such
as strong electromagnetic (EM) field [1–4] and fast rotation
[5–7]. Under such circumstances, the properties of quan-
tum chromodynamics (QCD) system are quite interesting
and attractive topics. Actually, magnetic field and rotation
share some similar effect, thus the proposal of chiral mag-
netic effect is right followed by that of chiral vortical effect
around 2008. These anomalous transport phenomena were
intensively studied since then [8–10], and recently a very
important breakthrough has been acheived in the BES II
experiment of STAR group [11]. Nevertheless, along with
the discoveries of magnetic catalysis effect at zero tempera-
ture [12,13] and global polarization of � hyperon in periph-
eral HICs [14–16], some unexpected features emerge and
still require proper explanations: the inverse magnetic catal-
ysis effect [18,19] and the “sign puzzles” of the local polar-
izations [16,20–23]. In some sense, the extreme conditions
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open a wide realm for the searching of new phases, such as
ρ± superconductor in pure magnetic field [24,25], neutral
pseudoscalar superfluid in parallel EM field [26–29] and π±
superfluid in parallel magnetic field and rotation (B ‖ �)
[30]. Among others, the possibility of ρ± superconductor
was under fierce debate since its proposal [24,25,31–36],
mainly concerning the internal quark-antiquark effect on rho
mesons.

Actually, in peripheral HICs, the generated magnetic field
in and global rotation of the fireball are roughly along the
same direction [2,7], which naturally imposes theorists an
urgent mission to clarify the ground state of QCD in such
circumstance. Regard to the existence of π± superfluid in
B ‖ �, it is controversial according to the studies in Nambu–
Jona-Lasinio (NJL) model, where one is immersed in the
ambiguity of the definition for Schwinger phase [37,38]. In
pure magnetic field, the Schwinger phase is just the gauge
dependent part of the meson propagator; but with rotation
presented, we are not able to find a consistent one for all Lan-
dau levels – that causes somewhat arbitrariness. The break-
ing effect of rotation on the internal spin structure of charged
pion was checked in these works for choices of Schwinger
phase (SP) in Minkowski and curved spaces, respectively. It
turned out that π± superfluid is never favored for SP in curved
space and only favored in the intermediate regime of angular
velocity for SP in Minkowski space [38]. As mentioned in
the conclusion of Ref. [37], the spins of valence quark and
antiquark are along the same direction in rho vector mesons;
thus, the spin-up ρ+ meson is stable in the presence of either
strong magnetic field B or large rotating angular velocity �

along z direction. Due to the mass reduction in B and effec-
tive isospin chemical potential generated by �, it is quite
probable that ρ± superconductor would occur in B ‖ � and
keep robust to very fast rotation. Once verified, we are more
able to figure out the true phase diagram of QCD in B ‖ �.

Similar to the electric field discussed in Ref. [26], the
rotation term breaks the semi-positivity of fermion determi-
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nante in the partition function. Therefore, the study in such
setup is free from the constraint of Vafa-Witten (VW) the-
orem [33,39], which was previously adopted as the main
point against ρ± superconductor in pure magnetic field. To
show the importance of rotation effect on ρ± superconduc-
tor, we’d like to mention the interesting results found in Ref.
[40]: At finite isospin chemical potential μI , π± superfluid
is always favored over ρ± superconductor; but ρ± supercon-
ductor would finally manage to overwhelm π± superfluid
with � increasing.

After getting some intuitions from the Weinberg model
in Sect. 2, the paper keeps a similar structure as our pre-
vious work Ref. [37]. In Sect. 3, we present the formalism
for SU (3) NJL model in rotating frame with a parallel mag-
netic field, where the simplest forms of vector interactions
are introduced to explore rho meson physics [35]. Then, the
quadratic coefficient in Ginzburg-Landau expansion will be
evaluated analytically in Sect. 4 with the choice of SP in
Minkowski space in Sect. 4.1 and of SP in curved space in
Sect. 4.2, respectively. Eventually, the numerical results will
be illuminated in Sect. 5 to check the stability of QCD system
against ρ± superconductor and we give a simple conclusion
in Sect. 6. The natural units c = h̄ = kB = 1 are used
throughout.

2 Intuitions from Weinberg model

From the chiral effective Weinberg model [41] with pion
and rho mesons the fundamental degrees of freedom, the
Lagrangian density can be extended to the case with B ‖ �

ias

L = 1

2

⎛
⎝ (Dμπ)† · Dμπ

(1 + π†·π
f 2
π

)2
− m2

π π† · π

1 + π†·π
f 2
π

⎞
⎠− 1

4
ρ†

μν · ρμν

+m2
ρ

2

⎡
⎣ρμ+ gρπ×Dμπ

m2
ρ(1+ π†·π

f 2
π

)

⎤
⎦

†

·
⎡
⎣ρμ+ gρπ×Dμπ

m2
ρ(1+ π†·π

f 2
π

)

⎤
⎦

±i
e

2
Fμνρ∓

μ ρ±
ν − B2

2
, (1)

where chiral symmetry is nonlinearly realized through the
term 1 + π†·π

f 2
π

in the denominators, and magnetic and rota-

tion effects are encoded in the covariant derivative Dμ.
Neglecting all the self-interactions of pions for simplicity,
the Lagrangian density is then reduced to

L = − B2

2
+ 1

2

[
(Dμπ)† · Dμπ − m2

π π† · π
]

− 1

4
ρ†

μν · ρμν

+m2
ρ

2
ρ†

μ · ρμ ± i
e

2
Fμνρ∓

μ ρ±
ν + gρ

2

[
ρ†

μ · (π × Dμπ)

+(π × Dμπ)† · ρμ
]
. (2)

Here, the isovectors are defined in the electric charge eigen-
states: π = (π0, π−, π+) and ρ = (ρ0, ρ−, ρ+), and we
assume for convenience that the rho vector mesons are in
the spin eigenstates: ρμ = (ρt , ρ↓, ρ0, ρ↑). Take ρ mesons
for example, the charge eigenstates are related to the isospin
ones ρi (i = 1, 2, 3) as

ρ0 = ρ3, ρ± = ρ1 ∓ iρ2

√
2

,

and the spin eigenstates are defined by the Lorentz compo-
nents ρμ (μ = t, x, y, z) as

ρ0 = ρz, ρ↑/↓ = ρx ∓ i ρy√
2

.

In the vacuum, the strength tensors ofρ mesons are defined
in a similar way as those of gauge fields in the SU (2) Yang-
Mills theory:

ρa
μν ≡ ∂μρa

ν − ∂νρ
a
μ + gρεabcρb

μρc
ν

with the coupling constant given by gρ = √
2mρ/ fπ [41].

These tensors can be rearranged in the charge eigenstates so
that the magnetic effect can be introduced directly by chang-
ing ∂μ to covariant derivative Dμ ≡ ∂μ + i q Aμ with q the
particle charge. Then, we get the strength tensors of charge-
definite ρ as

ρ0
μν = ∂μρ0

ν − ∂νρ
0
μ + i gρ(ρ−

μ ρ+
ν − ρ−

ν ρ+
μ ), (3)

ρ±
μν = D±

μ ρ±
ν − D±

ν ρ±
μ , D±

μ ≡ ∂μ ± ieAμ ∓ i gρρ0
μ, (4)

where we find that ρ±
μν can be simply present in Abelian

forms with the redefinition of the gauge field as Aμ − gρ

e ρ0
μ.

In accordance with the spin eigenstates, the corresponding
covariant derivatives are related to the Lorentz components
as:

D(±)
0 = D(±)

z , D(±)
↑/↓ = i

D(±)
x ∓ i D(±)

y√
2

for both neutral and charged ρ mesons. Considering a con-
stant magnetic field along z direction, we choose the symmet-
ric gauge for the vector potential: Aμ = (0, By/2,−Bx/2, 0).
Then, as introduced in Ref. [42], the strength tensor couplings
to the EM field in Eq. (2) become explicitly

±i
e

2
Fμνρ∓

μ ρ±
ν = ±1

2
eB
(
ρ∓

↓ ρ±
↑ − ρ∓

↑ ρ±
↓
)

.

Furthermore, according to the discussions in Refs. [43,44],
the effect of rotation along z direction can be simply intro-
duced through the modification of temporal derivative ∂t to

Dt = ∂t − i �
(
L̂ z + Ŝz

)
,

where L̂ z ≡ −i(x∂y − y∂x ) and Ŝz are the orbital angular
momentum (OAM) and spin operators, respectively.
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Now, without applying any boundary condition to a cylin-
drical system with radius R, the diagonal kinetic parts of the
Lagrangian can be expressed explicitly on the basis of energy
k4, momentum k3, Landau level n and OAM quantum num-
ber l as

Lk = − 1
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(k4 − i �l)2 + k2

l + k2
3 + m2

π

]
π0
l

− 1

2
π±
n,±l

[
(k4 ± i �l)2 + (2n + 1)|eB| + k2

3 + m2
π

]
π∓
n,∓l

− 1

2
ρ0−s,−l

[
(k4 − i �(l + s))2 + k2

l + k2
3 + m2

ρ

]
ρ0
s,l

+ 1

2
ρ0
t,−l

[
(k4 − i �(l + s))2 + k2

l + k2
3 + m2

π

]
ρ0
t,l

− 1

2
ρ±
−s,n,±l

[
(k4 − i �(∓l + s))2 + (2n + 1 ± 2s)|eB|

+ k2
3 + m2

ρ

]
ρ∓
s,n,∓l

+ 1

2
ρ±
t,n,±l

[
(k4 ± i �l)2 + (2n + 1)|eB| + k2

3 + m2
ρ

]
ρ∓
t,n,∓l ,

(5)

where particularly the summations over n, l, s should be
understood with s = −1, 0, 1, n ≥ 0, l ∈ (−∞,∞) for neu-
tral particles and l ∈ (−n, [N ] − n) for charged ones [43].
Note that the OAM is given by −l for negative charged parti-

cle and [N ] ≡
[ |qB|R2

2

]
is the number of magnetic flux quan-

tization. Especially, we choose the simplest Lorentz gauge
Dμρμ = 0 for ρ mesons, then the commutations [Dμ, Dν]
from ρ†

μν · ρμν give rise to extra kinetic terms the same as
the strength tensor couplings. The left particle coupling parts
of the Lagrangian involve the self-interactions of ρ mesons,
which are quite the same as those of W/Z bosons in the
electroweak theory, and the ρππ interactions whose explicit
forms can be illuminated as
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(6)

Here, as before, the summations over the quantum numbers
of all the relevant particles should be understood. We note
that the coordinate integrations haven’t been carried out yet
in Eq. (6), that is why there seem no connections among the
quantum numbers of the interacting particles.

In the following, we skip the complicated interaction parts
and only focus on the kinetic parts of the Lagrangian to
get some physical intuitions. From Eq. (5), we surprisingly
notice that rotation even induces effective chemical poten-
tials for neutral pion and rho, thus the π0 (ρ0) condensation
is expected when |�l| > mπ (|�(l + s)| > mρ). More-
over, in the presence of a magnetic field, the π0 seems much
easier to condense than π± with the condition for the latter:
|�l| >

√
m2

π + |eB|. All these puzzles can be consistently
solved when we combine the restriction of causality together
with boundary conditions [43,45,46]. As a matter of fact,
causality constrains the angular velocity to � ≤ 1/R and
the Dirichlet boundary conditions, requiring the wave func-
tions to vanish at the boundary R, discretizes the transverse
momentum such that |kl | > (|l| + 2)/R for each l. Thus,
the excitation energy E0 = (k2

l + k2
3 +m2)1/2 of the neutral

particle satisfies

E0 > |kl | > |�(l + s)|,
which eventually prevents any accumulation of π0 or ρ0

meson.
Next, we discuss a bit more about the effect of boundary

condition on π± in a background magnetic field. For π+ with
l > 0, the excitation energy for transverse dynamics is [30]

Enl(eB) ≡
√
m2

π + |eB|(2λnl + 1)

with the boundary condition

1F1(−λnl , l + 1,N ) = 0

and the quasi Landau levels 0 ≤ λ0
l < λ1

l < λ2
l < . . . .

We’ve checked numerically that there is always a window of
l satisfying l2 > 2(2λ0

l + 1)N when N � 7, which means
the unstable condition �l > E0l(eB) can be realized for
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Fig. 1 The dimensionless energy Ẽ�
0l as a function of the orbital angu-

lar momentum l for different values of N

large enough � and eB. This is consistent with π± super-
fluid found in Ref. [30]. However, one problem is still left:
if we don’t artificially set l ≤ [N ] as in Ref. [30], it seems
that the lowest total particle energy E�

0l = E0l(eB) − �l
is not bound from below, which would cause a disaster of
infinite condensate density according to Ref. [30]. Actually,
the answer is that λ0

l becomes quite large for large l, which
then makes sure that E�

0l > −∞ in the limit l → ∞.
For the purpose of intuition, we show the scaled dimen-

sionless energy

Ẽ�
0l ≡

√
|eB|(2λ0

l + 1) − l
R√|eB| =

√
2λ0

l + 1 − l√
2N

for different values of N in Fig. 1, where positive features
can always be identified at large l. And with the increasing
of N , that is, the enhancement of eB for a given R, more
π+ can be condensed as more are trapped in the system. It
should be pointed out that finite lower boundaries exist for
the total energies of any charged particles.

In pure magnetic field, it was found that the degeneracy
of l is automatically restricted to ≤ [N ] for the lowest Lan-
dau level when the boundary condition is applied [43]. We
even check in advance that the degeneracy decreases with
the Landau level n, see the plains in Fig. 2. Nevertheless, for
the case N = 15 in Fig. 1, the much wider unstable window
of l disfavors the use of the artificial upper bound [N ] for l
when large angular velocity (� � 1/R) is involved.

Finally, turn to the charged ρ vector mesons, the story
is quite different because of their non-vanishing spins. In
the presence of B ‖ �, the effective mass of ρ+

↑ or ρ−
↓

decreases as
√
m2

ρ + |eB|(2λ0
l − 1) on one hand [24], the

effective isospin chemical potential increases as �(l + 1) on
the other hand. Then, it seems that ρ+

↑ condensation would
overwhelm the π+ condensation to be the true ground state
when � is large enough that

�(l + 1) −
√
m2

ρ + |eB|(2λ0
l − 1) > �l − E0l(eB) > 0.

Fig. 2 The three lowest quasi Landau levels λnl (n = 0, 1, 2) as func-
tions of the orbital angular momentum l for N = 100

As the VW theorem might forbid the decreasing of composite
ρ+

↑ mass to zero in pure magnetic field [33–36], the estima-

tion of the ρ+
↑ mass is not correct at all for large B in the point

particle picture. However, as mentioned in the introduction,
� invalids the proof of the theorem thus the isospin chemical
potential effect of �(l + 1) can still be qualitatively correct
in the point particle picture.

3 Nambu–Jona-Lasinio model in rotating frame

In order to explore the possibility of charged rho condensa-
tion more realistically, we adopt the SU (3) NJL model with
u, d and s quarks the fundamental degrees of freedom [47].
In the rotating frame, the action of the system can be conve-
niently given in curved spacetime by

S =
∫

d4x
√− det(gμν)L(ψ̄, ψ), (7)

where the Lagrangian density can be extended from the usual
one [47,48] to

LNJL = ψ̄(i /D − m0)ψ + GS

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2]

+L6 − GV

[(
ψ̄γ μτaψ

)2 + (ψ̄γ μγ5τaψ
)2]

L6 = −K
∑
s=±

Detψ̄sψ (8)

by further adopting the four fermion vector interaction chan-
nels with coupling constant GV . Compared to the two-flavor
NJL model, the advantage of three-flavor NJL model is that:
there the vacuum superconductivity or ρ± superconductor
cannot happen due to the mass splitting of quarks in pure
magnetic field [35], which is consistent with lattice QCD
simulations [33,34,36].

In the Lagrangian, ψ = (u, d, s)T represents the three-
flavor quark field and m0 = diag(m0u,m0d,m0s) is the
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current quark mass matrix. The longitudinal and transverse
covariant derivatives with B ‖ � effect are defined, for sym-
metric gauge, respectively as

D0 = ∂t − i�
(
L̂ z + Ŝz

)
, D3 = ∂z

and

D1 = ∂x + i Q By/2, D2 = ∂y − i Q Bx/2

with the charge matrix Q = diag(qu, qd, qs). For the four-

fermion interaction terms, λ0 =
√

2
3 I and Gell-Mann matri-

ces λi (i = 1, . . . , 8) are defined in three-flavor space, so
the extra diagonal terms (ψ̄λ3ψ)2 and (ψ̄λ8ψ)2 allow mass
splitting among all the flavors in contrary to the two-flavor
case [35]. The UA(1) symmetry violating term L6 [49] only
involves scalar-pseudoscalar channels with the determinant
defined in flavor space, ± = 1 ± γ5 and K the coupling
constant. Now, we only consider nonzero chiral conden-

sations σi ≡ 〈ψ̄ iψ i 〉, where the correspondence between
the Arabian denotations i = 1, 2, 3 and the more explicit
Latin ones f = u, d, s should be understood for the flavors.
The six fermion interactions in L6 can be reduced to effec-
tive four fermion ones in Hartree approximation [47], then
the Lagrangian density only involves four fermion effective
interactions:

L4
NJL = ψ̄(i /D − m0)ψ

+
8∑

a,b=0

[
G−
ab(ψ̄λaψ)(ψ̄λbψ)+G+

ab(ψ̄iγ5λaψ)(ψ̄ iγ5λbψ)
]

−GV

[(
ψ̄γ μτaψ

)2+(ψ̄γ μγ5τaψ
)2]

, (9)

where the non-vanishing elements of the symmetric coupling
matrices G± are given by [47]

G∓
00 = GS ∓ K

3

∑
f=u,d,s

σf , G∓
11 = G∓

22 = G∓
33 = GS ± K

2
σs ,

G∓
44 = G∓

55 = GS ± K

2
σd, G∓

66 = G∓
77 = GS ± K

2
σu,

G∓
88 = GS ∓ K

6
(σs − 2σu − 2σd), G∓

08 = ∓
√

2K

12
(2σs−σu−σd),

G∓
38 = −√

2G∓
03 = ∓

√
3K

6
(σu−σd). (10)

In the case 〈σi 〉 �= 0, the inverse quark propagators of dif-
ferent flavors are given by the introductions of the dynamical
masses and covariant derivatives as

S−1
i (x, x ′) = i /D − mi , mi = m0i − 4GSσi + K

∑
jk

ε2
i jkσ jσk . (11)

By using the eigenfunction reconstruction method, we have
given the propagator of a fermion with positive or negative
charge [37]; so the u and d/s quark propagators are respec-
tively

Su(x, x
′) =

∞∑
n=0

∑
l

∫ ∫
dp0dpz
(2π)2

i e−i p0(t−t ′)+i pz(z−z′)
(
pl+0
)2 − (εun )

2 + iε

×
{ [

P↑χ+
n,l(θ, r)χ+∗

n,l (θ
′, r ′) + P↓χ+

n−1,l+1(θ, r)χ+∗
n−1,l+1(θ

′, r ′)
] (

γ 0 pl+0 − γ 3 pz + mu

)

−
[
P↑χ+

n,l(θ, r)χ+∗
n−1,l+1(θ

′, r ′) + P↓χ+
n−1,l+1(θ, r)χ+∗

n,l (θ
′, r ′)

]√
2n|qB|γ 2

}

q→qu

, (12)

Sd/s(x, x
′) =

∞∑
n=0

∑
l

∫ ∞

−∞
dp0dpz
(2π)2

i e−i p0(t−t ′)+i pz(z−z′)
(
pl−0
)2 − (ε

d/s
n )2 + iε

×
{ [

P↑χ−
n−1,l−1(θ, r)χ−∗

n−1,l−1(θ
′, r ′) + P↓χ−

n,l(θ, r)χ−∗
n,l (θ

′, r ′)
] (

γ 0 pl−0 − γ 3 pz + md/s

)

+
[
P↑χ−

n−1,l−1(θ, r)χ−∗
n,l (θ

′, r ′) + P↓χ−
n,l(θ, r)χ−∗

n−1,l−1(θ
′, r ′)

]√
2n|qB|γ 2

}

q→qd

, (13)

where pls0 = p0 + �
(
l + s 1

2

)
, the dispersion relations

εin = (p2
z + 2n|qi B| + m2

i )
1/2 and P↑/↓ = 1

2 (1 ± σ 12)

are the spin projectors. Here, the normalized auxiliary func-
tions are defined for positive and negative charged particles
respectively as

χ+
n,l (θ, r) =

[ |qB|
2π

n!
(n+l)!

] 1
2
ei lθ r̃ l e−r̃2/2Lln

(
r̃2
)

, (14)

χ−
n,l (θ, r) =

[ |qB|
2π

n!
(n−l)!

] 1
2
ei lθ r̃−l e−r̃2/2L−l

n

(
r̃2
)

, (15)

where the dimensionless radius r̃2 = |qB|r2/2 and the
Laguerre polynomial Ll

n(x) is nonvanishing only for n ≥ 0.
Actually, in a rotating system, a boundary must be applied
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due to causality, then the propagators would no longer keeps
the forms of Eqs. (12) and (13). But for convenience, we
still adopt these forms and constrain the OAM as l ∈
[−n,N − n] [38]. Armed with that, the quark masses can
be evaluated through the gap equations given by the self-
consistent definitions of chiral condensations as:

σi ≡ 〈ψ̄ iψ i 〉 = − i

V4
Tr Si . (16)

By adopting vacuum regularization, the explicit form of the
gap equations are

− σf = Nc
mf

3

2π2

[
�̃f

(
1 + �̃2

f

) 1
2 − ln

(
�̃f +

(
1 + �̃2

f

) 1
2
)]

+Nc
mf

4π2

∫ ∞

0

ds

s2 e
−mf

2s
(

qf Bs

tanh(qf Bs)
− 1

)

−Ncmf

nmax∑
n=0

1

S

N f∑
l=0

∫ ∞

−∞
dpz
π

αn

εf
n

[
f (εf

n + �nl ) + f (εf
n − �nl )

]

(17)

with the reduced cutoff �̃f = �/mf . Compared to that given
in Ref. [37] but implicitly implied, the Landau levels are cut
off by nmax (� Nf) here, which was checked to be a good
approximation for large B and � = 0.

For a continuous transition, the effective potential can be
expressed as the form in Ginzburg-Landau (GL) theory

Veff(σf ,�) = Veff(σf , 0) + A �2 + B �4 + . . . , (18)

whereVeff(σf , 0) is the corresponding thermodynamic poten-
tial giving rise to the gap equations in Eq. (17). We note that
� can be an order parameter for any kind of mesonic super-
fluid or superconductor with the relevant coefficients A and
B determined by their interactions with quarks. To avoid too
much complexity, we assume the transition is solely deter-
mined by the quadratic one A [37]: If A < 0, the meson con-
densation is favored; and if Aa < Ab < 0, we would assume
mesona is more preferred to condensate than meson b. We’ve

discovered previously that A is almost consistent with the
inverse mesonic propagator in random phase approximation
(RPA) except for some subtle discussions on the Schwinger
phases of charged mesons [37,38,50]. As illuminated in Ref.
[35], the bare form of the coefficient is given by

A = 1

4G
+ �

with the polarization function defined through the fermion
loop as

� = i

V4
Tr
[
S(x, y)M∗S(y, x)Me−i�M

]
. (19)

Here, V4 is the space-time volume, the trace should be taken
over the internal and coordinate spaces, and e−i�M is the
compensated Schwinger phase.

4 Calculations of the quadratic coefficient

This section is mainly devoted to calculating the quadratic
efficient explicitly. The interaction vertices between quarks
and (pseudo-)scalar and vector mesons have been listed in
Ref. [35] as:

σ/σ∗ = −1, 
π0/π0∗ = −iγ 5τ3, π± = −iγ 5τ±, ω̄μ/ω̄∗

μ
= γ̄ ±

μ ,

ρ̄0μ/ρ̄∗
0μ

= γ̄ ±
μ τ3, ρ̄±μ = γ̄ ±

μ τ±, (20)

where γ̄ ±
μ = (γ0,

γ1±iγ2√
2

,
γ1∓iγ2√

2
, γ3). In the following, we

mainly focus on the ρ̄+
1 mode, that is, the rho meson with

spin long the magnetic field. The insertion of the fermion
propagators from Eqs. (12) and (13) into the polarization
function Eq. (19) is explicitly

�ρ̄+
1

= −i

S

nmax∑
n=0

∑
l

nmax∑
n′=0

∑
l ′

∫ ∞

−∞
dp0

2π

∫ ∞

−∞
dpz
2π

Tr

{ [
P↑χ+

n,l(θ, r)χ+∗
n,l (θ

′, r ′) + P↓χ+
n−1,l+1(θ, r)χ+∗

n−1,l+1(θ
′, r ′)

]

×
(
γ 0 pl+0 − γ 3 pz + mu

)
−
[
P↑χ+

n,l(θ, r)χ+∗
n−1,l+1(θ

′, r ′) + P↓χ+
n−1,l+1(θ, r)χ+∗

n,l (θ
′, r ′)

]
γ 2
√

2nqu B

}

×
{

−
[
P↓χ−

n′−1,l ′−1(θ
′, r ′)χ−∗

n′−1,l ′−1(θ, r) + P↑χ−
n′,l ′(θ

′, r ′)χ−∗
n′,l ′(θ, r)

] (
γ 0 pl

′−
0 −γ 3 pz−md

) γ 1+iγ 2

√
2

−
[
P↓χ−

n′−1,l ′−1(θ
′, r ′)χ−∗

n′,l ′(θ, r) + P↑χ−
n′,l ′(θ

′, r ′)χ−∗
n′−1,l ′−1(θ, r)

]

×γ 2
√

2n′|qd B|γ
1 − iγ 2

√
2

}
γ 1 − iγ 2

√
2

e−i�
[(

pl+0
)2 − (εun )

2

] [(
pl

′−
0

)2 − (εdn′)2

] , (21)
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where the trace is over the Dirac and the coordinate spaces.
By completing the trace over the Dirac space, the expression
becomes quite simple:

�ρ̄+
1

= −4Nci

S

nmax∑
n=0

∑
l

nmax∑
n′=0

∑
l ′

∑
r,r ′

∑
θ,θ ′

∫ ∞

−∞
dp0

2π

∫ ∞

−∞
dpz
2π

e−i�
[(

pl+0
)2 − (εun )

2

] [(
pl

′−
0

)2 − (εdn′)2

]

×
(
pl+0 pl

′−
0 − p2

z − mumd

)
χ+
n,l(θ, r)χ+∗

n,l (θ
′, r ′)χ−

n′,l ′(θ
′, r ′)χ−∗

n′,l ′(θ, r), (22)

where we define
∑

r,r ′ = ∫∞
0 rdr

∫∞
0 r ′dr ′ and

∑
θ,θ ′ =∫ 2π

0 dθ
∫ 2π

0 dθ ′. Consistent with the form in pure magnetic
field [35] but different from that of charged pion [37], only
the term with numerator independent of Landau levels sur-
vives and there is only one kind of combination of χ+χ+∗
and χ−χ−∗. By the way, for the corresponding axial vector
ā+

1 with interaction indices ā+
1

= iγ 5ρ̄+
1

, the polarization

function is the same as that of ρ̄+
1 except that the sign of the

mass term is changed, that is, −mumd → +mumd . We’ve
shown in Ref. [35] that the contribution of the mass term is
negative to �ρ̄+

1
, hence mā+

1
> mρ̄+

1
in the chiral symmetry

breaking phase. Then it turns out that the ā+
1 superconductor

is neither favored in magnetic field, but it still needs to be
checked in B ‖ � where this term can be positive for ρ̄+

1 .

4.1 For Schwinger phase in Minkowski space

To calculate Eq. (22) further, we choose the Schwinger
phase of the form in Minkowski space, that is, �M =
e
∫ y
x Aμ(z)dzμ = eB

2 sin(θ −θ ′)rr ′. Then, the integrals over
the polar angles can be completed to give

�ρ̄+
1

= −16Nci

S

nmax∑
n,n′=0

Nu∑
l=0

Nd∑
l ′=0

∑
r,r ′

∫ ∞

−∞
dp0

2π

∫ ∞

−∞
dpz
2π

e− eB
4 (r2+r ′2)

(
p(l−n)+

0 p(n′−l ′)−
0 − p2

z − mumd

)
[(

p(l−n)+
0

)2 − (εun )
2

] [(
p(n′−l ′)−

0

)2 − (εdn′)2

] n!n′!
l!l ′!

×
(
qu B

2

)l−n+1 ( |qd B|
2

)l ′−n′+1

Jl+l ′−n−n′
(
eB

2
rr ′
)

(rr ′)l+l ′−n−n′
Fnl,n′l ′(qu B, |qd B|; r, r ′), (23)

where the auxiliary function F is defined as

Fnl,n′l ′(qu B, |qd B|; r, r ′)

≡
∏

x=r,r ′
Ll−n
n

(
qu B x2

2

)
Ll ′−n′
n′

( |qd B| x2

2

)
. (24)

Here, we find that the LLL combination of u and d quarks
contribute to the term Fnl,n′l ′(qu B, |qd B|; r, r ′) with n =
n′ = 0, due to the special structure of χ+χ+∗ and χ−χ−∗ in

Eq. (22). For charged pion, this kind of combination is absent
[37] due to the fact that the LLLs of of u and d quarks cannot
form spin singlet at all.

For convenience, we redefine the radii to dimensionless
ones r̄ = (eB/2)1/2r and r̄ ′ = (eB/2)1/2r ′, then Eq. (23)
becomes

�ρ̄+
1

= −16Nci

S

nmax∑
n,n′=0

Nu∑
l=0

Nd∑
l ′=0

∫ ∞

−∞
dp0

2π

∫ ∞

−∞
dpz
2π

(
p(l−n)+

0 p(n′−l ′)−
0 − p2

z −mumd

)
Fnl,n′l ′ (q̃u , |q̃d |)[(

p(l−n)+
0

)2 − (εun )2

] [(
p(n′−l ′)−

0

)2 − (εdn′ )2

] , (25)

Fnl,n′l ′ (q̃u , |q̃d |) = n!n′!
l!l ′! q̃

l−n+1
u |q̃d |l ′−n′+1

∑
r̄ ,r̄ ′

e− r̄2+(r̄ ′)2
2 Jl+l ′−n−n′

(
r̄ r̄ ′) (r̄ r̄ ′)l+l ′−n−n′

Fnl,n′l ′ (2q̃u , 2|q̃d |; r̄ , r̄ ′)

(26)

with q̃ = q/e. It is useful to transform the numerator

p(l−n)+
0 p(n′−l ′)−

0 − p2
z − mumd of the integrand in Eq. (25)

to the following form:

1

2

[ (
p(l−n)+

0

)2 − (εun )
2 +

(
p(n′−l ′)−

0

)2 − (εdn′)2

−�2
nl,n′l ′ + (mu − md)

2 + 2n qu B + 2n′|qd B|
]
, (27)

where �nl,n′l ′ = (l+l ′ −n−n′ +1)�. Then the polarization
function becomes

�
ρ̄+

1
= −8Nci

S

nmax∑

n,n′=0

Nu∑
l=0

Nd∑

l′=0

Fnl,n′l′ (q̃u , |q̃d |)
∫ ∞
−∞

dp0

2π

∫ ∞
−∞

dpz
2π
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×

⎧⎪⎨
⎪⎩

1(
p(l−n)+

0

)2 − (εun )2
+ 1(

p(n′−l′)−
0

)2 − (εdn′ )2

+
−�2

nl,n′l′ + (mu − md )2 + 2n qu B + 2n′|qd B|
[(

p(l−n)+
0

)2 − (εun )2
] [(

p(n′−l′)−
0

)2 − (εdn′ )2
]

⎫⎪⎪⎬
⎪⎪⎭

. (28)

Shifting to Euclidean space through the transformations:
p0 → iωm and −i

∫∞
−∞

dp0
2π

→ T
∑∞

m=−∞ and complet-
ing the summation over the fermion Matsubara frequency
ωm = (2m + 1)πT , we have

�ρ̄+
1

= −2Nc

S

nmax∑
n,n′=0

Nu∑
l=0

Nd∑
l ′=0

Fnl,n′l ′(q̃u, |q̃d |)

∑
s=±

∫ ∞

−∞
dpz
(2π)

{
tanh

(
εun − s �nl, 1

2 0

2T

)
1

εun

[
1

+ −�2
nl,n′l ′ + (mu − md)

2 + 2n qu B + 2n′|qd B|
(
εun − s �nl,n′l ′

)2 − (εdn′)2

]

+
(
εdn′ ↔ εun , nl ↔ n′l ′, qu ↔ |qd |

)}
. (29)

The temperature and rotation dependent part can be separated
out as �ρ̄+

1
− �ρ̄+

1

∣∣
�→0,T→0, which should be convergent

similar to that of charged pion [37]. Here, the subtracting term
is just the polarization function in pure magnetic field, which

has been regularized in Ref. [35] as

[
�B

ρ̄+
1

− �
o(B2)

ρ̄+
1

]
+��

ρ̄+
1

.

We close this section by listing the relevant terms:

�B
ρ̄+

1
= − Nc

8π2

∫
ds

s

∫ 1

−1
du e−s

[
m2

uu
++m2

du
−]
(
mumd+ 1

s

)

× [1+tanh
(
quBsu

+)] [1−tanh
(
qdBsu

−)]
1

tanh(quBsu+)
quBs

+ tanh(qdBsu−)
qdBs

(30)

with u± = (1±u)/2, �o(B2)

ρ̄+
1

is the weak B expansion of �B
ρ̄+

1

to order o(B2) and the term with three-momentum cutoff �

is

��

ρ̄+
1

= −Nc

∫ �

0

k2dk

π2

(EuEd+mumd+ 1
3 k

2)

EuEd(Eu+Ed)

−Nc

∫ �

0

k2dk

2π2

{
quB

(Eu+Ed)2

[(
EuEd+mumd+ 1

3 k
2

E3
u

+ 1

Eu
+ 1

Ed

)

− (mu−md)2+ 4
3 k

2

E2
u Ed

]
−(u ↔ d)

}
. (31)

4.2 For Schwinger phase in curved space

Next, we choose the Schwinger phase of the form in curved
space, that is, �M = eB

2 sin[θ −θ ′ +�(t− t ′)]rr ′. By taking
variable transformation of the angle: θ−θ ′ → θ−θ ′−�(t−

t ′), we find that the corresponding polarization function can

be modified from Eq. (25) by changing p(l−n)+
0 to p(n′−l ′)+

0 ,
that is,

�ρ̄+
1

= −16Nci

S

nmax∑
n,n′=0

Nu∑
l=0

Nd∑
l ′=0

∫ ∞

−∞
dp0

2π

∫ ∞

−∞
dpz
2π

×
(
p(n′−l ′)+

0 p(n′−l ′)−
0 − p2

z −mumd

)
Fnl,n′l ′(q̃u, |q̃d |)[(

p(n′−l ′)+
0

)2 − (εun )
2

] [(
p(n′−l ′)−

0

)2 − (εdn′)2

] .

(32)

Then, in a similar process as the previous section, the sum-
mation over the Fermion Matsubara frequency gives

�
ρ̄+

1
= −2Nc

S

nmax∑

n,n′=0

Nu∑
l=0

Nd∑

l′=0

Fnl,n′l′ (q̃u , |q̃d |)
∑
s=±

∫ ∞
−∞

dpz
(2π)

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tanh

⎛
⎝

εun +s � 3
2 0,n′l′

2T

⎞
⎠ 1

εun
+ tanh

⎛
⎝

εdn′ − s � 1
2 0,n′l′

2T

⎞
⎠ 1

εdn′

+
[
−�2+(mu−md )2+2n qu B+2n′|qd B|

]

⎡
⎢⎢⎢⎢⎢⎢⎣

1

εun

tanh

(
εun+s � 3

2 0,n′l′
2T

)

(
εun − s �

)2 − (εdn′ )2
+ 1

εdn′

tanh

⎛
⎝

εd
n′−s � 1

2 0,n′l′
2T

⎞
⎠

(
εdn′ − s �

)2 − (εun )2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (33)

In contrary to that of charged pion [38], the angular velocity
� can still plays a role of effective isospin chemical potential
to ρ̄+

1 in this case, see the denominators. Finally, one should
keep in mind that the regularization to Eq. (32) is performed
in the same way as that of SP in Minkowski space.

5 Possibility of charged rho superconductor

In order to carry out numerical calculations, we choose
the following parameters for the scalar-pseudoscalar sec-
tor: mu = md = 5.5 MeV,ms = 140.7 MeV,� =
602.3 MeV,GS�

2 = 1.835 and K�5 = 12.36 [51].
To avoid artifacts, the vector coupling constant is fixed to
GV�2 = 2.527 by fitting to the vacuum mass of ρ meson:
mv

ρ = 0.7 GeV [35]. Following the study of Ref. [35], we

consider a cylindrical system with the radius R = 20/
√
eB

and constrain the rotation by �R ≤ 1 for causality. As the
upper limit of orbital angular momentum is limited byN , the
B dependence of R cancels the B dependence of the upper
limit and gives a natural number. Actually, what we are more
interested in is the effect induced by changing the angular
velocity rather than magnetic field, so this choice of R is fine
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Fig. 3 The evolutions of the dynamical quark massesmf (upper panel)
and the quadratic GL expansion coefficients A (lower panel) with the
angular velocity � at the magnetic field eB = 0.5 GeV2. In the lower
panel, the coefficients of charged rho condensation are compared to
those of charged pion for both choices of SP in Minkowski space and
SP in curved space, denoted by “M” and “C”, respectively

for that purpose. As the original NJL model is not capable
of explaining the inverse magnetic catalysis effect at finite
temperature [19], we stick to the zero temperature case in
the following numerical calculations.

We choose two strong enough magnetic fields for illumi-
nation: eB = 0.5 GeV2 and eB = 1.5 GeV2, which are
on different sides of the minimum point of the ρ̄+

1 mass
found in our previous work [35]. We understand that the
corresponding energy scales

√
eB of the magnetic fields are

larger than the energy scale � of NJL model, which then
seems to invalid these choices of eB. However, if one rec-
ognize that NJL model predicts magnetic catalysis effect up
to eB = 4 GeV2 [27] which is qualitatively consistent with
LQCD simulations up to eB = 3.25 GeV2 [52], we have
good reason to believe that the valid energy scale is well
extended by adopting vacuum regularization. The numeri-
cal results are shown in Figs. 3 and 4, respectively. As can
be seen in the upper panels, the quark masses all decrease
with � in both cases, but the chiral symmetry restoration
(χSR) shows a crossover feature for eB = 0.5 GeV2 and
a first-order one for eB = 1.5 GeV2. Along with the χSR,
the quadratic GL expansion coefficients are evaluated for
charged rho meson with both choices of SP in Minkowski
space and SP in curved space, see the lower panels in com-

Fig. 4 The evolutions of the dynamical quark massesmf (upper panel)
and the quadratic GL expansion coefficients A (lower panel) with the
angular velocity � at the magnetic field eB = 1.5 GeV2. The conven-
tions are the same as in Fig. 3

parison with those of charged pions. For either choice of
Schwinger phase, the ρ± superconductor can always hap-
pen and is favored over the π± superfluid with large enough
�.

We’ve checked for eB = 0.5 GeV2 that the π± super-
fluid is indeed disfavored with SP in Minkowski space at
large � (≥ 0.026 GeV) thus qualitatively consistent with that
found in Ref. [38]. But for charged rho meson, the quadratic
coefficient keeps decreasing to an order of −100 GeV2 at
� = 0.026 GeV without any signature of turning up. The
discontinuity in Fig. 4 seems to contradict with the continu-
ous transition assumption in the GL approach, but it surely
demonstrates an instability to the χSR phase. The situa-
tion might be similar to that of diquark condensation at the
critical baryon chemical potential, so here can probably be
a first-order transition to ρ± superconductor. In the lower
panel of Fig. 4, one note that the coefficients A increase
for charged pion but decrease for charged rho at the crit-
ical � (∼ 8.25 MeV). At last, though not illuminated in
the plots, it has been checked that the charged axial vector
condensation might be favored over χSR or π± superfluid
phase at large enough � but never over ρ± superconductor
phase.
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6 Conclusions and discussions

In this work, the possibility of charged rho superconductor in
the presence of parallel magnetic field and rotation was intu-
itively studied in Weinberg model and extensively explored
within SU (3) Nambu–Jona-Lasino model. The possibilities
of charged π and ρ condensations in B ‖ � both well passed
the check in the point particle picture when solely looking
at the mesons’ dispersions. By following similar schemes as
the previous works on π± superfluid [37,38], the ρ± super-
conductor was found to be favored over chiral symmetry
breaking, χSR and π± superfluid phases at large �, for both
choices of Schwinger phase in Minkowski and curved spaces.
As the chiral partner of ρ mesons, the charged axial vec-
tor meson was even checked in advance; and it turned out
that ρ± superconductor is still robust against that at large �.
Indeed, the NJL model study qualitatively supports the intu-
itions about the rotation effect on mesons in the point particle
approximation.

The present study is not conclusive yet because constant
charged rho condensation would contradict the Meissner
effect, which excludes the magnetic field out of the supercon-
ductor. But the vanishing of the quadratic coefficient should
indicate some kind of instability related to ρ± condensation
[25]. In the future, more realistic but complicated study will
be performed to looking for the true ground state of QCD
system in B ‖ � by taking into account the boundary condi-
tion and inhomogeneous forms of condensates consistently
[43,53]. As discussed in Sect. 2, the effective regime of l
should be determined by the total energy self-consistently
and can be much greater than N for large �. In this case, the
π± superfluid or ρ± superconductor is expected to emerge
at a smaller threshold of � compared to what we found here
in NJL model. One should notice that: Though ρ± supercon-
ductor is more favored for the chosen magnetic fields, there
is still a window of � for π± superfluid when B is relatively
weak. Eventually, as the B ‖ � is relevant to the circum-
stance in peripheral HICs, it will be interesting to explore
the possible signatures for the competitions among χSR, π±
superfluid and ρ± superconductor in experiments.
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