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Abstract The energy–momentum tensor (EMT) for a spin-
3/2 baryon is related to seven mechanical quantities. In this
work, we provide the general form of the gravitational form
factors (GFFs) for a spin-3/2 baryon by using the multipole
expansion and interesting relations between the EMT densi-
ties and the GFFs. To verify those general relations, we study
the nucleon and the � GFFs within the SU(2) Skyrme model
based on the large Nc limit.

1 Introduction

The energy–momentum tensor (EMT) of the nucleon con-
tains fundamental information on its three mechanical prop-
erties, i.e., the mass, spin, and D-term of the nucleon. These
mechanical properties are related to three gravitational form
factors (GFFs) at zero momentum transfer. While the mass
and spin of the nucleon are relatively well known, the D-term,
which provides essential information on how the nucleon
experiences the internal force by its constituents, is much
less known [1–3]. Thus, it is of great importance to inves-
tigate the D-term of the nucleon. The GFFs were at first
considered [4,5] as a merely academic subject, since it was
impossible to measure them directly. The reason is that the
graviton indeed weakly interacts with the nucleon. However,
the generalized parton distributions (GPDs) shed novel light
on the GFFs of the nucleon, since the GFFs are identified as
the second Mellin moments of the unpolarized GPDs [6–9],
which get accessible experimentally in hard exclusive reac-
tions. In fact, there are several ongoing and planned facili-
ties that are ideal to measure the GPDs, such as the newly
upgraded 12 GeV Continuous Electron Beam Accelerator
Facility (CEBAF) at the Jefferson Lab, the Electron-Ion Col-
lider (EIC) that will be constructed at Brookhaven National
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Laboratory (BNL) [10], and the planned Electron-Ion Col-
lider in China (EicC) [11]. The EIC experiments will produce
unprecedented experimental results on the GPDs [12].

Another interesting object is the � isobar, which is the
first excited baryon with spin-3/2. While the electromagnetic
properties of the � have been extensively investigated both
experimentally and theoretically, there are only a few theo-
retical works on the GFFs of the �. In Ref. [13], the relevant
structure for the GFFs of the � was sorted out. The general
properties of the pressure and shear forces for the � iso-
bar were derived in the large-Nc limit [14]. Compared to the
GFFs of the nucleon, the GFFs of the � isobar have a far
more complicated structure: ten different kinds of the GFFs
together with the EMT-nonconserving form factors. Thus, it
is rather difficult to grasp the physical meaning of the GFFs
of the � isobar. In this sense, the multipole expansion of the
EMT matrix elements of the � will reveal the physical impli-
cations of the � GFFs. The GFFs of the nucleon were first
extracted from the GPDs [15], by using the data on deeply
virtual Compton scattering (DVCS) of the nucleon. On the
other hand, it is rather difficult to measure experimentally
the GFFs of the � or to extract them from the corresponding
GPDs because of its short-lived nature. In the meantime, we
anticipate that lattice QCD will provide a clue to understand-
ing the GFFs of the �.

In the present work, we aim at how the EMT matrix ele-
ments of the � can be compactly expressed in terms of the
GFFs, using the multipole expansion. By doing that, we are
able to find interesting relations between the EMT densi-
ties and these GFFs. We want to emphasize that the relations
obtained in the present work are model-independent. We will
verify these general relations within the framework of the
SU(2) Skyrme model. The model is known to be one of the
simplest ones for describing the lowest-lying baryons based
on the large Nc expansion. In the limit of Nc → ∞ [16,17],
a baryon arises as a topological soliton with an effective
mesonic degrees of freedom. In addition, the model satis-
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fies the essential properties of QCD such as chiral symmetry
and its spontaneous breaking. The model describes very well
important properties of the nucleon in low-energy regimes.
Furthermore, the model has explained numerous observables
for the baryons [18,19] and has even described well general
properties of the nucleon GFFs. Thus, we will use the Skyrme
model to examine those of the � GFFs.

There are various works on the GFFs for a hadron with dif-
ferent spins. The parametrizations of the GFFs for a hadron
with various spin are discussed in Refs. [5,13,20–22]. The
GFFs of the spin-0 hadrons are investigated in the chiral
quark model [23,24], lattice QCD [25], the parameter fit-
ting from experimental data [26], and the Nambu–Jona-
Lasinio (NJL) model [27]. For the spin-1/2 hadrons, there are
results from the effective chiral theory [28], the chiral quark-
soliton model [29,30], the SU(2) Skyrme model [31,32],
the π−ρ−ω model [33,34], the bag model [35], the QCD
sum rule [36,37] and the lattice QCD [38,39]. The renor-
malization group properties of the nucleon’s twist-four GFF
c̄q,g(t)1, which plays a role in the nucleon’s transverse spin
sum rule, are studied in Ref. [40]. In the case of the spin-1
hadrons, the relations between the GPDs and the GFFs are
established in Refs. [20,21,41] and the GFFs of the vector
mesons are evaluated in Refs. [27,42,43]. For the higher spin
hadrons, the works on the parametrization of the stress tensor
are made in Refs. [14,44].

We sketch the present work as follows: In Sect. 2 we define
the hadronic matrix elements of the EMT as the GFFs and
reorganize the GFFs in terms of the multipole expansion.
We also define the EMT densities of a baryon with spin-3/2
in terms of the multipole expansion and present the rela-
tions between the GFFs and the EMT densities. In order to
verify the general requirements and relations proposed in
Sect. 2, the GFFs and the EMT multipole densities of the
� are obtained within the Skyrme model in Sect. 3 and the
numerical results are showed and discussed in Sect. 4. In the
final Sect. 5, we present a summary and conclusions.

2 Gravitational form factors of a spin-3/2 hadron

We use the covariant normalization 〈p′, σ ′|p, σ 〉 = 2p0(2π)3

δσ ′σ δ(3)( p′ − p) of one-particle states, and introduce kine-
matical variables Pμ = (pμ + p′μ)/2, �μ = p′μ − pμ and
�2 = t . For the GFFs of a spin-3/2 particle in QCD, the

1 c̄q,g(t) = 2MN FT
3,0(t) in the notation of Ref. [13] where MN is the

nucleon mass.

matrix elements of EMT current is given by [13]2

〈p′, σ ′|T̂μν
a (0)|p, σ 〉 = −uα′

(p′, σ ′)
[
PμPν

m

(
gα′αF

a
1,0(t)

−�α′�α

2m2 Fa
1,1(t)

)
+ (�μ�ν − gμν�2)

4m

(
gα′αF

a
2,0(t)

−�α′�α

2m2 Fa
2,1(t)

)

+mgμν

(
gα′αF

a
3,0(t) − �α′�α

2m2 Fa
3,1(t)

)

+ i

2

(Pμσνρ + Pνσμρ)�ρ

m

(
gα′αF

a
4,0(t)

−�α′�α

2m2 Fa
4,1(t)

)

− 1

m
(�μgν

α′�α + �νgμ

α′�α + �μgν
α�α′ + �νgμ

α �α′

−2gμν�α′�α − gμ

α′gν
α�2 − gν

α′gμ
α �2)Fa

5,0(t)

+m(gμ

α′gν
α + gν

α′gμ
α )Fa

6,0(t)

]
uα(p, σ ) (1)

where uα(p, σ ) is the Rarita–Schwinger spinor, and it satis-
fies the Dirac equation (/p − m)uα(p, σ ) = 0 and the sub-
sidiary conditions γαuα(p, σ ) = 0 and pαuα(p, σ ) = 0.
Here, σ(σ ′) is the initial (final) spin projections. The nor-
malization of the Rarita-Schwinger spinors is taken to be
uα′

σ ′(p)gα′αuα
σ (p) = −2mδσ ′σ . The index a runs from a

gluon to quark flavors. The quark and gluon form factors
Fa
i,k(i = 1, 2, 4, 5) are individually conserved, whereas

Fa
i,k(i = 3, 6) are not conserved. Note that we name the

GFFs of a baryon with spin-3/2 according to Ref. [13]
and reparametrize them to be analogous with those with
spin-1/2 and spin-1. The separate quark and gluon GFFs
depend on the renormalization scale μ, which is suppressed
for simplicity. Because of the EMT conservation, the non-
conservation terms Fa

i,k(i = 3, 6) have constraints, i.e.,∑
a F

a
i,k = 0 (i = 3, 6). The scale-invariant total GFFs are

obtained as Fi,k = ∑
a F

a
i,k (i = 1, 2, 4, 5).

2.1 Gravitational form factors in Breit frame

Before discussing the GFFs, we define the n-rank irreducible
tensors and the multipole operators. The n-rank irreducible
tensors in coordinate (or momentum) space are given by

Y i1i2...in
n (�r )

2 In order to be in line with the definition of the matrix ele-
ments of the EMT current for a spin-1/2 baryon, we reparametrized
the expressions given in Ref. [13] as (Fa

1,0, F
a
1,1, F

a
2,0, F

a
2,1,

Fa
3,0, F

a
3,1, F

a
4,0, F

a
4,1, F

a
5,0, F

a
6,0) = (FT

1,0, F
T
1,1, 4FT

2,0, 4FT
2,1, F

T
3,0,

FT
3,1,

1
2 F

T
4,0,

1
2 F

T
4,1,

1
2 F

T
5,0,

1
2 F

T
6,0). Note that there is a typo in Ref. [13],

and it should be corrected as gμν�α′�αFT
5,0 → 2gμν�α′�αFT

5,0.
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= (−1)n

(2n − 1)!!r
n+1∂ i1∂ i2 . . . ∂ in

1

r
,

Y i1i2...in
n (�p)

= (−1)n

(2n − 1)!! p
n+1∂ i1∂ i2 . . . ∂ in

1

p
. (2)

Thus, one gets the following expressions as

Y0(�r ) = 1, Y i
1(�r ) = r i

r
,

Y i j
2 (�r ) = r ir j

r2 − 1

3
δi j ,

Y i jk
3 (�r ) = r ir j r k

r3 − 1

5

(
rk

r
δi j + r i

r
δ jk + r j

r
δik

)
. (3)

For a hadron with spin-3/2, the quadrupole- and octupole-
spin operators Q̂i j (rank 2 tensor) and Ôi jk(rank 3 tensor)
are respectively defined in terms of the spin operator Ŝi as

Q̂i j = 1

2

(
Ŝi Ŝ j + Ŝ j Ŝi − 2

3
S(S + 1)δi j

)
,

Ôi jk = 1

6

(
Ŝi Ŝ j Ŝk + Ŝ j Ŝi Ŝk

+ Ŝk Ŝ j Ŝi + Ŝ j Ŝk Ŝi + Ŝi Ŝk Ŝ j + Ŝk Ŝi Ŝ j

− 6S(S + 1) − 2

5
(δi j Ŝk + δik Ŝ j + δk j Ŝi )

)
, (4)

with i, j, k = 1, 2, 3, and the operators are symmetrized and
traceless (Q̂ii = 0 and Ôii j = Ôi j i = Ô jii = 0). The spin
operators can be expressed in terms of the SU(2) Clebsch–
Gordan coefficients in the spherical basis as

Ŝa
σ ′σ = √

S(S + 1)CSσ ′
Sσ1a with (a = 0, ±1. σ, σ ′ = 0, . . . , ±S).

(5)

In the Breit frame the average of the baryon momenta and
the momentum transfer are respectively defined by Pμ =
(pμ + p′μ)/2 = (E, 0, 0, 0) and �μ = p′μ − pμ = (0,�)

with the initial (final) momentum p (p′). The momentum
squared is defined as �2 = −�2 = t = 4(m2 − E2) with
the baryon mass m. The explicit expressions of the Rarita-
Schwinger spinor and the polarization vector are given in
Appendix A. In this frame, the matrix elements of the EMT
current are expressed in terms of the gravitational multipole
form factors (GMFFs) as

〈p′, σ ′|T̂ 00
a (0)|p, σ 〉 = 2mE[Ea0 (t)δσ ′σ

+
(√−t

m

)2

Q̂kl
σ ′σY

kl
2 Ea2 (t)],

〈p′, σ ′|T̂ 0i
a (0)|p, σ 〉 = 2mE

[√−t

m
iεiklY l

1 Ŝ
k
σ ′σJ a

1 (t)

+
(√−t

m

)3

iεiklY lmn
3 Ôkmn

σ ′σ J a
3 (t)

]
,

〈p′, σ ′|T̂ i j
a (0)|p, σ 〉

= 2mE

[
1

4m2 (�i� j + δi j�2)Da
0 (t)δσ ′σ

+ 1

4m4 Q̂kl
σ ′σ (�i� j + δi j�2)�k�l Da

3 (t)

+ 1

2m2 (Q̂ik
σ ′σ � j�k

+ Q̂ jk
σ ′σ �i�k + Q̂i j

σ ′σ �2 − δi j Q̂kl
σ ′σ �k�l )Da

2 (t)

+ δσ ′σ δi j
(

−Fa
3,0(t) − 2

3
Fa

6,0(t)

+ t

6m2 Fa
3,0(t) + t

6m2 Fa
3,1(t) − t2

24m4 Fa
3,1(t)

)

+ δσ ′σ �i� j

(
− Fa

6,0(t)

6m2

)
+ (Q̂ik

σ ′σ � j�k + Q̂ jk
σ ′σ �i�k)

× Fa
6,0(t)

6m(m + E)
+ 2

3
Q̂i j

σ ′σ F
a
6,0(t)

+ δi j Q̂kl
σ ′σ �k�l

(
Fa

3,0(t)

6m2 + Fa
3,1(t)

6m2 − Fa
3,1(t)t

24m4

)

+Q̂kl
σ ′σ �k�l�i� j

Fa
6,0(t)

24m2(m + E)2

]
, (6)

with

Ea
0 (t) = Fa

1,0(t) + Fa
3,0(t)

+ t

6m2

[
− 5

2
Fa

1,0(t) − Fa
1,1(t)

− 3

2
Fa

2,0(t) + 4Fa
5,0(t) + 3Fa

4,0(t)

− Fa
3,0(t) − Fa

3,1(t) − Fa
6,0(t)

]

+ t2

12m4

[
1

2
Fa

1,0(t) + Fa
1,1(t)

+ 1

2
Fa

2,0(t) + 1

2
Fa

2,1(t) − 4Fa
5,0(t) − Fa

4,0(t) − Fa
4,1(t) + 1

2
Fa

3,1(t)

]

+ t3

48m6

[
− 1

2
Fa

1,1(t) − 1

2
Fa

2,1(t) + Fa
4,1(t)

]
,

Ea
2 (t) = − 1

6

[
Fa

1,0(t) + Fa
1,1(t) − 4Fa

5,0(t)

+ Fa
3,0(t) + Fa

3,1(t) + Fa
6,0

]

+ t

12m2

[
1

2
Fa

1,0(t) + Fa
1,1(t) + 1

2
Fa

2,0(t)

+ 1

2
Fa

2,1(t) − 4Fa
5,0(t) − Fa

4,0(t) − Fa
4,1(t) + 1

2
Fa

3,1(t)

]

+ t2

48m4

[
− 1

2
Fa

1,1(t) − 1

2
Fa

2,1(t) + Fa
4,1(t)

]
, (7)

J a
1 (t) = 1

3

[
Fa

4,0(t) − Fa
6,0(t)

]

− t

15m2

[
Fa

4,0(t) + Fa
4,1(t) + 5Fa

5,0(t)

]
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+ t2

60m4 F
a
4,1(t),

J a
3 (t) = − 1

6

[
Fa

4,0(t) + Fa
4,1(t)

]
+ t

24m2 F
a
4,1(t), (8)

Da
0 (t) = Fa

2,0(t) − 16

3
Fa

5,0(t)

− t

6m2

[
Fa

2,0(t) + Fa
2,1(t) − 4Fa

5,0(t)

]
+ t2

24m4 F
a
2,1(t),

Da
2 (t) = 4

3
Fa

5,0(t),

Da
3 (t) = 1

6

[
− Fa

2,0(t) − Fa
2,1(t) + 4Fa

5,0(t)

]
+ t

24m2 F
a
2,1(t). (9)

One can refer to Appendix A in detail. The sum of the quark
and gluon contributions to the GMFFs is also scale-invariant:

E0,2(t) =
∑
a

Ea
0,2(t),

J1,3(t) =
∑
a

J a
1,3(t),

D0,2,3(t) =
∑
a

Da
0,2,3(t). (10)

The EMT density Tμν(r, σ ′, σ ) is given by the Fourier trans-
form of the matrix element of the EMT current in momentum
space:

Tμν(r, σ ′, σ ) =
∑
a

Tμν
a (r, σ ′, σ )

=
∑
a

∫
d3�

2E(2π)3 e
−i�·r〈p′, σ ′|T̂μν

a (0)|p, σ 〉. (11)

2.2 Energy density

The temporal component of the EMT T 00(r, σ ′, σ ) is related
to the energy density. The mutipole expansion of the energy
density is defined by

T 00(r, σ ′, σ ) =
∑
a

∫
d3�

2E(2π)3 e
−i�·r〈p′, σ ′|T̂ 00

a (0)|p, σ 〉

= ε0(r)δσ ′σ + ε2(r)Q̂
i j
σ ′σY

i j
2 (�r ), (12)

where the monopole and quadrupole densities ε0,2(r) are
respectively given by

ε0(r) = mẼ0(r), ε2(r) = − 1

m
r
d

dr

1

r

d

dr
Ẽ2(r), (13)

with

Ẽ0,2(r) =
∫

d3�

(2π)3 e
−i�·rE0,2(t). (14)

At the same time, the energy multipole form factors E0,2(t)
can be expressed in terms of the energy densities ε0,2(r) in

coordinate space:

E0(t) = 1

m

∫
d3r j0(r

√−t)ε0(r),

E2(t) = m
∫

d3r
j2(r

√−t)

t
ε2(r). (15)

For a particle of arbitrary spin, the general tensor quantity is
introduced in Refs. [21,44] by

Mk1...kn
n (σ ′, σ )

=
∑
a

∫
d3r rnY k1...kn

n T 00
a (r, σ ′, σ ). (16)

The monopole moment corresponds to the mass of a baryon,
accordingly one arrives at the apparent relation

M0(σ
′, σ ) =

∑
a

∫
d3r Y0(�r )T

00
a (r, σ ′, σ )

=
∫

d3r ε0(r)δσ ′σ = mF1,0(0)δσ ′σ , (17)

which gives the normalization

F1,0(0) =
∑
a

Fa
1,0(0) = 1. (18)

The constraint F1,0(0) = 1 for the spin-3/2 baryon coin-
cides with that for the spin-1/2 and spin-1 hadrons. The
gravitational quadrupole density of a baryon describes how
the energy density is deformed from spherically symmetric
shape. This quantity does not appear in the spherically sym-
metric hadrons. It can be quantitatively estimated as

Qi j
σ ′σ = Mi j

2 (σ ′, σ )

=
∑
a

∫
d3r r2Y i j

2 T 00
a (r, σ ′, σ )

= 2

15
Q̂i j

σ ′σ

∫
d3r r2ε2(r)

= − 2

m
Q̂i j

σ ′σE2(0)

= 1

3m
[F1,0(0) + F1,1(t) − 4F5,0(0)]Q̂i j

σ ′σ

= 1

3m
[1 + F1,1(0) − 4F5,0(0)]Q̂i j

σ ′σ . (19)

Another interesting property is the mass radius of a baryon.
It can be derived by the r2-weighted energy density in the
Breit frame. The expression of the mass radius is found to be

〈r2
E 〉 =

∑
a

∫
d3r r2T 00

a (r)∑
a

∫
d3rT 00

a (r)
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= 1

m

∫
d3r r2ε0(r)

= 6E ′
0(0) = 6F ′

1,0(0) + 1

m2

[
− 5

2
F1,0(t) − F1,1(t)

− 3

2
F2,0(t) + 4F5,0(t) + 3F4,0(t)

]
t=0

. (20)

2.3 Angular momentum density

The spin density is given by

J i (r, σ ′, σ ) =
∑
a

J ia(r, σ
′, σ ) = εi jkr j

∑
a

T 0k
a (r, σ ′, σ )

= 2Ŝ j
σ ′σ

∫
d3�

(2π)3 e
−i�·r

×
[(

J1(t) + 2

3
t
dJ1(t)

dt

)
Y0δ

i j − t
dJ1(t)

dt
Y i j

2

]

+ 2

m2 Ô
jmn
σ ′σ

∫
d3�

(2π)3 e
−i�·r

[
t2 dJ3(t)

dt
Y imnj

4

−
(

2tJ3(t) + 4

7
t2 dJ3(t)

dt

)
δi j Y mn

2

]
. (21)

The angular momentum density is obtained from the 0k-
components of the EMT, which is decomposed into the 0-,
2- and 4-multipole components (see also Refs. [45,46]). The
sum of the angular momentum contributions from quark and
gluons to the spin-3/2 baryon is obtained by

J iσ ′σ =
∑
a

∫
d3r J ia(r, σ

′, σ ) = 2J1(0)Ŝiσ ′σ = 2

3
F4,0(0)Ŝiσ ′σ ,

(22)

which yields the spin operator of the baryon with the con-
straint F4,0(0) = 3/2.

Since our interest lies in the monopole angular momentum
density in this work, we separately define it as

J imono(r, σ
′, σ ) = 2Ŝ j

σ ′σ

∫
d3�

(2π)3 e
−i�·r

×
[(

J1(t) + 2

3
t
dJ1(t)

dt

)
Y0δ

i j
]

, (23)

accordingly the averaged angular momentum density is given
by

1

Tr[Ŝ2]
∑
σ ′,σ,i

Ŝiσσ ′ J imono(r, σ
′, σ )

= ρJ (r)/S, i.e, ρJ (r)

= −r
d

dr

∫
d3�

(2π)3 e
−�·rJ1(t), (24)

with spin S = 3/2. The angular momentum form factor can
be expressed in terms of the averaged angular momentum

density as

J1(t) =
∫

d3r
j1(r

√−t)

r
√−t

ρJ (r). (25)

2.4 Pressure and shear force densities

The pressure and shear force densities are related to the i j-
components of the static EMT. These densities are firstly
defined in Refs. [20,44] and newly parametrized in Refs. [14,
43] to conveniently express the strong forces in a hadron
acting on the radial area element. Following Refs. [14,43]
we can express the stress tensor in terms of the pressure and
shear forces densities by

T i j (r, σ ′, σ ) =
∑
a

∫
d3�

2E(2π)3 e
−i�·r〈p′, σ ′|T̂ i j

a (0)|p, σ 〉

= p0(r)δ
i jδσ ′σ + s0(r)Y

i j
2 δσ ′σ

+
(
p2(r) + 1

3
p3(r) − 1

9
s3(r)

)
Q̂i j

σ ′σ

+
(
s2(r) − 1

2
p3(r) + 1

6
s3(r)

)
2

[
Q̂ip

σ ′σY
pj

2

+Q̂ jp
σ ′σY

pi
2 − δi j Q̂ pq

σ ′σY
pq

2

]

+ Q̂ pq
σ ′σY

pq
2

[(
2

3
p3(r) + 1

9
s3(r)

)
δi j

+
(

1

2
p3(r) + 5

6
s3(r)

)
Y i j

2

]
. (26)

From the EMT conservation ∂i T i j (r, σ ′, σ ) = 0, the fol-
lowing equilibrium relations between the pressure and shear
force densities are derived:

2

3

dsn(r)

dr
+ 2

sn(r)

r
+ dpn(r)

dr
= 0, with n = 0, 2, 3. (27)

This differential equation guarantees the stability condition.
The functions p0(r) and s0(r) correspond to the pressure
and shear force densities appearing in the spherically sym-
metric hadrons. The functions p2(r) and p3(r) are named
the quadrupole pressure densities, and the s2(r) and s3(r)
are called the quadrupole shear force densities according to
Ref. [14]. These densities pn(r) and sn(r) are respectively
written as

pn(r) = 1

6m
∂2D̃n(r) = 1

6m

1

r2

d

dr
r2 d

dr
D̃n(r),

sn(r) = − 1

4m
r
d

dr

1

r

d

dr
D̃n(r), (28)
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with3

D̃0(r) =
∫

d3�

(2π)3 e
−i�·rD0(t),

D̃2(r) =
∫

d3�

(2π)3 e
−i�·rD2(t)

+ 1

m2

(
d

dr

d

dr
− 2

r

d

dr

)∫
d3�

(2π)3 e
−i�·rD3(t),

D̃3(r) = − 2

m2

(
d

dr

d

dr
− 3

r

d

dr

)∫
d3�

(2π)3 e
−i�·rD3(t).

(29)

Similarly, the form factors D0,2,3,(t) can be expressed in
terms of the pressure and shear force densities in coordinate
space:

D0(t) = 6m
∫

d3r
j0(r

√−t)

t
p0(r),

D2(t) = 2m
∫

d3r
j2(r

√−t)

t

(
2s2(r) − 1

2
p3(r) + 2

3
s3(r)

)
,

D3(t) = 4m3
∫

d3r
j4(r

√−t)

t2

(
1

2
p3(r) + 5

6
s3(r)

)
. (30)

The pressure densities pn(r) satisfying the relation given in
Eq. (28) comply with the von Laue condition

∫
d3r pn(r) = 1

6m

∫
d3r ∂2D̃n(r) = 0, with n = 0, 2, 3.

(31)

Note that the dimensionless constants (generalized D-terms)
are defined by [14]

Dn ≡
∫

d3r D̃n(r) = m
∫

d3r r2 pn(r)

= − 4

15
m

∫
d3r r2sn(r), with n = 0, 2, 3. (32)

The generalized D-terms D0,2,3 introduced in Ref. [14] are
related to the form factors D0,2,3(t) as follows:

D0 = D0(0),

D2 = D2(0) + 2

m2

∫ 0

−∞
dt D3(t),

D3 = − 5

m2

∫ 0

−∞
dt D3(t). (33)

Interestingly, the strong forces carried by constituents can be
interpreted as a certain combination of pressure and shear
force densities [1]. The spherical components of the strong

3 A typo in Ref. [43] is corrected in Eq. (29).

forces (dFr , dFθ and dFφ) acting on the radial area ele-
ment (dS = dSr êr + dSθ êθ + dSφ êφ) are expressed as
follows [14]:

dFr
dSr

= δσ ′σ

(
p0(r) + 2

3
s0(r)

)

+ Q̂rr
σ ′σ

(
p2(r) + 2

3
s2(r) + p3(r) + 2

3
s3(r)

)
,

dFθ

dSr
= Q̂θr

σ ′σ

(
p2(r) + 2

3
s2(r)

)
,

dFφ

dSr
= Q̂φr

σ ′σ

(
p2(r) + 2

3
s2(r)

)
. (34)

Here, as defined in Ref. [2], the mechanical radius can be
given by

〈r2
n 〉mech =

∫
d3r r2

[
pn(r) + 2

3 sn(r)
]

∫
d3r

[
pn(r) + 2

3 sn(r)
] . (35)

As for the unpolarized spin-3/2 hadron, since the normal
force acting on the radial area element (dFr/dSr ) is solely
due to p0(r)+ 2

3 s0(r), it should comply with the local stability
criterion given in Ref. [2] as

p0(r) + 2

3
s0(r) > 0. (36)

3 Gravitational form factors of the � in the Skyrme
model

The Skyrme Lagrangian density is given by

L = F2
π

16
trF

[
∂μU∂μU †

]
+ 1

32e2 trF
[
(∂μU )U †, (∂νU )U †

]2

+ m2
π F

2
π

8
trF [U − 1] , (37)

where U is the SU(2) chiral field, and e stands for a dimen-
sionless parameter and trF is trace over flavors. The Fπ and
themπ are the pion decay constant and the pion mass, respec-
tively.

In the large-Nc limit, we have the parameter scales Fπ =
O(N 1/2

c ), e = O(N−1/2
c ), mπ = O(N 0

c ), so as to have
L = O(Nc). In this limit, the chiral field is assumed to
be a static one. Here, the static chiral field is written as
U (r) = exp[r̂ iτ i P(r)], with r̂ i = r i/|r| and the isospin
Pauli matrices τ i , by adopting the hedgehog ansatz where
P(r) indicates a profile function with the boundary condi-
tions P(0) → π and P(∞) → 0.

The classical soliton mass is defined by Msol = − ∫
d3r L,

which is expressed with respect to the profile function and
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the model parameters by

Msol[P] = 4π

∫ ∞

0
dr r2

[
F2

π

8

(
2sin2P(r)

r2

+P ′(r)2
)

+ sin2P(r)

2e2r2

(
sin2P(r)

r2

+2P ′(r)2
)

+ m2
π F

2
π

4
(1 − cosP(r))

]
. (38)

The profile function is obtained by minimizing the classical
soliton mass and has an asymptotic behavior in the limiting
case r → ∞,

P(r) = 2R2
0

r2 (1 + mπr)e
−mπ r (large r), (39)

where the constant R0 is determined by the profile function
derived by minimizing the classical soliton mass and is given
in terms of the axial coupling constant in the chiral limit [31,
47].

In order to assign the quantum number to the soliton, the
time-dependent chiral field should be considered as U (r) →
A(t)U (r)A†(t), with A(t) = a0 + a · τ . Here, we define the
angular velocity �(t) = Ȧ†A ( Ȧ ≡ d A/dt) with

�i = − i

2
trF [ Ȧ†Aτ i ]. (40)

Having quantized the collective coordinates (�i → Ĵ i/2I ),
one obtains the collective Hamiltonian [48]

H = Msol + Ĵ
2

2I
, (41)

with the moment of inertia

I = 2π

3

∫
dr r2sinP(r)

[
F2

π + 4P ′(r)2

e2 + 4sin2P(r)

e2r2

]
.

(42)

The collective Hamiltonian acts on the collective baryon
wave functions given in Ref. [48]. In principle Fπ and e
are model parameters. However, the parameters are fixed to
reproduce the following observables [31]

MN + M� ≡ 2Msol = 2171 MeV,

M� − MN ≡ 3

2I
= 293 MeV, (43)

and the model parameters are consequently found to be

mπ = 138 MeV, Fπ = 131.3 MeV, e = 4.628. (44)

From the above parameters, the classical soliton mass and
the moment of inertia are determined by

Msol = 1085 MeV, I = 1.01 fm. (45)

In this work, we strictly follow the set of parameters used in
Ref. [31] to keep consistency.

The canonical EMT in the Skyrme model can be derived
by

Tμν = ∂L
∂(∂μφa)

∂νφa − gμνL, (46)

where φa is a time-dependent mesonic field with U (t, r) =
φ0 + iτ · φ. The degree of freedom of the mesonic field is
reduced to three (a = 1, 2, 3) by the constraint φ2

0 +φ2 = 1.
With the constraint, the canonical EMT in the Skyrme model
is found to be symmetric. The respective components of the
EMT densities is expressed as

T 00(r, σ ′, σ ) = δσ ′σ

[
F2

π

8

(
2sin2P(r)

r2 + P ′(r)2
)

+ sin2P(r)

2e2r2

(
sin2P(r)

r2 + 2P ′(r)2
)

+m2
π F

2
π

4
(1 − cosP(r))

]
,

T i j (r, σ ′, σ ) = r̂ i r̂ j δσ ′σ

[
F2

π

8

(
2P ′(r)2 − 2sin2P(r)

r2

)

+ sin2P(r)

e2r2

(
P ′(r)2 − sin2P(r)

r2

)]

+ δi j δσ ′σ

[
− F2

π

8
P ′(r)2 + sin4P(r)

2e2r4

−m2
π F

2
π

4
(1 − cosP(r))

]
,

T 0k(r, σ ′, σ ) = ( Ĵ × r̂)kσ ′σ
sin2P(r)

4I r

×
[
F2

π + 4sin2P(r)

e2r2 + 4P ′(r)2

e2

]
. (47)

The rotational corrections to the EMT densities are obtained
by

δrotT
00(r, σ ′, σ ) =

[
Ĵ

2 − ( Ĵ · r̂)2
]
σ ′σ

sin2P(r)

8I 2

×
[
F2

π + 4P ′(r)2

e2 + 4sin2P(r)

e2r2

]
,

δrotT
0k(r, σ ′, σ ) = O(1/N 2

c ),

δrotT
i j (r, σ ′, σ ) = r̂ i r̂ j

[
Ĵ

2 − ( Ĵ · r̂)2
]
σ ′σ

sin2P(r)

8I 2

[
−8P ′(r)2

e2

+ 8sin2P(r)

e2r2

]
+ δi j

[
Ĵ

2 − ( Ĵ · r̂)2
]
σ ′σ

sin2P(r)

8I 2

[
F2

π

+4P ′(r)2

e2 + 4sin2P(r)

e2r2

]

−
[
2 Ĵ

2
r̂ i r̂ j − r̂ i r̂ l { Ĵ l , Ĵ j } − r̂ j r̂ l { Ĵ l , Ĵ i }
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+{ Ĵ i , Ĵ j }
]
σ ′σ

sin4P(r)

2I 2e2r2 . (48)

The rotational corrections to the 0k-components of the EMT
densities δrotT 0k(r, σ ′, σ ) are found to be null in the current
Skyrme Lagrangian. The corrections appear in the higher-
order derivative terms that generate �3 ∼ O(1/N 3

c ). How-
ever, the corrections are strongly suppressed in the large-Nc

expansion. Thus, we can safely neglect the rotational correc-
tions to the 0k-component of the EMT densities.

As given in Eqs. (12), (24) and (26), the multipole densities
can be extracted from the EMT densities in Eq. (47):

ε0(r) =
[
F2

π

8

(
2sin2P(r)

r2 + P ′(r)2
)

+ sin2P(r)

2e2r2

×
(

sin2P(r)

r2 + 2P ′(r)2
)

+ m2
π F

2
π

4
(1 − cosP(r))

]
,

ρJ (r) = sin2P(r)

4I

[
F2

π + 4sin2P(r)

e2r2 + 4P ′(r)2

e2

]
,

p0(r) = − F2
π

24

(
2sin2P(r)

r2 + P ′(r)2
)

+ sin2P(r)

6e2r2

(
sin2P(r)

r2 + 2P ′(r)2
)

− m2
π F

2
π

4
(1 − cosP(r)) ,

s0(r) =
(
F2

π

4
+ sin2P(r)

e2r2

)(
P ′(r)2 − sin2P(r)

r2

)
. (49)

In the same manner, the rotational corrections are derived
from Eq. (48):

δrotε
(J )
0 (r) = J (J + 1)

sin2P(r)

12I 2

×
[
F2

π + 4P ′(r)2

e2 + 4sin2P(r)

e2r2

]
,

δrotρ
(J )
J (r) = O(1/N 2

c ),

δrot p
(J )
0 (r) = J (J + 1)

sin2P(r)

12I 2

[
F2

π + 4P ′(r)2

3e2 + 4sin2P(r)

3e2r2

]
,

δrots
(J )
0 (r) = J (J + 1)

sin2P(r)

12I 2

[
−8P ′(r)2

e2 + 4sin2P(r)

e2r2

]
.

(50)

Interestingly, in the chiral soliton picture the rotational cor-
rections to the EMT densities in Eq. (50) are related to the
quadrupole densities, which was firstly found in Ref. [14].
The quadrupole energy density ε2(r) is found to be

δrotε
(J )
0 (r) = −2

3
J (J + 1)ε2(r). (51)

In other words, the quadrupole energy density ε2(r) is related
to the energy densities of the nucleon εN0 (r) and the � ε�

0 (r)

ε2(r) = −1

2

[
ε�

0 (r) − εN0 (r)
]
, (52)

with

ε
N ,�
0 (r) ≡

[
ε0(r) + δrotε

( 1
2 , 3

2 )

0 (r)

]
. (53)

Also, the usual sizes of the quadrupole density ε2(r) is esti-
mated by

∫
d3r [ε�

0 (r) − εN0 (r)] =
∫

d3r [δrotε
( 3

2 )

0 (r)

− δrotε
( 1

2 )

0 (r)] = −2
∫

d3r ε2(r)

= 3

2I
∼ O(1/Nc). (54)

As for the quadrupole pressure and shear force densities,
the remarkable general relation in a chiral soliton picture is
derived in Ref. [14]

p2(r) + 2

3
s2(r) = 0. (55)

By comparing Eq. (26) with Eq. (48) we reproduce this rela-
tion in the Skyrme model. The above relation (55), together
with the EMT conservation (27), implies the null results of
the quadrupole densities s2(r) and p2(r), and the similar rela-
tions to Eq. (51) for the pressure and shear force densities are
obtained [14]:

p2(r) = s2(r) = 0, δrot p
(J )
0 (r) = −2

3
J (J + 1)p3(r),

δrots
(J )
0 (r) = −2

3
J (J + 1)s3(r). (56)

Therefore, we arrive at the similar expressions as Eq. (52)

p3(r) = −1

2

[
p�

0 (r) − pN0 (r)
]
,

s3(r) = −1

2

[
s�

0 (r) − sN0 (r)
]
, (57)

with

pN ,�
0 (r) ≡

[
p0(r) + δrot p

( 1
2 , 3

2 )

0 (r)

]
,

sN ,�
0 (r) ≡

[
s0(r) + δrots

( 1
2 , 3

2 )

0 (r)

]
. (58)

Here, one has to bear in mind that due to the EMT densities
with the included rotational corrections the pressure pn(r)
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and the shear force sn(r) densities do not uniquely exist and
should be reasonably determined. Let us first recall that the
leading-order (LO) result of p0(r) satisfies the von Laue con-
dition that is equivalent to the equation of motion [31]. How-
ever, once one considers the next-to-leading-order (NLO)
result of p0(r), it breaks the von Laue condition. Thus, one
might introduce the “variation after quantization” method-
minimizing the baryon mass after quantizing the soliton – as
a prescription. However, this method also has a drawback:
the chiral symmetry in the large-r region is not satisfied [47].
To preserve the chiral symmetry and satisfy the von Laue
condition, we first adopt the “quantization after variation”
method-quantizing the soliton after minimizing the soliton
mass – and treat the rotational corrections to the EMT densi-
ties as a small perturbation. Of course, the von Laue condition
is broken. Thus, instead of directly using the model result of
p0(r), we solve the equilibrium equation given in Eq. (27)
with the approximated shear force density s0(r) and recon-
struct the pressure p0(r)|reconst, which then automatically
complies with the stability condition [47]. We also derive the
reconstructed quadrupole pressure p3(r)|reconst in the same
manner.

Before discussing the GFFs, it is important to discuss the
large distance properties of the EMT densities. The large
distance behaviors of the EMT densities for the spherically
symmetric baryon were investigated and presented within the
Skyrme model in Refs. [31,47]. For completeness, we present
the large distance properties of the quadrupole densities in
the chiral limit as

ε2(r) = − F2
π

2I 2

R4
0

r4 · · · ,

p3(r) = − F2
π

2I 2

R4
0

r4 · · · ,

s3(r) = 56

I 2e2

R8
0

r10 · · · ,

p3(r)

∣∣∣∣
reconst

= −392

15

1

I 2e2

R8
0

r10 · · · . (59)

The · · · indicates the contributions strongly suppressed in
the large-r region. Interestingly, the quadrupole densities
ε2(r) and p3(r) are weakly suppressed in the large distance,
which have the analogous behavior with the angular momen-
tum density ρJ (r) ∝ 1

r4 . Keep in mind that in order to
respect the chiral physics and the stability condition, we dis-
card the result of p3(r) and adopt the newly reconstructed
p3(r)|reconst by solving the differential equation (27). As a
result, the discrepancy between p3(r)|reconst and p3(r) arises
from the fulfillment of both the chiral physics and the sta-
bility condition and is inevitable. For finite pion mass, the
densities are exponentially suppressed.

Since this model is based on the large-Nc expansion, it is
necessary to clarify the large-Nc behaviors of the GMFFs of
the �. The large-Nc expansion is valid in the region |t | �
M2

�. In the limit of Nc → ∞, we have the following large-Nc

behaviors

MN ,� ∼ O(Nc), I ∼ O(1/Nc), t ∼ O(N 0
c ), (60)

and the scales of the GMFFs are found to be

E0(t) ∼ O(N 0
c ), E2(t) ∼ O(N 0

c ), J0(t) ∼ O(N 0
c ), J3(t) ∼ O(N 0

c ),

D0(t) ∼ O(N 2
c ), D2(t) ∼ O(N 0

c ), D3(t) ∼ O(N 2
c ), (61)

or according to Ref. [14] the generalized D-terms have the
scales as

D0 ∼ O(N 2
c ), D2 ∼ O(N 0

c ), D3 ∼ O(N 0
c ). (62)

It is found that the GMFFs have the orders of ∼ N 0
c except

for the form factors D0(t) and D3(t), which have the orders
of ∼ N 2

c , whereas the generalized D-terms D0,D2 and D3

have the orders of ∼ N 2
c , ∼ N 0

c and ∼ N 0
c , respectively.

4 Numerical results and discussion

In this section, we present the numerical results and dis-
cuss them. We first examine the monopole and quadrupole
energy densities arising from the temporal component of the
EMT. Note that the LO monopole energy densities ε0(r) of
the nucleon and the � are degenerate. To lift the degener-
acy, we need to take into account the rotational corrections
�2 ∼ O(1/N 2

c ). Thus, the integrations of the NLO monopole
energy densities ε

N ,�
0 (r) over space yield the masses of the

nucleon (MN = 1159 MeV) and � (M� = 1452 MeV).
While the Skyrme model produces rather large values of the
baryon masses, they satisfy the constraint given in Eq. (18),

1

Msol

∫
d3r ε0(r)

∣∣∣∣
LO

= 1

MN ,�

∫
d3r ε

N ,�
0 (r)

∣∣∣∣
NLO,S= 1

2 , 3
2

= F1,0(0) = 1.

(63)

In the left panel of Fig. 1, we draw the numerical results on
the monopole energy densities of the classical soliton (LO),
the nucleon (NLO) and the � (NLO) as functions of radius r .
The values of the three monopole energy densities at r = 0
are all found to be ε0(0) = ε

N ,�
0 (0) = 2.27 GeV · fm−3. The

reason is that the value of δrotε
(J )
0 , which is proportional to the

quadrupole energy density ε2(r) depicted in the right panel of
Fig. 1, becomes zero at r = 0. The left panel of Fig. 1 exhibits
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Fig. 1 The left panel presents the results for the monopole energy den-
sities of the classical soliton (LO), the nucleon (NLO) and the � (NLO)
as functions of radius r . The right panel depicts the quadrupole energy

density of the � as a function of radius r . The dashed, dotted and solid
curves draw the classical soliton, the nucleon and the �, respectively

a slightly broader shape of the monopole energy density for
the � in comparison with those of the nucleon and classical
soliton. As explained previously, the rotational corrections to
the monopole energy density are of orderO(1/N 2

c ) and hence
are suppressed. The effects of the rotational corrections on
the monopole energy densities can be quantitatively observed
by calculating the mass radii given in Eq. (20),

〈r2
E 〉 = 0.54 fm2 (LO),

〈r2
E 〉 = 0.57 fm2 (NLO, Nucleon),

〈r2
E 〉 = 0.64 fm2 (NLO, �). (64)

As given in Eq. (64), the value of the mass radius of the �

is larger than those of the classical soliton and nucleon. It
reflects the fact that the monopole energy density of the �

has a broader shape in comparison with those of the classi-
cal soliton and nucleon. In the case of the finite pion mass,
the NLO mass radii of the nucleon and the � are found to
be finite, since the energy densities are exponentially sup-
pressed in the large distance. However, in the chiral limit,
those mass radii diverge because the rotational corrections to
the energy densities are proportional to 1/r4 in the large-r ,
i.e., 〈r2

E 〉 ∝ ∫ ∞
0 dr r4ε

N ,�
0 (r) as given in Eqs. (56) and (59),

which is similar to the isovector charge radius of the nucleon
in Ref. [48]. In the right panel of Fig. 1, the numerical result
for the quadrupole energy density ε2(r) of the � is drawn as a
function of radius r . The quantity ε2(r) provides information
on how the energy density is deformed from the spherically
symmetric shape. It has a peak at around r = 0.4 fm with
a negative sign and its strength is very small compared with
ε0(r). By integrating ε2(r) over r , we can estimate the typical
size of ε2(r) as

∫
d3r ε2(r) = −1

2

∫
d3r [ε�

0 (r) − εN0 (r)] = −147 MeV.

(65)

Fig. 2 The angular momentum densities of the nucleon and the � as
functions of r normalized by corresponding baryon spin S

We confirm the relation numerically, first obtained in the
large Nc limit [14]. The value of the integration of ε2(r)
over r is approximately 10% ∼ O(1/N 2

c ) of that of ε0(r).
Another interesting property is the mass quadrupole moment
given in Eq. (19). Its value exhibits how the energy density
is deformed from the spherically symmetric shape quantita-
tively and is found to be

Qi j
σ ′σ = 2

15
Qi j

σ ′σ

∫
d3r r2ε2(r)

= −0.0181 Qi j
σ ′σ GeV · fm2. (66)

In the chiral limit, the mass quadrupole moment diverges by
the same reason as the NLO mass radius, i.e, ε2(r) ∝ 1

r4 .
Figure 2 shows the result for the averaged angular momen-

tum density ρJ (r) normalized by the corresponding baryon
spin S. As shown in Eqs. (21) and (24), ρJ (r) is related to the
0k-components of the EMT. The integration of ρJ (r) over r
yields the constraints on the form factors J1(0) and F4,0(0)
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as

1

S

∫
d3r ρJ (r) = 2J1(0) = 2

3
F4,0(0) = 1. (67)

We obtain the numerical results for the mean square radius
〈r2

J 〉 of the nucleon and the � as

〈r2
J 〉N ,� =

∫
d3r r2ρJ (r)∫
d3r ρJ (r)

= 0.92 fm2. (68)

The results 〈r2
J 〉 for the nucleon and the � are degener-

ate. Since in Eq. (50) higher-order corrections to the EMT
densities δrotT 0k(r, σ ′, σ ) are absent, the averaged angular
momentum density of the � differs from that of the nucleon
by factor three, and its mean square radius of the � is the
same as that of the nucleon.4 As mentioned in the previous
section, the higher-order corrections to the averaged angular
momentum δrotρ

(J )
J (r) arise from the higher derivative terms

that generate �3 ∼ O(1/N 3
c ). Since there are no such terms

in the present Skyrme Lagrangian, the corresponding correc-
tions δrotρ

(J )
J (r) do not appear. Viewed in the argument of the

large-Nc expansion, the corrections δrotρ
(J )
J (r) are strongly

suppressed and must be very tiny.
The left panel of Fig. 3 shows the results of the pressure

densities for the classical soliton (LO), the nucleon (NLO),
and the � (NLO) as functions of radius r . The LO pres-
sure naturally complies with the von Laue condition that is
equivalent to the equation of motion. However, as discussed
in the previous section the NLO pressures do not satisfy the
stability condition. Thus, we adopt a strategy that preserves
the chiral symmetry and satisfies the stability condition. We
first take the variation of the soliton mass, and then quantize
the soliton. By treating the rotational corrections as a small
perturbation, we then obtain the approximated shear force
density s0(r). With using s0(r), we reconstruct the pressure
p0(r)|reconst from Eq. (27), so that the pressure density meets
the stability condition. Thus, the LO and NLO pressures in
Fig. 3 satisfy the stability condition. In the meantime, satis-
fying the stability condition implies that the pressure density
has at least one nodal point (r0) where the pressure density
vanishes. For the inner part of r0 (p0 > 0) repulsive force
dominates, whereas for the outer part of r0 (p0 < 0) attrac-
tive force governs. Thus, we obtain the nodal points r0 for
the classical soliton, nucleon and � numerically as follows:

r0 = 0.64 fm (LO),

r0 = 0.65 fm (NLO, Nucleon),

r0 = 0.83 fm (NLO, �). (69)

4 Note that in the chiral limit the averaged angular momentum density
ρJ (r) decrease as r−4 in large distance, so the radius diverges.

While the value of r0 for the nucleon and the classical soli-
ton are comparable, that for the � is found to be much larger
than the results for the nucleon and the classical soliton. It
indicates that the � is mechanically spreading more widely
compared with them. The right panel of Fig. 3 illustrates the
results of the approximated shear force densities for the �,
the nucleon and the classical soliton. To comply with the sta-
bility condition the D-term D0(0) should be negative, which
means that the integral (weighted by r2) of the shear force
densities over all values of r should be positive. (see Eq. (32)).
Indeed, the shear force densities for them are always positive.
While the s0(r) for the � has a wide-spreading shape in com-
parison with those for the classical soliton and nucleon, the
magnitude of s0(r) for the � is considerably small compared
with those for the others.

Figure 4 shows the result of the quadrupole pressure
(shear force) density for the �. The quadrupole pres-
sure p3(r)|reconst is reconstructed, as the NLO pressures
pN ,�

0 (r)|reconst were derived from Eq. (27). Thus, p3(r)|reconst

also complies with the stability condition given in Eq. (31),
and has a nodal point located at r0 = 0.56 fm. The shapes of
p3(r)|reconst and s3(r) are similar to those of p0(r) and s0(r),
respectively.

The left panel of Fig. 5 presents the results of the monopole
normal force components p0(r)|reconst + 2

3 s0(r) acting on the
radial area element for the classical soliton, the nucleon and
the unpolarized �. When it comes to a spherically symmet-
ric baryon, the monopole normal force can be directly related
to the local stability condition (36) stating that the force is
always directed outwards. As for the polarized �, the con-
tributions of the quadrupole densities to the normal force
come into play. The result of the quadrupole normal force
p3(r)|reconst + 2

3 s3(r) is shown in the right panel of Fig. 5,
except for that of the nullified densities s2(r) and p2(r). It is
found that the monopole and quadrupole normal forces are
positive over the whole region of r . For the large distance in
the chiral limit, the monopole normal force keeps the positiv-
ity, which means that the local stability condition is satisfied.
Note that the quadrupole normal force has a positive sign

0 < pN ,�
0 (r)

∣∣∣∣
reconst

+ 2

3
sN ,�

0 (r) = F2
π

R4
0

r6 · · · ,

0 < p3(r)

∣∣∣∣
reconst

+ 2

3
s3(r) = 56

5

1

I 2e2

R8
0

r10 · · · . (70)

However, we do not know how the quadrupole normal force
is related to the local stability conditions so far. Another
interesting quantity is the mechanical radius. As defined in
Ref. [2], the mechanical radius is obtained by

〈r2
0 〉mech = 0.61 fm2 (LO),

〈r2
0 〉mech = 0.63 fm2 (NLO, Nucleon),
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Fig. 3 The left (right) panel depicts the results for the pressures (shear
forces) of the classical soliton, the nucleon, and the � as functions of
radius r . The dashed, dotted and solid curves draw the classical soliton,

the nucleon, and the �, respectively. Note that in the case of results of
the NLO pressures they are reconstructed from Eq. (27) by using the
approximated shear forces to comply with the von Laue condition

Fig. 4 The left (right) panel depicts the results for the quadrupole pressures (shear forces) of the � as a function of radius r . The quadrupole
pressure density p3(r) is reconstructed from Eq. (27) by using the approximated quadrupole shear force density s3(r) in order to comply with the
von Laue condition

Fig. 5 The left panel depicts the results for the monopole normal forces
p0(r)|reconst + 2

3 s0(r), given in Eq. (34), acting on the radial area ele-
ment, and simultaneously shows local stability condition in Eq. (36) for
the classical soliton, nucleon and unpolarized �. The right panel shows

the result for the quadrupole normal force p3(r)|reconst + 2
3 s3(r). The

NLO and quadrupole pressure densities are reconstructed from Eq. (27)
by using the approximated shear force densities s0(r) and s3(r) in order
to comply with the von Laue condition
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〈r2
0 〉mech = 0.85 fm2 (NLO, �). (71)

Similar to Eqs. (64) and (69) the value of 〈r2
0 〉mech for the

� is larger than those for the classical soliton and nucleon,
which verifies that indeed � is mechanically spreading more
widely compared with those for the classical soliton and the
nucleon. Furthermore, we define the quadrupole mechanical
radius 〈r2

3 〉mech in Eq. (35), and its numerical value is found
to be

〈r2
3 〉mech = 0.33 fm2. (72)

The quadrupole normal force is very compact in comparison
with monopole one.

Finally, we discuss the GFFs and GMFFs. As shown in
Sect. 2, the GMFFs are expressed in terms of the GFFs
and related the EMT densities as shown in Eqs. (15), (25)
and (30). In the Skyrme model, the energy E0(t) and angu-
lar momentum J1(t) form factors satisfy the constraints
E0(0) = F1,0(0) = 1 and J1(0) = 1

3 F4,0(0) = 1
2 . Besides

the octupole angular momentum form factor J3(t) is assume
to be zero, i.e., J3(0) = − 1

6 [F4,0(0) + F4,1(0)] = 0,
because the corresponding density is suppressed in the large-
Nc expansion. As a result, we get the relation F4,1(0) =
−F4,0(0) = −3/2. There is no additional constraint on
E2(t), D0(t), D2(t) and D3(t). Therefore, we determine the
moments of the GMFFs from Eqs. (15), (25) and (30) as 5

E2(0) = −M�

15

∫
d3r r2

ε2(r) = −1

6
[F1,0(0) + F1,1(0) − 4F5,0(0)] = 0.34,

D0(0) = M�

∫
d3r r2 p�

0 (r)

= − 4

15
M�

∫
d3r r2s�

0 (r)

= F2,0(0) − 16

3
F5,0(0) = −3.53 < 0,

D2(0) = 2

5
M�

∫
d3r r2

p3(r) = − 8

75
M�

∫
d3r r2

s3(r) = 4

3
F5,0(0) = −0.20,

D3(0) = − 1

140
M3

�

∫
d3r r4 p3(r)

= 2

735
M3

�

∫
d3r r4

5 By assuming that the pressure pn(r) and shear force sn(r) densi-
ties vanish at large-r faster than any power of r , one can arrive at
the general relation between them as follows [29]:

∫ ∞
0 dr r N sn(r) =

− 3(N+1)
2(N−2)

∫ ∞
0 dr r N pn(r) for N > −1, which arise from the differential

equation (27).

s3(r) = 1

6
[−F2,0(0) − F2,1(0) + 4F5,0(0)] = 0.24. (73)

The energy quadrupole form factor is obtained as E2(0) =
0.34, and it is related to the mass quadrupole moment given
in Eq.(19). The value of the D-term6 D0(0) of the � is found
to be −3.53. The quadrupole form factors D2(0) and D3(0)

turn out to be −0.20 and 0.24, respectively. Those quadrupole
form factors are related to the generalized D-terms given in
Eq. (33) and determined as

D�
0 = −3.53, DN

0 = −3.63, D2 = 0, D3 = −0.50.

(74)

The generalized D-terms of the present work are comparable
with those of Refs. [14,47]. The numerical results for the �

GMFFs and GFFs as functions of t are shown in Figs. 6 and 7,
respectively. We restrict ourselves in the range of 0 < (−t) <

1 GeV2 because of the validity of the large-Nc expansion,
i.e., |t | � M2

�. We find that typical sizes of the quadrupole
form factors E2(t) D2(t) and D3(t) are relatively small in
comparison with those of the monopole form factors E0(t)
and D0(t).

5 Summary and conclusions

In the present work, we aimed at providing the general form
of the GFFs for a spin-3/2 baryon in terms of the multi-
pole expansion and finding interesting relations between the
EMT densities and these GFFs. We first defined the matrix
elements of the EMT current given in Ref. [13] in terms of the
GFFs, and then we expressed these GFFs by using the mul-
tipole expansion and related them with the EMT densities.
The temporal component of the EMT density includes infor-
mation on the mass m, its radius 〈r2

E 〉 and the gravitational

quadrupole momentQi j
σ ′σ . The explicit relations between the

multipole mass form factors E0,2(t) and the multipole energy
densities ε0,2(r) were provided. The spin density was related
to the dipole and octupole spin form factors J1,3(t). The
integration of the spin density over r yielded the constraint,
which is analogous to a spin-1/2 baryon, for the dipole spin
form factor J1(t). The stress tensor, parametrized in terms
of the pressure pn(r) and shear force sn(r) densities (for
n = 0, 2, 3), was related to the form factors Dn(t). Inter-
estingly, those densities should comply with the equilibrium
equation (27) to have the conserved EMT, which means that
the respective pressures pn(r) have their own von Laue con-
ditions and the corresponding generalized D-terms. Thus,
we found a connection between the generalized D-terms Dn

6 The discrepancy of D-term between this work and Refs. [14,47] arises
because of the different masses. They have used the LO mass, whereas
we take the NLO masses to keep a consistency in this work.
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Fig. 6 Gravitational multipole form factors of the � as functions of squared momentum transfer t

and the form factors Dn(0). In addition, we obtained the
expressions for the strong forces in terms of pn(r) and sn(r)
inside a baryon and defined the generalized mechanical radii
〈r2
n 〉mech.
To examine the general relations proposed in Sect. 2, we

used the SU(2) Skyrme model based on the large-Nc expan-
sion. Since this model satisfies chiral symmetry and its spon-
taneous breaking, and described well the general properties
of the nucleon GFFs, the model is suitable for investigating
the GFFs of the �. We first derived all the expressions for
the EMT densities up to �2 ∼ O(N−2

c ) and reproduced the
large-Nc relations proposed in Ref. [14] within the Skyrme
model. One of the remarkable relations was the null results of
p2(r) and s2(r), which makes D2 vanishes. We also studied
the Nc behaviors of the GMFFs and the generalized D-terms.

In the Skyrme model, while the masses of the nucleon
and the � were overestimated, they satisfied the constraint
E0(0) = F1,0(0) = 1. We found that the energy density of the
� is spreading more widely in comparison with that of the
nucleon. We obtained the mass quadrupole moment for the
� as Qi j

σ ′σ = −0.0181Qi j
σ ′σ GeV · fm2 that is related to the

mass quadrupole form factor E2(0) = 0.34. For the angular
momentum density normalized by the corresponding baryon
spin, we got the degenerate results on those for the nucleon
and the �. The angular momentum form factor for the � sat-
isfied the constraint J1(0) = F4,0(0)/3 = 1/2. Moreover,
the null result of the octupole spin form factor J3(t) = 0
gave the additional constraint F4,1(0) = −F4,0(0) = −3/2.
When treating the pressure and shear force densities with
included rotational corrections, we reconstructed the pres-
sure densities pn(r) from the approximated shear force den-
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Fig. 7 Gravitational form factors of the � as a function of squared momentum transfer t

sities sn(r) through the equilibrium equation to comply with
the von Laue condition. Utilizing this strategy, we under-
stood that the � has mechanically wide-spreading structure
compared with the nucleon and obtained the generalized D-
terms for the � as D0 = −3.53, D2 = 0 and D3 = −0.50.

We predicted t dependence on the GFFs and the GMFFs for
the � in the range of 0 < (−t) < 1 GeV2. We found that
the typical sizes of the quadrupole form factors E2(t), D2(t)
and D3(t) are relatively small in comparison with those of
the monopole form factors E0(t) and D0(t).
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As suggested in Ref. [14] the lattice measurements of the
� GFFs can be used to check whether �-baryon is a rotating
soliton. Here, we provided the first numerical estimates of
corresponding GFFs in the soliton picture using the Skyrme
model. We expect that the results of the lattice QCD or the
theoretical model will soon come out.
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Appendix A: Breit frame formulae

In the Breit frame the initial momentum p and final momen-
tum p′ have the relations Pμ = (pμ + p′μ)/2 = (E, 0, 0, 0)

and �μ = p′μ − pμ = (0,�). The momentum squared is
defined as �2 = −�2 = t = 4(m2 − E2). Definition of the
Rarita-Schwinger spinor is given by

uμ =
∑

C
3
2 σ

1λ 1
2 s
us(p)ε

μ
λ ,

with us(p) = √
m + E

(
φs

σ · p
m+E φs

)
, (A1)

with the two component Dirac spinor φs . The spin-1 vector
ε
μ
λ is defined by

ε
μ
λ (p) =

(
−� · ε̂λ

2m
, ε̂λ + � · ε̂λ

4m(m + E)
�

)
,

ε
μ

λ′(p′) =
(

� · ε̂λ′

2m
, ε̂λ′ + � · ε̂λ′

4m(m + E)
�

)
, (A2)

with

ε̂+1 =
√

1

2
(−1,−i, 0), ε̂0 =

√
1

2
(0, 0, 1),

ε̂−1 =
√

1

2
(1,−i, 0). (A3)

There are useful relations for Dirac field:

us′(p
′)γ 0us(p) = 2mδs′s ,

us′(p
′)us(p) = 2Eδs′s ,

us′(p
′) i

2
(P0σ 0ρ�ρ + P0σ 0ρ�ρ)us(p) = �2Eδs′s ,

us′(p
′) i

2
(Piσ 0ρ�ρ + P0σ iρ�ρ)us(p) = 2imEεi jk Ŝ

( 1
2 ) j

s′s �k ,

us′(p
′) i

2
(Piσ jρ�ρ + P jσ iρ�ρ)us(p) = 0. (A4)

For vector field:

(ε̂
∗
λ′ · �)(ε̂λ · �) = − t

3
δλ′λ − Q̂(1)kl

λ′λ �k�l ,

ε∗
λ′ · ελ =

(
t

6m2 − 1

)
δλ′λ + 1

2m2 Q̂
(1)kl
λ′λ �k�l ,

ε0∗
λ′ ε0

λ = t

12m2 δλ′λ + 1

4m2 Q̂
(1)kl
λ′λ �k�l ,

ε∗
λ′ · � = − E

m
ε̂
∗
λ′ · �,

ελ · � = − E

m
ε̂λ · �, (ε∗

λ′ · �)(ελ · �)

= − E2

m2

(
t

3
δλ′λ + Q̂(1)kl

λ′λ �k�l
)

,

ε0∗
λ′ (ελ · �) + ε0

λ(ε∗
λ′ · �) = 0,

ε0∗
λ′ εiλ + εi∗λ′ ε0

λ = i

2m
εkil�k Ŝ(1)l

λ′λ ,

ε
j∗
λ′ �i (ελ · �) + ε

j
λ�i (ε∗

λ′ · �)

= − 2E2

3M2 �i� jδλ′λ + 2E

m
Q̂(1) jk

λ′λ �k�i

+ E

2m2(m + E)
Q̂(1)kl

λ′λ �k�l�i� j ,

εi∗λ′ ε
j
λ + ε

j∗
λ′ εiλ

=
(

2

3
δi j + �i� j

6m2

)
δλ′λ − 2Q̂(1)i j

λ′λ

− 1

2m(m + E)

(
�i�k Q̂(1)k j

λ′λ + � j�k Q̂(1)ki
λ′λ

)

− 1

8m2(m + E)2 �i� j�k�l Q̂(1)kl
λ′λ . (A5)
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The dipole- and quadrupole-spin operators for the spin-3/2
field are defined by

Ŝiσ ′σ =
∑

C
3
2 σ ′

1λ′ 1
2 s

′C
3
2 σ

1λ 1
2 s

(
−iεi jk ε̂ j∗

λ′ ε̂kλδs′s + σ i
s′s
2

δλ′λ

)
,

Q̂i j
σ ′σ =

∑
C

3
2 σ ′

1λ′ 1
2 s

′C
3
2 σ

1λ 1
2 s

[
−1

2

(
ε̂i∗λ′ ε̂

j
λ + ε̂

j∗
λ′ ε̂iλ

)

−iεilm ε̂l∗λ′ ε̂mλ
σ

j
s′s
2

− iε jlm ε̂l∗λ′ ε̂mλ
σ i
s′s
2

]
. (A6)
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