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Abstract We study no scalar field hair behavior for spher-
ically symmetric objects in the scalar-Gauss—Bonnet grav-
ity. In this work, we focus on static massive scalar fields
with nodes. We analytically obtain a bound on the coupling
parameter. Below the bound, the static massive scalar field
with nodes cannot exist outside the object. In particular, our
conclusion is independent of surface boundary conditions.

1 Introduction

One famous property of classical black holes is the no hair
theorem, which states that asymptotically flat spherically
symmetric black holes cannot support external static scalar
fields, see references [1-8] and reviews [9, 10]. Interestingly,
no hair behavior also appears for horizonless reflecting stars
[11-23]. Recently, it was found that scalar field hairs can
exist outside black holes and reflecting stars when consider-
ing the non-minimal coupling between scalar fields and the
Gauss—Bonnet invariant [24-30]. This scalar-Gauss—Bonnet
gravity attracted lots of attentions and other models were
constructed [31-45].

The mostly studied scalar configurations are the cases with
no nodes. Theoretically, scalar configurations can possess
nodes. It is well known that, in the general case, scalar config-
urations with nodes are usually unstable [46—49]. So it is nat-
ural to conjecture that scalar configurations with nodes may
finally evolve into the more stable nodeless solutions. How-
ever, it is still meaningful to study the solution with nodes.
Firstly, the solution with nodes may be sufficiently stable,
which means that the perturbation growth time is extremely
large [50]. In this case, the unstable node solution stays for
a long time and can be observed from physical aspects. And
secondly, in some gravity models, it is very surprising that the
solution with nodes seems to be the endpoint of the tachyonic
instability [51].
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In particular, for massless scalar fields non-minimally cou-
pled to the Gauss—Bonnet invariant in the background of
black holes, an interesting relation A, = /Tu+1 — /1n =
*/7371 for n — oo was obtained through WKB approach in
[52] and this relation is also precisely supported by numeri-
cal data in [27], where n is the number of nodes. For massive
scalar fields in black hole spacetimes, with both analytical
and numerical methods, we demonstrated that this relation
still holds in the large node number limit [53]. On the other
side, some quantum-gravity theories suggest that quantum
effects may prevent the formation of classical black hole
absorbing horizons and the horizonless compact star may
serve as an alternative [54-61]. So it is also interesting to
search for properties independent of surface boundary con-
ditions. In this work, we plan to study the existence (or non-
existence) of scalar fields with nodes outside general spher-
ically symmetric objects.

In the following, we shall consider a gravity system with
a scalar field coupled to the Gauss—Bonnet invariant in the
background of general spherically symmetric objects. With
analytical methods, we obtain a bound on the scalar-Gauss—
Bonnet coupling parameter, below which there is no hair
behavior for static massive scalar fields with nodes. We sum-
marize main results in the last section.

2 Bounds on the scalar-Gauss—Bonnet coupling
parameter

We consider a gravity with a scalar field W coupled to the
Gauss—Bonnet invariant RZG - The general Lagrange density
can be written as [26-31]

L=R—|V, V> —m?W? 4 f(V)REp. (1)

Here m is the scalar field mass and the Gauss—Bonnet invari-
ant is defined as R% ; = Ryupo R’”p"z— 4R, R*™ + R%. In
the probe limit, there is R%; B = 48:2,’[ . The function f (W)
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describes the nontrivial coupling between scalar fields and
the Gauss—Bonnet invariant. In the linearized regime, one
can generally put the coupling function in the quadratic form
f (W) = nW? with 5 as the model parameter [28-30].

The exterior metric solution of spherically symmetric
objects is [29]

d 2

ds® = —g(rydi® + % + r2(d0% + sin*0dg?). )
g\r

In the probe limit, the metric is given by the function g(r) =

1— ZTM, where M is the mass of the objects. We define r; >

2M as the object surface radii. When ry = 2M, the metric is

a black hole.

The scalar field differential equation is

fu R

V'V, W — m?W + 5

=0. 3)

We choose to study a static massive scalar field in the form

W(t,7,0,¢) =Y " S (0)Rin(r). )
Im

Here [ is the spherical harmonic index and /(I 4+ 1) is the
characteristic eigenvalue of the angular scalar eigenfunction
S1m (0) [27,62,63]. For simplicity, we label Ry, (r) as ¥ (r).
One can obtain the scalar field equation

/ R2 2
t/f”+<§+%>w’+<n GB—Z(ZH)—m—)w:o,

g r’g g

2
where g = 1 —ZTMandRZGB = 48:;4 .

In this work, we focus on scalar fields with nodes. That
is to say, there is at least a point ry satisfying v (rg) = O.
The bound-state massive static scalar fields satisfy asymp-
totically decaying behaviors ¢ (r — 00) ~ %e""’ . In the
range (rg, 00), the scalar field boundary conditions are

Y (ro) =0, ¥(o0) =0. (6)

According to boundary conditions (6), the scalar field
Y (r) must possess one extremum point r = rpeqk between
the vanishing point » = r¢ and the infinity. It may be a posi-
tive maximum extremum point satisfying

1ﬁ(rpeak) >0, 1p/(rpeak) =0, 150//(7‘17eak) <0, @)

otherwise it will be a negative minimum extremum point with

W(rpeak) <0, 1/f/(rpeak) =0, 1»”//(rpeak) > 0. (8)

Relations (7) and (8) yield that

{y #0, Ilf/ =0 and llfllf” <0} for r= I peak - 9
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Multiplying both sides of (5) with i, we obtain the new
equation

4 2 g/ /
Yyl + (— + —) vy
roog
2 2
+ ("RGB _ ;L b m—) Y2 =0. (10)
g r’g g

At the extremum point, relations (9) and (10) yield the
inequality
2 2
nRGB - l(l:—l) _m_ 20 for I = Tpeak-
8 reg 8
The extremum point is outside the gravitational radius
Tpeak > Ts = 2M, which yields

(1)

g(r):l—T >0 for r=rpea- (12)

With relations (11) and (12), we obtain the inequality

nRzGB—l(l:;l) —m220 for v =rpeak- (13)
From relation (13), one deduces that
NRE&p —m* >0 for r=rpeak- (14)
The inequality (14) is equal to
pe I ek (15)
RZ, 48M?

The extremum point is outside the object surface 7 peqr >
rg > 2M. It yields the relation

S m2S  m2eM)S  4m>M*
n > > > 5 = 5— = . (16)
M2 T AME - 48M 3

For scalar fields with nodes, we obtain a lower bound on
the coupling parameter. Below this bound, the static scalar
field with nodes cannot exist outside the object surface. It
implies that static massive scalar fields with nodes usually
cannot exist outside objects of large mass. Here we obtain a
no hair behavior for scalar fields with nodes in the region

n < i‘sz 4,
3

In particular, for n = 0, (17) always holds. It means mini-

mally coupled massive scalar fields always cannot exist out-

side general spherically symmetric objects, such as black

holes and horizonless stars.

a7

3 Conclusions

We studied no scalar field hair behavior for spherically sym-
metric objects in the scalar-Gauss—Bonnet gravity. We con-
sidered a static massive scalar field with nodes. Through ana-
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lytical methods, we obtained a bound on the scalar-Gauss—
Bonnet coupling parameter as n < ‘—3‘m2M4, where 7 is the
coupling parameter, m is the scalar field mass and M is the
mass of objects. Below the lower bound, static massive scalar
fields with nodes cannot exist outside the objects. In partic-
ular, our analysis doesn’t depend on the surface condition.
So this no hair behavior for scalar fields with nodes is a very
general property.
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