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Abstract We study quark and lepton mass matrices in the
A4 modular symmetry towards the unification of the quark
and lepton flavors. We adopt modular forms of weights 2
and 6 for quarks and charged leptons, while we use mod-
ular forms of weight 4 for the neutrino mass matrix which
is generated by the Weinberg operator. We obtain the suc-
cessful quark mass matrices, in which the down-type quark
mass matrix is constructed by modular forms of weight 2,
but the up-type quark mass matrix is constructed by mod-
ular forms of weight 6. The viable region of τ is close to
τ = i . Lepton mass matrices also work well at nearby τ = i ,
which overlaps with the one of the quark sector, for the nor-
mal hierarchy of neutrino masses. In the common τ region
for quarks and leptons, the predicted sum of neutrino masses
is 87–120 meV taking account of its cosmological bound.
Since both the Dirac CP phase δ�

CP and sin2 θ23 are corre-
lated with the sum of neutrino masses, improving its cosmo-
logical bound provides crucial tests for our scheme as well
as the precise measurement of sin2 θ23 and δ�

CP . The effec-
tive neutrino mass of the 0νββ decay is 〈mee〉 = 15–31 meV.
It is remarked that the modulus τ is fixed at nearby τ = i
in the fundamental domain of SL(2, Z), which suggests the
residual symmetry Z2 in the quark and lepton mass matrices.
The inverted hierarchy of neutrino masses is excluded by the
cosmological bound of the sum of neutrino masses.

1 Introduction

The standard model (SM) was well established by the dis-
covery of the Higgs boson. However, the flavor theory of
quarks and leptons is still unknown. In order to understand
the origin of the flavor structure, many works have appeared
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b e-mail: tanimoto@muse.sc.niigata-u.ac.jp

by using the discrete groups for flavors. In the early models of
quark masses and mixing angles, the S3 symmetry was used
[1,2]. It was also discussed to understand the large mixing
angle [3] in the oscillation of atmospheric neutrinos [4]. For
the last twenty years, the discrete symmetries of flavors have
been developed, that is motivated by the precise observation
of flavor mixing angles of leptons [5–13].

Many models have been proposed by using the non-
Abelian discrete groups S3, A4, S4, A5 and other groups
with larger orders to explain the large neutrino mixing angles.
Among them, the A4 flavor model is an attractive one because
the A4 group is the minimal one including a triplet irreducible
representation, which allows for a natural explanation of the
existence of three families of leptons [14–20]. However, the
variety of models is so wide that it is difficult to obtain a clear
evidence of the A4 flavor symmetry.

Recently, a new approach to the lepton flavor problem
appeared based on the invariance under the modular group
[21], where the model of the finite modular group �3 � A4

has been presented. This work inspired further studies of the
modular invariance approach to the lepton flavor problem. It
should be emphasized that there is a significant difference
between the models based on the A4 modular symmetry and
those based on the usual non-Abelian discrete A4 flavor sym-
metry. Yukawa couplings transform non-trivially under the
modular group and are written in terms of modular forms
which are holomorphic functions of the modulus τ .

The modular group includes the finite groups S3, A4, S4,
and A5 [22]. Therefore, an interesting framework for the con-
struction of flavor models has been put forward based on the
�3 � A4 modular group [21], and further, based on �2 � S3

[23]. The proposed flavor models with modular symmetries
�4 � S4 [24] and �5 � A5 [25] have also stimulated stud-
ies of flavor structures of quarks and leptons. Phenomeno-
logical discussions of the neutrino flavor mixing have been
done based on A4 [26,27], S4 [28,29], A5 [30], and T ′ [31]
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modular groups, respectively. In particular, the comprehen-
sive analysis of the A4 modular group has provided a distinct
prediction of the neutrino mixing angles and the CP violating
phase [27]. The A4 modular symmetry has been also applied
to the SU (5) grand unified theory (GUT) of quarks and lep-
tons [32], while the residual symmetry of the A4 modular
symmetry has been investigated phenomenologically [33].
Furthermore, modular forms for 	(96) and 	(384) were
constructed [34], and the extension of the traditional flavor
group is discussed with modular symmetries [35]. Moreover,
multiple modular symmetries are proposed as the origin of
flavor [36]. The modular invariance has been also studied
combining with the generalized CP symmetries for theories
of flavors [37]. The quark mass matrix has been discussed in
the S3 and A4 modular symmetries as well [38–40].

Besides mass matrices of quarks and leptons, related top-
ics have been discussed in the baryon number violation [38],
the dark matter [41,42] and the modular symmetry anomaly
[43].

In this work, we study both quark and lepton mass matrices
in the A4 modular symmetry. If flavors of quarks and lep-
tons are originated from a same two-dimensional compact
space, quarks and leptons have the same flavor symmetry
and the same value of the modulus τ . Therefore, it is chal-
lenging to reproduce observed three Cabibbo–Kobayashi–
Maskawa (CKM) mixing angles and the CP violating phase
while observed large mixing angles in the lepton sector within
the framework of the A4 modular invariance with the com-
mon τ . This work provides a new aspect in order to discover
the unification theory of the quark and lepton flavors. We
have already discussed the quark mass matrices in terms of
A4 modular forms of weight 2 [40]. It has been found that
quark mass matrices of A4 do not work unless Higgs sector
is extended by A4 triplet representations. In this paper, we
propose to adopt modular forms of weight 6 in addition to
modular ones of weight 2 for quarks with the Higgs sector
of SM. We use modular forms of weight 4 for the neutrino
mass matrix, which is generated by the Weinberg operator.
The common value of the modulus τ is successfully obtained
by using observed four CKM matrix elements and three lep-
ton mixing angles. We also predict the CP violating Dirac
phase of leptons, which is expected to be observed at T2K
and NOνA experiments [44,45], and the sum of neutrino
masses.1

The paper is organized as follows. In Sect. 2, we give a
brief review on the modular symmetry and modular forms
of weights 2, 4 and 6. In Sect. 3, we present the model for

1 In order to reduce the number of parameters, we discussed another A4
quark/lepton mass matrices after this work [46]. However, the sum of
neutrino masses is predicted to be larger than the cosmological upper-
bound, 120 meV. Indeed, a model with two parameters fewer than the
present model gives 140 meV for the sum of neutrino masses.

quark mass matrices in the A4 modular symmetry. In Sect. 4,
we show numerical results for the CKM matrix. In Sect. 5,
we discuss the lepton mass matrices and present numerical
results. Section 6 is devoted to a summary. In Appendix A, the
tensor product of the A4 group is presented. In Appendix B,
we present how to obtain Dirac CP phase, Majorana phases
and effective mass of the 0νββ decay.

2 Modular group and modular forms of weights 2, 4, 6

The modular group �̄ is the group of linear fractional transfor-
mations γ acting on the modulus τ , belonging to the upper-
half complex plane as:

τ −→ γ τ = aτ + b

cτ + d
, where a, b, c, d ∈ Z and

ad − bc = 1, Im[τ ] > 0, (1)

which is isomorphic to PSL(2,Z) = SL(2,Z)/{I,−I }
transformation. This modular transformation is generated by
S and T ,

S : τ −→ − 1

τ
, T : τ −→ τ + 1, (2)

which satisfy the following algebraic relations,

S2 = I, (ST )3 = I. (3)

We introduce the series of groups�(N ) (N = 1, 2, 3, . . . ),
called principal congruence subgroups, defined by

�(N ) =
{(

a b
c d

)
∈ SL(2,Z),

(
a b
c d

)
=

(
1 0
0 1

)
(modN )

}
.

(4)

For N = 2, we define �̄(2) ≡ �(2)/{I,−I }. Since the ele-
ment −I does not belong to �(N ) for N > 2, we have
�̄(N ) = �(N ). The quotient groups defined as �N ≡
�̄/�̄(N ) are finite modular groups. In this finite groups �N ,
T N = I is imposed. The groups �N with N = 2, 3, 4, 5 are
isomorphic to S3, A4, S4 and A5, respectively [22].

Modular forms of level N are holomorphic functions f (τ )

transforming under �(N ) as:

f (γ τ) = (cτ + d)k f (τ ), γ ∈ �(N ), (5)

where k is the so-called as the modular weight.
Superstring theory on the torus T 2 or orbifold T 2/ZN

has the modular symmetry [47–53]. Its low energy effective
field theory is described in terms of supergravity theory, and
string-derived supergravity theory has also the modular sym-
metry. Under the modular transformation of Eq. (1), chiral
superfields φ(I ) transform as [54],

φ(I ) → (cτ + d)−kI ρ(I )(γ )φ(I ), (6)
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where −kI is the modular weight and ρ(I )(γ ) denotes a uni-
tary representation matrix of γ ∈ �̄.

In the present article we study global supersymmetric
models, e.g., minimal supersymmetric extensions of the
Standard Model (MSSM). The superpotential which is built
from matter fields and modular forms is assumed to be mod-
ular invariant, i.e., to have a vanishing modular weight. For
given modular forms this can be achieved by assigning appro-
priate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The
Kähler potential of chiral matter fields φ(I ) with the modular
weight −kI is given simply by

Kmatter = 1

[i(τ̄ − τ)]kI |φ(I )|2, (7)

where the superfield and its scalar component are denoted by
the same letter, and τ̄ = τ ∗ after taking the vacuum expec-
tation value (VEV).2 Therefore, the canonical form of the
kinetic terms is obtained by changing the normalization of
parameters [27].

For �3 � A4, the dimension of the linear spaceMk(�(3))

of modular forms of weight k is k + 1 [56–58], i.e., there are
three linearly independent modular forms of the lowest non-
trivial weight 2. These forms have been explicitly obtained
[21] in terms of the Dedekind eta-function η(τ):

η(τ) = q1/24
∞∏
n=1

(1 − qn), q = exp (i2πτ), (8)

where η(τ) is a so called modular form of weight 1/2. In what
follows we will use the following basis of the A4 generators
S and T in the triplet representation:

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (9)

where ω = exp(i 2
3π) . The modular forms of weight 2 trans-

forming as a triplet of A4 can be written in terms of η(τ) and
its derivative [21]:

Y1(τ ) = i

2π

(
η′(τ/3)

η(τ/3)
+ η′((τ + 1)/3)

η((τ + 1)/3)
+ η′((τ + 2)/3)

η((τ + 2)/3)

− 27η′(3τ)

η(3τ)

)
,

Y2(τ ) = −i

π

(
η′(τ/3)

η(τ/3)
+ ω2 η′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
,

Y3(τ ) = −i

π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2 η′((τ + 2)/3)

η((τ + 2)/3)

)
. (10)

2 The most general Kähler potential consistent with the modular sym-
metry possibly contains additional terms, as recently pointed out in
Ref. [55]. However, we consider only the simplest form of the Kähler
potential.

The overall coefficient in Eq. (10) is one possible choice. It
cannot be uniquely determined. The triplet modular forms of
weight 2 have the following q-expansions:

Y(2)
3 =

⎛
⎝Y1(τ )

Y2(τ )

Y3(τ )

⎞
⎠ =

⎛
⎝1 + 12q + 36q2 + 12q3 + · · ·

−6q1/3(1 + 7q + 8q2 + · · · )
−18q2/3(1 + 2q + 5q2 + · · · )

⎞
⎠ .

(11)

They satisfy also the constraint [21]:

(Y2(τ ))2 + 2Y1(τ )Y3(τ ) = 0. (12)

The modular forms of the higher weight, k, can be obtained
by the A4 tensor products of the modular forms with weight
2, Y(2)

3 , as given in Appendix A. For weight 4, that is k = 4,
there are five modular forms by the tensor product of 3 ⊗ 3
as:

Y(4)
1 = Y 2

1 + 2Y2Y3, Y(4)
1′ = Y 2

3 + 2Y1Y2,

Y(4)
1′′ = Y 2

2 + 2Y1Y3 = 0,

Y(4)
3 =

⎛
⎜⎝
Y (4)

1

Y (4)
2

Y (4)
3

⎞
⎟⎠ =

⎛
⎝Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

⎞
⎠ , (13)

where Y(4)
1′′ vanishes due to the constraint of Eq. (12). For

weight 6, there are seven modular forms by the tensor prod-
ucts of A4 as:

Y(6)
1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 ,

Y(6)
3 ≡

⎛
⎜⎝
Y (6)

1

Y (6)
2

Y (6)
3

⎞
⎟⎠ =

⎛
⎝Y 3

1 + 2Y1Y2Y3

Y 2
1 Y2 + 2Y 2

2 Y3

Y 2
1 Y3 + 2Y 2

3 Y2

⎞
⎠ ,

Y(6)
3′ ≡

⎛
⎜⎝
Y

′(6)
1

Y
′(6)
2

Y
′(6)
3

⎞
⎟⎠ =

⎛
⎝Y 3

3 + 2Y1Y2Y3

Y 2
3 Y1 + 2Y 2

1 Y2

Y 2
3 Y2 + 2Y 2

2 Y1

⎞
⎠ . (14)

By using these modular forms of weights 2, 4 and 6, we
discuss quark and lepton mass matrices.

3 Quark mass matrices in the A4 modular invariance

Let us consider a A4 modular invariant flavor model for
quarks. There are freedoms for the assignments of irreducible
representations and modular weights to quarks and Higgs
doublets.

The simplest one is to assign the triplet of the A4 group
to three left-handed quarks, but three different singlets
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Table 1 Assignments of
representations and weights −kI
for MSSM fields and modular
forms

Q (dc, sc, bc) (uc, cc, tc) Hq Y(2)
3 , Y(6)

3 , Y(6)
3′

SU (2) 2 1 1 2 1

A4 3 (1, 1′′, 1′) (1, 1′′, 1′) 1 3, 3, 3′

−kI − 2 (0, 0, 0) (−4, −4, −4) 0 k = 2, k = 6, k = 6

(1, 1′′, 1′) of A4 to the three right-handed quarks, (uc, cc, tc)
and (dc, sc, bc), respectively, where the sum of weights of the
left-handed and the right-handed quarks is − 2. The Higgs
fields are supposed to be A4 singlets with weight 0. Then,
three independent couplings appear in the superpotential of
the up-type and down-type quark sectors, respectively, as
follows:

wu = αuu
cHuY

(2)
3 Q + βuc

cHuY
(2)
3 Q + γut

cHuY
(2)
3 Q,

(15)

wd = αdd
cHdY

(2)
3 Q + βds

cHdY
(2)
3 Q + γdb

cHdY
(2)
3 Q,

(16)

where Q is the left-handed A4 triplet quarks, and Hq is
the Higgs doublet. The parameters αq , βq , γq are constant
coefficients. Assign the A4 triplet Q as ((dL , uL), (sL , cL),

(bL , tL)). By using the decomposition of the A4 tensor prod-
uct in Appendix A, the superpotentials in Eqs. (15) and (16)
give the mass matrix of quarks, which is written in terms of
modular forms of weight 2 as:

Mq = vq

⎛
⎝αq 0 0

0 βq 0
0 0 γq

⎞
⎠

⎛
⎝Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

⎞
⎠

RL

, (q = u, d),

(17)

where τ of the modular forms Yi (τ ) is omitted. The constant
vq (q = u, d) is the VEV of the neutral component of the
Higgs field Hq . Parameters αq , βq , γq are taken to be real
without loss of generality, and they can be adjusted to the
observed quark masses. The remained parameter is only the
modulus τ . The numerical study of the quark mass matrix in
Eq. (17) is rather easy. However, it is impossible to reproduce
observed hierarchical three CKM mixing angles by fixing one
complex parameter τ .

In order to obtain realistic quark mass matrices, we use
modular forms of weight 6 in Eq. (14). As a simple model,
we take modular forms of weight 6 only for the up-type quark
mass matrix while the down-type quark one is still given in
terms of modular forms of weight 2 such as Eq. (17).3

3 We also take modular forms of weight 2 for the charged lepton mass
matrix to give a minimal number of parameters in the lepton sector.

Then, we have six independent couplings in the superpo-
tential of the up-quark sector as:

wu = αuu
cHuY

(6)
3 Q + α′

uu
cHuY

(6)
3′ Q + βuc

cHuY
(6)
3 Q

+ β ′
uc

cHuY
(6)
3′ Q + γut

cHuY
(6)
3 Q

+ γ ′
ut

cHqY
(6)
3′ Q, (18)

where assignments of representations and weights for MSSM
fields are given in Table 1. The up-type quark mass matrix is
written as:

Mu = vu

⎛
⎝αu 0 0

0 βu 0
0 0 γu

⎞
⎠

⎡
⎢⎣

⎛
⎜⎝
Y (6)

1 Y (6)
3 Y (6)

2

Y (6)
2 Y (6)

1 Y (6)
3

Y (6)
3 Y (6)

2 Y (6)
1

⎞
⎟⎠

+
⎛
⎝gu1 0 0

0 gu2 0
0 0 gu3

⎞
⎠

⎛
⎜⎝
Y

′(6)
1 Y

′(6)
3 Y

′(6)
2

Y
′(6)
2 Y

′(6)
1 Y

′(6)
3

Y
′(6)
3 Y

′(6)
2 Y

′(6)
1

⎞
⎟⎠

⎤
⎥⎦

RL

,

(19)

where gu1 = α′
u/αu , gu2 = β ′

u/βu and gu3 = γ ′
u/γu are

complex parameters while αu , βu and γu are real.
On the other hand, the down-type quark mass matrix is

given as:

Md = vd

⎛
⎝αd 0 0

0 βd 0
0 0 γd

⎞
⎠

⎛
⎝Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

⎞
⎠

RL

. (20)

We will fix the modulus τ phenomenologically by using
quark mass matrices in Eqs. (19) and (20).

4 Fixing τ by observed CKM

In order to obtain the left-handed flavor mixing, we calculate
M†

d Md and M†
u Mu . At first, we take a random point of τ and

gui which are scanned in the complex plane by generating
random numbers. The modulus τ is scanned in the fundamen-
tal domain of the modular symmetry. In practice, the scanned
range of Im[τ ] is [√3/2, 2], in which the lower-cut

√
3/2 is

at the cusp of the fundamental domain, and the upper-cut 2 is
enough large for estimating Yi . On the other hand, Re[τ ] is
scanned in the fundamental domain [−1/2, 1/2] of the mod-
ular group. Supposing |gui | is of order one, we scan them
in [0, 2] while these phases are scanned in [−π, π ]. Then,
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Table 2 Parameter ranges consistent with the observed CKM mixing angles and CP phase δCP

|Re[τ ]| Im[τ ] |gu1| Arg gu1 |gu2| Arg gu2 |gu3| Arg gu3

[0, 0.09] [0.99, 1.09] [0.01, 0.86] [− π, π ] [0.14, 1.29] [− 2.3, 1.6] [0.02, 0.07] [− π, π ]

parameters αq , βq , γq (q = u, d) are given in terms of τ and
gq after inputting six quark masses.

Finally, we calculate three CKM mixing angles and the
CP violating phase in terms of the model parameters τ and
gui . We keep the parameter sets, in which the value of each
observable is reproduced within the three times of 1σ interval
of error-bars. We continue this procedure to obtain enough
points for plotting allowed region.

We input quark masses in order to constrain model param-
eters. Since the modulus τ obtains the expectation value by
the breaking of the modular invariance at the high mass scale,
the quark masses are put at the GUT scale. The observed
masses and CKM parameters run to the GUT scale by the
renormalization group equations (RGEs). In our work, we
adopt numerical values of Yukawa couplings of quarks at the
GUT scale 2 × 1016 GeV with tan β = 5 in the framework
of the minimal SUSY breaking scenarios [59,60]:

yd = (4.81 ± 1.06) × 10−6, ys = (9.52 ± 1.03) × 10−5,

yb = (6.95 ± 0.175) × 10−3,

yu = (2.92 ± 1.81) × 10−6, yc = (1.43±0.100) × 10−3,

yt = 0.534 ± 0.0341,

(21)

which give quark masses as mq = yqvH with vH = 174
GeV.

We also use the following CKM mixing angles to focus
on parameter regions consistent with the experimental data
at the GUT scale 2 × 1016 GeV, where tan β = 5 is taken
[59,60]:

θCKM
12 = 13.027◦ ± 0.0814◦, θCKM

23 = 2.054◦ ± 0.384◦,
θCKM

13 = 0.1802◦ ± 0.0281◦.
(22)

Here θCKM
i j is given in the PDG notation of the CKM matrix

VCKM [61]. The CP violating phase is also given as:

δCP = 69.21◦ ± 6.19◦, (23)

in the PDG notation. The errors in Eqs. (21)–(23) represent
1σ interval. The CKM elements Vi j at the GUT scale 2×1016

GeV are given by using these angles and the phase.
In our model, we have four complex parameters, τ , gu1,

gu2 and gu3 after inputting six quark masses. These eight
real parameters are scanned to reproduce the observed three

Fig. 1 Distribution on |Vub|–δCP plane, where black lines denote
observed central values of |Vub| and δCP , and red dashed-lines denote
three times 1σ interval

Fig. 2 Distribution on |Vcb|–|Vub| plane where black lines denote
observed central values of |Vcb| and |Vub|, and red dashed-lines denote
three times 1σ interval

CKM mixing angles and the CP violating phase with three
times 1σ error interval in Eqs. (22) and (23).4

We have succeeded to reproduce completely four observed
CKM elements in the parameter ranges of Table 2. The mod-
ulus τ is close to i , which is the fixed point of the modular
symmetry.

In order to check the consistency of our quark mass matri-
ces and the observed CKM, we show the calculated distribu-
tion on the |Vub|–δCP plane at the GUT scale in Fig. 1. The
calculated δCP is uniformly distributed below the observed
central value of |Vub| while it is almost larger than the
observed central value for the upper-range of |Vub|.

We also present the distribution of CKM elements |Vcb|
and |Vub| at the GUT scale in Fig. 2. The magnitude of |Vub|
is predicted to be in the whole region of the three times 1σ

4 We take the observed values of CKM with three times 1σ intervals,
which are almost 3σ in this case.
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Fig. 3 The allowed region on Re[τ ]–Im[τ ] plane, where observed
CKM mixing angles and δCP are reproduced. The solid curve is the
boundary of the fundamental domain, |τ | = 1

Table 3 Numerical values of
parameters and output of CKM
parameters at the best-fit point

τ − 0.038 + 1.05 i

gu1 − 0.147 + 0.118 i

gu2 − 0.091 − 0.425 i

gu3 0.027 + 0.0197 i

αu/γu 4.33 × 10−5

βu/γu 3.85 × 10−3

αd/γd 1.45 × 10−2

βd/γd 4.26 × 10−3

|Vus | 0.225

|Vcb| 0.029

|Vub| 0.0030

δCP 76.9◦

χ2 0.46

interval while the calculated |Vcb| is mostly distributed in the
lower-range of the three times 1σ interval.

In Fig. 3, we show the plot of Re[τ ] and Im[τ ], which will
be compared with the case of leptons. The allowed region of
the modulus τ is close to i , but is clearly deviated from it. The
modulus τ = i is the fixed point of the modular symmetry.
Indeed, τ = i is invariant under the S transformation τ =
− 1/τ , where the subgroup Z

S
2 = {I, S} of A4 is preserved.

This region of τ is discussed in connection with τ of the
lepton mass matrices in the next secton.

In Table 3, we present one parameter set and calculated
CKM elements, which is the best-fit point, that is, its χ2

is minimum. The magnitudes of gqi are at most of order
O(0.5). Ratios of αq/γq and βq/γq (q = u, d) correspond
to the observed quark mass hierarchy.

We also present the mixing matrices of up-type quarks and
down-type quarks for the sample of Table 3. They are given
as:

Vu ≈
⎛
⎝ 0.987 −0.017 + 0.142 i 0.056 − 0.039 i

0.029 + 0.148 i 0.960 −0.236 − 0.014 i
−0.048 − 0.004 i 0.241 − 0.021 i 0.969

⎞
⎠ ,

Vd ≈
⎛
⎝ 0.992 0.083 − 0.062 i 0.057 − 0.043 i

−0.065 − 0.049 i 0.962 −0.259 + 0.003 i
−0.076 − 0.058 i 0.251 + 0.002 i 0.963

⎞
⎠ ,

(24)

where VCKM = V †
u Vd . It is noted that these are presented

in the diagonal base of the generator S, where we can see
the hierarchical structure of mixing. The diagonal base of
S is realized by the unitary transformation of S in Eq. (9),
VS S V

†
S = diag[1,−1,−1], where

VS ≡
⎛
⎜⎝

1√
3

1√
3

1√
3

2√
6

− 1√
6

− 1√
6

0 − 1√
2

1√
2

⎞
⎟⎠ . (25)

Then, the mixing matrix Vq in the original base of S is trans-
formed to VSVq because the quark mass matrix is trans-
formed as VSM

†
q MqV

†
S .

In conclusion, our quark mass matrices with the A4 mod-
ular symmetry reproduce the observed CKM mixing matrix
very well at nearby τ = i . This successful result encourages
us to investigate the lepton flavors in the same framework.
We discuss the lepton sector with the A4 modular symmetry
in Sect. 5.

5 Lepton mass matrix in the A4 modular invariance

5.1 Lepton mass matrix

The modular A4 invariance also gives the lepton mass matrix
in terms of the modulus τ which is common to both quarks
and leptons if flavors of quarks and leptons are originated
from a same two-dimensional compact space. We assign the
A4 representation and weight for leptons in Table 4, where
the left-handed lepton doublets compose a A4 triplet and the
right-handed charged leptons are A4 singlets. The weights of
the leptons are assigned like the down-type quarks in Table 1.

Then, the superpotential of the charged lepton mass term
is given in terms of modular forms of weight 2, Y(2)

3 since

Table 4 Assignments of representations and weights − kI for MSSM
fields and modular forms of weight 2 and 4

L (ec, μc, τ c) Hu Hd Y(2)
r , Y(4)

r

SU (2) 2 1 2 2 1

A4 3 (1, 1′′, 1′) 1 1 3, {3, 1, 1′}
−kI −2 (0, 0, 0) 0 0 2, 4

123



Eur. Phys. J. C (2021) 81 :52 Page 7 of 12 52

weights of the left-handed leptons and the right-handed
charged leptons are − 2 and 0, respectively. It is given as:

wE = αee
cHdY

(2)
3 L + βeμ

cHdY
(2)
3 L + γeτ

cHdY
(2)
3 L ,

(26)

where L is the left-handed A4 triplet leptons. Taking
(eL , μL , τL) in the flavor base

the charged lepton mass matrix ME is simply written as:

ME = vd

⎛
⎝αe 0 0

0 βe 0
0 0 γe

⎞
⎠

⎛
⎝Y1 Y3 Y2

Y2 Y1 Y3

Y3 Y2 Y1

⎞
⎠

RL

, (27)

where coefficients αe, βe and γe are real parameters.
Suppose neutrinos to be Majorana particles. By using the

Weinberg operator, the superpotential of the neutrino mass
term, wν is given as:

wν = − 1

�
(HuHuLLY(4)

r )1, (28)

where � is a relevant cutoff scale. Since the left-handed lep-
ton doublet has weight − 2, the superpotential is given in
terms of modular forms of weight 4, Y(4)

3 , Y(4)
1 and Y(4)

1′ .
By using the tensor products of A4, we have

wν = v2
u

�

⎡
⎣

⎛
⎝2νeνe − νμντ − ντ νμ

2ντ ντ − νeνμ − νμντ

2νμνμ − ντ νe − νeντ

⎞
⎠ ⊗ Y(4)

3

+ (νeνe + νμντ + ντ νμ) ⊗ gν1Y
(4)
1

(νeντ + νμνμ + ντ νe) ⊗ gν2Y
(4)
1′

]

= v2
u

�
[(2νeνe − νμντ − ντ νμ)Y (4)

1

+ (2ντ ντ − νeνμ − νμνe)Y
(4)
3

+ (2νμνμ − ντ νe − νeντ )Y
(4)
2

+ (νeνe + νμντ + ντ νμ)gν1Y
(4)
1

+ (νeντ + νμνμ + ντ νe)gν2Y
(4)
1′ ], (29)

where Y(4)
3 , Y(4)

1 and Y(4)
1′ are given in Eq. (13), and gν1, gν2

are complex parameters. The neutrino mass matrix is written
as follows:

Mν = v2
u

�

⎡
⎢⎣

⎛
⎜⎝

2Y (4)
1 −Y (4)

3 −Y (4)
2

−Y (4)
3 2Y (4)

2 −Y (4)
1

−Y (4)
2 −Y (4)

1 2Y (4)
3

⎞
⎟⎠ + gν1Y

(4)
1

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠

+gν2Y
(4)
1′

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠

⎤
⎦

LL

. (30)

Then, the model parameters are αe, βe, γe, gν1 and gν2.
Parametersαe,βe andγe are adjusted by the observed charged
lepton masses. Therefore, the lepton mixing angles, the Dirac
phase and Majorana phases are given by gν1 and gν2 in addi-
tion to the value of τ . Since τ is restricted in the narrow
range for the quark sector as seen in Fig. 3, we can give
some predictions in the lepton sector. Practically, we scan τ

in |Re[τ ]| ≤ 0.5 and Im[τ ] ≤ 2 like in the analysis of quark
mass matrices.

5.2 Numerical results of leptons

We input charged lepton masses in order to constrain the
model parameters. We take Yukawa couplings of charged
leptons at the GUT scale 2 × 1016 GeV, where tan β = 5 is
taken as well as quark Yukawa couplings [59,60]:

ye = (1.97 ± 0.024) × 10−6,

yμ = (4.16 ± 0.050) × 10−4,

yτ = (7.07 ± 0.073) × 10−3, (31)

where lepton masses are given bym� = y�vH with vH = 174
GeV. We also input the lepton mixing angles and neutrino
mass parameters which are given by NuFit 4.1 in Table 5
[62]. We investigate two possible cases of neutrino masses
mi , which are the normal hierarchy (NH), m3 > m2 > m1,
and the inverted hierarchy (IH), m2 > m1 > m3. Neu-
trino masses and the Pontecorvo–Maki–Nakagawa–Sakata
(PMNS) matrix UPMNS [63–65] are obtained by diagonal-
izing M†

EME and M∗
ν Mν . We also investigate the effective

mass for the 0νββ decay, 〈mee〉 (see Appendix B) and the
sum of three neutrino masses

∑
mi since it is constrained

by the recent cosmological data, which is the upper-bound∑
mi ≤ 120 meV obtained at the 95% confidence level [66–

68].
Let us discuss numerical results for NH of neutrino

masses. Since αe/γe and βe/γe are obtained by the observed
charged lepton masses when τ is fixed, we input charged
lepton masses to reduce free parameters. Parameters gν1 and
gν2 are constrained by four observed quantities; three mix-
ing angles of leptons and observed mass ratio 	m2

sol/	m2
atm.

In practice, the scanned ranges of Im[τ ] and Re[τ ] are
[√3/2, 2] and [−1/2, 1/2], respectively, like for the quark
sector. Neutrino couplings |gνi | are scanned in [0, 10] while
these phases are in [−π, π ]. Indeed, we have obtained
|gν1| = 0.03–1.15 and |gν1| = 0.63–1.22 in our numeri-
cal calculations.

At first, we show the allowed region on the Re[τ ]–Im[τ ]
plane in Fig. 4. Observed three mixing angles of leptons are
reproduced at cyan, blue and red points. The sum of neutrino
masses is consistent with the cosmological bound 120 meV at
cyan points, but not at blue points. At red points, both CKM
and PMNS are reproduced with the sum of neutrino masses
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Table 5 The 3 σ ranges of
neutrino parameters from
NuFIT 4.1 for NH and IH [62]

Observable 3 σ range for NH 3 σ range for IH

	m2
atm (2.436–2.618) × 10−3eV2 −(2.419–2.601) × 10−3eV2

	m2
sol (6.79–8.01) × 10−5eV2 (6.79–8.01) × 10−5eV2

sin2 θ23 0.433–0.609 0.436–0.610

sin2 θ12 0.275–0.350 0.275–0.350

sin2 θ13 0.02044–0.02435 0.02064–0.02457

Fig. 4 Allowed regions of τ . PMNS mixing angles are reproduced at
cyan, blue and red points while CKM are reproduced at green points.
At cyan (blue) points, the sum of neutrino masses is below (above)
120 meV. At red points, both CKM and PMNS are reproduced with the
sum of neutrino masses below 120 meV. The solid curve is the boundary
of the fundamental domain, |τ | = 1

Fig. 5 Allowed region on
∑

mi–sin2 θ23 plane, where the horizontal
solid line denotes observed best-fit one, red dashed-lines denote the
bound of 3σ interval, and the vertical line is the cosmological bound,
for NH. Colors of points correspond to τ in Fig. 4

below 120 meV. For comparison, we add green points for
quark CKM of Fig. 3. Allowed points of leptons are almost
in Im[τ ] ≤ 1.12 and |Re[τ ]| ≤ 0.1.

The common τ causes the feedback in the quark sector.
However, the tendency of |Vub|, |Vcb| and δCP are not so
changed compared with Figs. 1 and 2 in the common region
of τ .

We show the allowed region on the
∑

mi–sin2 θ23 plane
in Fig. 5, where colors (cyan, blue and red) of points cor-
respond to points of τ in Fig. 4. Our prediction of the
sum of neutrino masses is constrained by the cosmolog-

Fig. 6 Allowed region on the
∑

mi–δ�
CP plane, where the vertical

solid line is the cosmological bound, for NH . Colors of points corre-
spond to points of τ in Fig. 4

ical bound as seen in Fig. 5. The minimal cosmological
model, �CDM + ∑

mi , provides the upper-bound
∑

mi <

120 meV [66,68] although it becomes weaker when the data
are analysed in the context of extended cosmological models
[61].

The red region, that is the common τ region for quarks and
leptons, is constrained by the cosmological bound

∑
mi =

120 meV. Then, the predicted sum of neutrino masses is 87–
120 meV.

The cyan region is inconsistent with τ of quarks while
the blue one is excluded by the cosmological bound

∑
mi =

120 meV, although both are consistent with the data of NuFIT
4.1 [62]. The calculated sin2 θ23 of the red region is dis-
tributed in restricted ranges. Therefore, the precise measure-
ment of sin2 θ23 and improving the bound of the sum of neu-
trino masses provide crucial tests for our scheme.

We show the allowed region on the
∑

mi–δ�
CP plane in

Fig. 6. In the region of red points, δ�
CP is predicted to be in the

restricted ranges, 0◦–50◦, 80◦–100◦, 110◦–130◦, 230◦–250◦,
260◦–280◦ and 310◦–360◦. If the cosmological bound for the
sum of neutrino masses will be improved, for example, it is
100 meV, δ�

CP is predicted in the distict range.
In Fig. 7, we plot δ�

CP versus sin2 θ23 in order to see their
correlation. Since there is a significant correlation between
them, the precise measurement of sin2 θ23 gives the clear
prediction of δ�

CP .
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Fig. 7 Predicted δ�
CP versus sin2 θ23, where the black line denotes

observed best-fit value of sin2 θ23, and red dashed-lines denote its
upper(lower)-bound of 3σ interval for NH. Colors of points correspond
to points of τ in Fig. 4

Fig. 8 Predicted effective mass 〈mee〉 of the 0νββ decay versus m1
for NH. The vertical line is the upper-bound of m1, which is derived
from the cosmological bound, 120 meV. Colors of points correspond to
points of τ in Fig. 4

Table 6 Numerical values of
parameters and output of PMNS
parameters at the best-fit point

τ − 0.038 + 1.05 i

gν1 0.061 + 0.274 i

gν2 0.671 − 0.956 i

αe/γe 6.71 × 10−2

βe/γe 1.24 × 10−3

sin2 θ12 0.305

sin2 θ23 0.565

sin2 θ13 0.0216

δ�
CP 27.4◦∑
mi 118 meV

〈mee〉 30.1 meV

χ2 0.64

We can also predict the effective mass 〈mee〉 for the 0νββ

decay versus the lightest mass m1 as seen in Fig. 8. At the
red point region, we predict 〈mee〉 = 15–31 meV.

The predicted 〈mee〉 larger than 31 meV is excluded by the
sum of neutrino masses.

In Table 6, we present best-fit values of parameters and
outputs, where we input the common value τ = − 0.038 +

1.05 i in Table 3. In our χ2 fit, δ�
CP is not included, but it

is only an output because T2K and NOνA experiments have
presented the best-fit values of δ�

CP with opposite sign each
other [44,45]. Our predicted δ�

CP = 27.4◦ in Table 6 is rather
small. The systematic χ2 fit of both quarks and leptons will be
needed by including precise data of δ�

CP since δ�
CP � ±90◦

is also predicted in Fig. 6.
We also present the mixing matrices of charged leptons

and neutrinos for the best-fit sample of Table 6. Those are
given as:

U� ≈
⎛
⎝ 0.989 0.106 − 0.073 i 0.062 − 0.043 i

− 0.087 − 0.060 i 0.960 −0.261 + 0.003 i
− 0.087 − 0.060 i 0.250 + 0.003 i 0.962

⎞
⎠ ,

Uν ≈
⎛
⎝ 0.732 0.465 − 0.459 i 0.097 − 0.166 i

− 0.333 − 0.267 i 0.228 − 0.115 i 0.868
− 0.415 − 0.332 i 0.713 −0.448 − 0.094 i

⎞
⎠ ,

(32)

where UPMNS = U †
� Uν . They are also given in the diagonal

base of the generator S in order to see the hierarchical struc-
ture of mixing like in the quark mixing matrix in Eq. (24),
by using the unitary transformation of Eq. (25). It is noticed
that the mixing matrix of charged leptons U� is similar to the
quark mixing matrices of Eq. (24). On the other hand, two
large mixing angles appear in the neutrino mixing matrixUν .

In our numerical calculations, we have not included the
RGE effects in the lepton mixing angles and neutrino mass
ratio 	m2

sol/	m2
atm. We suppose that those corrections are

very small between the electroweak and GUT scales for NH
of neutrino masses. This assumption is justified well in the
case of tan β ≤ 5 unless neutrino masses are almost degen-
erate [26].

Finally, we discuss briefly the case of IH of neutrino
masses. Indeed, there is a very small region of the common
τ for quarks and leptons, which is marginal since the sum
of neutrino masses is very close to the cosmological bound,
120 meV. Therefore, we omit discussions of this case.

6 Summary

We have studied both quark and lepton mass matrices in the
A4 modular symmetry towards the unification of quark and
lepton flavors. If flavors of quarks and leptons are originated
from a same two-dimensional compact space, quarks and
leptons have the same flavor symmetry and the same value
of the modulus τ .

For the quark sector, we have adopted modular forms of
weights 2 and 6. We have presented the viable model for
quark mass matrices, in which the down-type quark mass
matrix is constructed by modular forms of weight 2 while
the up-type quark mass matrix is constructed by modular
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forms of weight 6. In the lepton sector, the charged lepton
mass matrix is constructed by modular forms of weight 2
while modular forms of weight 4 is used for the neutrino
mass matrix, which is generated by the Weinberg operator.

The viable region close to τ = i is obtained in our quark
mass matrices.

Lepton mass matrices also work well at nearby τ = i ,
which overlaps with the one of the quark sector, for NH of
neutrino masses. In the common τ region for quarks and lep-
tons, the predicted sum of neutrino masses is 87–120 meV
taking account of its cosmological bound. Since both the
Dirac CP phase δ�

CP and sin2 θ23 are correlated significantly
with the sum of neutrino masses, improving its cosmological
bound provides crucial tests for our scheme as well as the pre-
cise measurement of sin2 θ23 and δ�

CP . The effective neutrino
mass of the 0νββ decay is predicted to be 〈mee〉 = 15–31
meV. The IH of neutrino masses is almost excluded by the
cosmological bound of the sum of neutrino masses.

It is remarked that the common τ is fixed at nearby τ = i
in the fundamental domain of SL(2, Z), which suggests the
residual symmetry Z2 in the quark and lepton mass matrices.
Some corrections could violate the exact symmetry. It is also
emphasized that the spontaneous CP violation in Type IIB
string theory is possibly realized at nearby τ = i , where
the moduli stabilization as well as the calculation of Yukawa
couplings is performed in a controlled way [69]. Thus, our
phenomenological result of the modulus τ is favored in the
theoretical investigation.
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Appendix

Appendix A: Tensor product of A4 group

We take the generators of A4 group for the triplet as follows:

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (33)

where ω = ei
2
3 π for a triplet. In this base, the multiplication

rule is

⎛
⎝a1

a2

a3

⎞
⎠

3

⊗
⎛
⎝b1

b2

b3

⎞
⎠

3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′

⊕ 1

3

⎛
⎝2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1

2a2b2 − a1b3 − a3b1

⎞
⎠

3

⊕ 1

2

⎛
⎝a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

⎞
⎠

3

,

1 ⊗ 1 = 1, 1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′ ,

1′ ⊗ 1′′ = 1, (34)

where

T (1′) = ω, T (1′′) = ω2. (35)

More details are shown in the review [6,7].

Appendix B: Majorana and Dirac phases and 〈mee〉 in
0νββ decay

Supposing neutrinos to be Majorana particles, the PMNS
matrix UPMNS [63,64] is parametrized in terms of the three
mixing angles θi j (i, j = 1, 2, 3; i < j), one CP violating
Dirac phase δCP and two Majorana phases α21, α31 as follows:

UPMNS =
⎛
⎜⎝

c12c13 s12c13 s13e−iδ�
CP

−s12c23 − c12s23s13eiδ
�
CP c12c23 − s12s23s13eiδ

�
CP s23c13

s12s23 − c12c23s13eiδ
�
CP −c12s23 − s12c23s13eiδ

�
CP c23c13

⎞
⎟⎠

×
⎛
⎜⎝

1 0 0

0 ei
α21

2 0

0 0 ei
α31

2

⎞
⎟⎠ , (36)

where ci j and si j denote cos θi j and sin θi j , respectively.
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The rephasing invariant CP violating measure of leptons
[70,71] is defined by the PMNS matrix elements Uαi . It is
written in terms of the mixing angles and the CP violating
phase as:

JCP = Im
[
Ue1Uμ2U

∗
e2U

∗
μ1

]
= s23c23s12c12s13c

2
13 sin δ�

CP,

(37)

whereUαi denotes the each component of the PMNS matrix.
There are also other invariants I1 and I2 associated with

Majorana phases

I1 = Im
[
U∗
e1Ue2

] = c12s12c
2
13 sin

(α21

2

)
,

I2 = Im
[
U∗
e1Ue3

] = c12s13c13 sin
(α31

2
− δ�

CP

)
. (38)

We can calculate δ�
CP, α21 and α31 with these relations by

taking account of

cos δ�
CP = |Uτ1|2 − s2

12s
2
23 − c2

12c
2
23s

2
13

2c12s12c23s23s13
,

Re
[
U∗
e1Ue2

] = c12s12c
2
13 cos

(α21

2

)
,

Re
[
U∗
e1Ue3

] = c12s13c13 cos
(α31

2
− δ�

CP

)
. (39)

In terms of this parametrization, the effective mass for the
0νββ decay is given as follows:

〈mee〉 = |m1c
2
12c

2
13 + m2s

2
12c

2
13e

iα21 + m3s
2
13e

i(α31−2δ�
CP )|.

(40)
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