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Abstract In this paper we calculate the B̄s → f0(980)

form factors from light-cone sum rules with B meson DAs.
With adopting the quark–antiquark configuration of light
scalar mesons, the high twist two-particle and the three-
particle contributions are found to be ∼ 25% individual, and
totally they give about 50% correction to certain form factors
in the considered energy regions. We further explore the light-
cone sum rules approach to study the S−wave B̄s → KK
form factors, the f0 + f ′

0 + f ′′
0 resonance model is pro-

posed and the result shows that the background effect from
f ′
0 + f ′′

0 accounts ∼ 5%. As a by-product, we extract the
strong coupling |g f0KK | = 1.08+0.05

−0.14 GeV with taking the
B̄s → f0(980) form factors calculated previous under the
narrow width approximation.

1 Introduction

Form factor is a fundamental physical quantum in effective
field theory (EFT), with including both the long distance
(LD) and short distance (SD) physics. In order to extract
the Cabibbo–Kobayashi–Maskawa (CKM) matrix elements,
reliably, in the semileptonic B decay processes, the pre-
cise calculations of the relevant form factors are inevitable.
The heavy-to-light form factors are calculated by different
approaches, in which the lattice QCD (LQCD) gives the reli-
able simulations in the low recoiled regions [1,2], while in
the large and full recoiled regions, the QCD-based analytical
approaches like the light-cone sum rules (LCSRs) [3–14] and
the perturbative QCD (PQCD) [15–21] are applied.

There are many successful calculations for the heavy-to-
light transition form factors with the final state being a pseu-
doscalar (P) or a vector (V ) meson. While to our knowledge,
the transition form factors with light scalar (S) meson final
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state are not understood well so far due to the unclear underly-
ing structure and the large width effect. It has been suggested
that the scalar mesons with masses below or near 1 GeV
(the isoscalar σ/ f0(500) and f0(980), the isodoublet κ , and
the isovector a0) form a SU (3) flavor nonet, and the scalar
mesons with masses around 1.5 GeV ( f0(1370), a0(1450),
K ∗

0 (1430) and f0(1500)) form the other one. The combined
analysis based on orbital angular momentum [22–24] and
data [25–27] implies that the heavier nonet states favour the
quark–antiquark configuration replenished with some pos-
sible gluon content. From the spectral analysis, there is not
a general agreement on the underlying assignments of the
scalar mesons in the lighter nonet, like f0(980). Pictures like
tetra-quark [22,23,28,29], gluonball [30], hybrid state [31]
and molecule state [32] are all discussed, in which the tetra-
quark assignment is more favorite nowadays. The case is
different in the B → f0(980) decays when f0(980) is ener-
getic and the process happens with large recoiling, where the
conventional quark–antiquark assignment is the favorite one
since the possibility to form a tetra-quark state is power sup-
pressed with comparing to the state of quark pair [24]. So in
this work, with the main purpose to calculate the heavy-to-
light transition form factors, we would take the usual quark–
antiquark nature of f0(980), and postpone the tetra-quark
study somewhere else.

Some attempts are carried out to calculate the B → S
transition form factors from LCSRs with scalar mesons dis-
tribution amplitudes (DAs) [33–36]. We comment that these
work considered only the scalar mesons in the heavier nonet,
and their accuracy is debatable since some important infor-
mations of the input DAs, such as the standard conformal
partial expansion and the width effect, are still missing. In
this paper, with taking the s̄s configuration of f0(980), we
suggest to study the B̄s → f0(980) form factor from the
alternative LCSRs with B meson DAs. Although the width
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of f0(980) is suppressed by the phase space1, we would like
to access the width effect by applying the approach proposed
to calculate B → ππ, Kπ form factors [12,13], with sub-
stituting the isovector ππ state by the scalar isoscalar KK
state.

The rest of this paper is organised as follows. In Sect. 2 we
revisit and update the mass and the decay constant of f0(980)

in the two-point QCD sum rules. Sections 3 and 4 are the main
parts of this paper, where we present the LCSRs calculation
for B̄s → f0(980) form factors and generalizes it to study the
S−wave B̄s → KK form factors, respectively. We summary
in Sect. 5. The coefficients in three-particle corrections from
B meson LCDAs are complemented in Appendix B.

2 σ and f0(980) in the QCD sum rules revisited

QCD sum rules [39] is a powerful tool to study hadron spec-
trum. For the meson with I G(J PC ) = 0+(0++), the scalar
isoscalar currents include both Jn = n̄n = 1√

2
(ūu+ d̄d) and

J s = s̄s. We start with the two-point correlation function

Π2pSRs(q) = i
∫

d4xeiqx 〈0|T {J s(x), J s(0)}|0〉. (1)

Although the data of D+
s → f0π+ indicates f0(980) may be

dominated by the s̄s component, much more measurements
[40–49], especially the comparable branching ratios between
B → f0(980) → ππ and B → f0(980) → KK [50],
support a mixing between f0 and σ :

| f0(980) 〉 = |ss̄ 〉 cos θ + |nn̄ 〉 sin θ,

|σ(500) 〉 = −|ss̄ 〉 sin θ + |nn̄ 〉 cos θ. (2)

The mixing implies that f0 and σ should be treated sep-
arately, and in the basis of flavour, two decay constants are
needed to describe each of them,

〈 f0|ūu|0〉 = 1√
2
m f0 f̄

n
f0 , 〈 f0|s̄s|0〉 = m f0 f̄

s
f0 ,

〈σ |ūu|0〉 = 1√
2
mσ f̄ nσ , 〈σ |s̄s|0〉 = mσ f̄ sσ . (3)

The neutral scalar meson can not be produced via the vector
current because fS is vanished in the SU (3)/isospin limit
with the charge conjugation invariance and the conservation
of vector current.

1 In fact the width of f0 is smaller than it of ρ meson. It should be
stressed that the width effect in B → ρ transition is usually neglected
because in the experimental analysis the ρ meson is identified by the P-
wave ππ signal when the dipion invariant mass locates in the ρ−pole
region [37,38]. This makes the narrow-width treatment for B → ρ

form factor from LCSRs being consistent with the experimental mea-
surement.

The basic idea of QCD sum rules is to calculate indepen-
dently for the correlation function in twofold ways: the QCD
calculation at quark-gluon level in the Euclidean momenta
space, and the summing of intermediate states from the
view of hadron. The QCD calculation in the negative half
plane of q2 is guaranteed by the operator-product-expansion
(OPE) technology, and the correlation function is then writ-
ten in terms of various vacuum condensates. On the other
hand, the average distance between two coordinate points
(0 and x in Eq. 1) grows when q2 shifting from large neg-
ative to positive values, and then the LD quark-gluon inter-
action forms the hadrons [5]. In this way, the correlation
function can be expressed as the sum of contributions from
all possible intermediate states in the positive half-plane,
with possible subtractions. The accuracy of LCSRs approach
is mainly depended on how to match the QCD calcula-
tion to the hadron spectral analysis, in more word is how
to take the quark-hadron duality in the dispersion relation
to eliminate the contributions from excited and continuum
states.

By inserting a complete set of intermediate states |n〉, the
unitarity relation (q2 > 0) of the correlation function reads
as,

2 ImΠ2pSRs(q)

=
∑
n

〈0|J s(x)|n〉〈n|J s(0)|0〉 dτn (2π)4 δ(q − pn), (4)

where dτn denotes the phase space of each state |n〉, like
σ, f0(980) and their excited states. We are now interesting in
f0(980) which enters in the two-point sum rules as the first
excited state with the ground state σ , so we include both them
in the hadron inserting and take the threshold s0 to truncate
the higher excited states. After applying the dispersion rela-
tion and employing the quark-hadron duality, the matching
between quark amplitude and the hadron spectral analysis is
taken as

∑
S=σ, f0

m2
S( f̄

s
S )2

(m2
S − q2)

= 1

π

∫ s0

0
ds

Im ΠOPE
2pSRs(s)

s − q2 , (5)

where ΠOPE
2pSRs(s) is the OPE result for the correlation func-

tion. In order to improve the convergence of OPE calculation
and suppress the contributions from high excited states and
continuum spectrums, we apply the Borel transformation to
both sides of Eq. 5. The result is quoted [51,52] as follow,
with αs to one-loop order and the vacuum condensate terms
up to dimension six,

∑
S=σ, f0

m2
S( f̄

s
S (μ0))

2e−m2
S/M

2
(αs(μ0)

αs(M)

)2/β1

= 3

8π2 M
4
[
1 + h(1)

]
f (1) + 1

8
〈αsG2

π
〉 + 3ms〈s̄s〉
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− 1

M2

[
ms〈s̄gsσ · Gs〉 − 2

3
παs〈s̄γμλasūγ μλas〉

−παs〈s̄σμνλ
ass̄σμνλas〉

]
. (6)

The functions defined in the perturbative terms are

f (n) = 1 − e− s0
M2

[
1 + s0

M2 + 1

2

( s0

M2

)2 + 1

n!
( s0

M2

)n]
,

I (n) =
∫ 1

e
− s0

M2
dt lnn t ln(− ln t),

h(n) = αs(M)

π

(17

3
+ 2

I (1)

f (1)
− 2 ln

M2

μ2

)
. (7)

We use the two-loop expression for strong coupling [50],

αs(μ) = π

2β1 log(μ/Λ)

(
1 − β2

β2
1

log(2 log(μ/Λ))

2 log(μ/Λ)

)
, (8)

with the evolution kernels β1 = (33 − 2n f )/12 and β2 =
(153 − 19n f )/24. The hadronic scale Λ is set to reproduce
αs(mZ ) = 0.118 and αs(1 GeV) = 0.474, and written in
terms of step function

Λ(n f ) = Which [n f = 3, 0.332,

n f = 4, 0.292, n f = 5, 0.210]. (9)

The input values for the nonperturbative vacuum conden-
sates at default scale 1 GeV are taken as [53–55]:

〈ūu〉 = (−0.25 GeV)3, 〈s̄s〉 = 0.8〈ūu〉,
〈gsq̄σ · Gq〉 = −0.8〈q̄q〉,
〈αs/πGa

μνG
aμν〉 = 0.012 GeV4,

〈q̄γμλaqq̄γ μλaq〉 = −16

9
〈q̄q〉2,

〈q̄σμνλ
aqq̄σμνλaq〉 = −3

4
〈q̄q〉2. (10)

The light quark masses are estimated as the “current-quark”
masses in the MS (μ = 1 GeV) scheme [50],

ms = 0.125 GeV. (11)

We also consider the running of parameters with one-loop
accuracy [56–59],

mq(μ) = mq(μ0)
(αs(μ0)

αs(μ)

)−1/β1
,

〈q̄q〉μ = 〈q̄q〉μ0

(αs(μ0)

αs(μ)

)1/β1
,

〈αsG
2〉μ = 〈αsG

2〉μ0 ,

〈gsq̄σ · Gq〉μ = 〈gsq̄σ · Gq〉μ0

(αs(μ0)

αs(μ)

)−1/(6β1)

. (12)

Differentiating both sides of Eq. 6 by the Borel mass we
obtain an auxiliary sum rules,

∑
S=σ, f0

m4
S( f̄

s
S (μ0))

2e−m2
S/M

2

m2
S( f̄

s
S (μ0))2e−m2

S/M
2

=
2M2

[
1 + h(2)

]
f (2) + 8π2

3
68παs
27M4 〈s̄s〉2

[
1 + h(1)

]
f (1) + 8π2

3

[
1

8M4 〈αsG2

π
〉 − 68παs

27M6 〈s̄s〉2
] ,

(13)

which is further used, together with the renormalization-
improved sum rules in Eq. 6, to fit the masses and decay
constants of σ and f0. The terms proportional to quark mass
on the right hand side are neglected in Eq. 13.

The Borel mass is fixed by the rule of thumb that the
contribution from high dimension condensate terms is no
larger than twenty percents in the truncated OPE, and simul-
tanously the contribution from excited and continuum states
is smaller than thirty percents when summing up the hadrons.
The threshold value s0 is usually close to the outset of the
first higher excited state with the same quantum number,
then a certain vicinity can be expected, we determine it
with considering the maximal stability of physical quan-
tities once the Borel mass has been set down. Within the
interval M2 = 1.0 ± 0.1 GeV2 at the fixed threshold value
s0 = 2.0 ± 0.2 GeV2 which is slightly larger than the one
used in [28,29] because we are discussing the ss̄ current, we
do the combined quadratic fit to both sides of Eqs. (6, 13),
and obtain

m f0 = (985 ± 122) MeV,

mσ = (439 ± 304) MeV,

f̄ sf0(1 GeV) = (358 ± 4) MeV,

f̄ sσ (1 GeV) ∼ 0. (14)

The s−flavor decay constant of f0 agrees with the prediction
f̄ sf0 = (370 ± 20) MeV obtained under the assumption that
f0(980) and f0(1500) are the lowest scalar states with s̄s
assignment [24]. The nearly zero s−flavor decay constant of
σ indicates that f0(980) is the lowest state in the channel with
scalar isoscalar current J s , standing by which we reevaluate
the sum rules in Eqs. (6, 13) by considering only the f0 state,
and obtain the same result for m f0 and f̄ sf0 as listed in Eq.
14.

3 B̄s → f0 form factors from the LCSRs

The approach of LCSRs with B meson DAs was proposed to
calculate the B → P, V form factors [9], in this section we
implement it to calculate the B̄s → f0 form factors.
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As we demonstrated in the last section that the scalar
isoscalar current s̄s coupling to σ is nearly zero, so it would
be reasonable to consider f0(980) as the lowest scalar state
in Bs decays. This consideration is also supported by the fact
that no evidence of σ is observed in the B decays so far [60].
Let’s consider another correlation function

Πν(p, q) = i
∫

d4x eip·x 〈0|T {J s(x), JIν (0)}|B̄s(p + q)〉,
(15)

with the weak current JIν = s̄Γ I
ν b. The indicator I =

A, T correspond to the gamma matrices Γ A
ν = γνγ5 and

Γ T
ν = σνμγ5qμ, respectively.2 The heavy-to-light current is

reduced to the light quark current after transiting to the heavy
quark effective theory (HQET), and the correlation function
is modified to

Π̃ν(p, q̃) = i
∫

d4xeip·x

〈0|T {J s(x), J̃Iν (0)}|B̄s,v(p + q̃)〉. (16)

We use the notations p to denote the momentum carried by
the scalar isoscalar current J s , and q̃ = q − mbv for the
effective current J̃Iν = s̄Γ I

ν hv . In the rest frame the effective
b-quark field is defined by hv(x) = eimbvxb(x) with the
unit vector v = (1, 0, 0, 0), and |B̄s(p + q)〉 = |B̄s,v(p +
q̃)〉 holds up to the O(1/mb) accuracy. We would discuss in
the intervals |p2|, |q̃2| 	 Λ2

QCD, (mBs − mb)
2 where the

correlation function does not fluctuate violently and the OPE
calculation works well.

In the correlation function, the same flavour quark fields
with small displacement can be contracted in the form of
quark propagator,

ss(x, 0,ms) =
∫

d4 p

(2π)4 e
−i px

∫ 1

0
duGμν(ux)

·
[ uxμγ ν

p2 − m2
s

− (p/ + ms)σμν

2(p2 − m2
s )

2

]
, (17)

in which the first term is the freedom part in the QCD limit,
and the second term respects the soft one-gluon correction.
Two-particle and three-particle DAs of Bs meson are defined
as [61],

〈0|s̄α(x)hvβ(0)|B̄s,v〉
= − i fBsmBs

4

∫ ∞

0
dωe−iωv·x

[
(1 + v/)

{ [
φ+(ω) + x2g+(ω)

]

−
[
φ+(ω) − φ−(ω) + x2 (g+(ω) − g−(ω))

]
2v · x x/

}
γ5

]
βα

,

(18)

〈0|s̄α(x)Gρδ(ux)hvβ(0)|B̄s,v〉

2 We use the convention σμν = i
2 (γμγν − γνγμ).

= fBsmBs

4

∫ ∞

0
dω

∫ ∞

0
dζe−i(ω+uζ )v·x[(1 + v/)

·
{
(vργδ − vδγρ) [ΨA(ω, ζ ) − ΨV (ω, ζ )] − iσρδΨV (ω, ζ )

−
(
xρvδ − xδvρ

v · x
)

XA(ω, ζ )

+
(
xργδ − xδγρ

v · x
)

[YA(ω, ζ ) + W (ω, ζ )]

+iερδαβ

xαvβ

v · x γ5 X̃ A(ω, ζ ) − iερδαβ

xαγ β

v · x γ5 ỸA(ω, ζ )

−
(
xρvδ − xδvρ

v · x
)

x/

v · x W (ω, ζ )

+
(
xργδ − xδγρ

v · x
)

x/

v · x Z(ω, ζ )
}
γ5

]
βα

, (19)

respectively. Two variables ω and ζ are introduced to rep-
resent the plus components of light quark and the gluon
momentum, respectively. The path-ordered gauge factor is
always underlied in the matrix element sandwiched between
meson state and vacuum. Recently, the renormalization group
equations (RGE) are resolved in the NC limit for three-
particle DAs [62], and the models are suggested for the
higher-twist B meson DAs [63], following which the power
suppressed correction are supplemented to B → P, V, γ

form factors [13,63–66]. The Lorentz definition in Eqs. (18,
19) should not be confused with the definite twist definition
of LCDAs, we collect their relations, as well as the general
model for the later one in Appendix A.

The definition of B̄s → S transition form factors is quoted
as [67,68]

〈S(p)|J A
ν (0)|B̄s(p + q)〉

= −i[F+(q2)pν + F−(q2)qν]

= −iF1(q
2)

[
(2p + q)ν − m2

Bs
− m2

S

q2 qν

]

−iF0(q
2)
m2

Bs
− m2

S

q2 qν, (20)

〈S(p)|J Tν (0)|B̄s(p + q)〉
= − FT (q2)

mBs + mS

[
q2(2p + q)ν − (m2

Bs − m2
S)qν

]
. (21)

The following relations are suggested for the form factors
associated with axial-vector current in Eq. 20,

F1(q
2) = F+

2
(q2), (22)

F0(q
2)

(m2
Bs

− m2
S)

q2

= F−(q2) + F+(q2)

2

(m2
Bs

− m2
S − q2)

q2 . (23)

We calculate the correlation function in Eq. 16 under the
narrow width approximation, obtain the LCSRs result for
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B̄s → f0(980) form factors,

m f0 f̄
s
f0 F

B̄s→ f0+ (q2) e
−m2

f0
/M2

= fBsm
2
Bs

{ ∫ σ0

0
dσ e−sq/M2

[
φ+(σmBs )

−φ±(σmBs )

σ̄mBs
− 8σ̄ 2m2

Bs
g+(σmBs )

(σ̄ 2m2
Bs

− q2)2

− 4σ̄ g′+(σmBs )

(σ̄ 2m2
Bs

− q2)

]
+ ΔF+(q2, s0, M

2)
}
, (24)

m f0 f̄
s
f0 F

B̄s→ f0− (q2) e
−m2

f0
/M2

= fBsm
2
Bs

{ ∫ σ0

0
dσ e−sq/M2

[
− σ φ+(σmBs )

σ̄

−φ±(σmBs )

σ̄mBs
+ 8σ̄ σm2

Bs
g+(σmBs )

(σ̄ 2m2
Bs

− q2)2

+ 4σ g′+(σmBs )

(σ̄ 2m2
Bs

− q2)

]
+ ΔF−(q2, s0, M

2)
}
, (25)

2m f0 f̄
s
f0

mBs + m f0
F B̄s→ f0
T (q2) e

−m2
f0

/M2

= fBsm
2
Bs

{ ∫ σ0

0
dσ e−sq/M2

·
[φ+(σmBs )

σ̄mBs
− 8σ̄mBs g+(σmBs )

(σ̄ 2m2
Bs

− q2)2

− 4 g′+(σmBs )

mBs (σ̄
2m2

Bs
− q2)

]

+ 1

m2
Bs

− m2
f0

− q2
ΔFT,q(q

2, s0, M
2)

}
. (26)

The contributions proportional to light quark mass ms are
not shown explicitly above. The dimensionless variable σ ≡
ω/mBs is the longitudinal momentum fraction of the light
quark inside B̄s meson, and the virtuality of internal quark is
sq = m2

Bs
σ − (q2σ −m2

s )/σ̄ . To process the calculation, we
have defined an auxiliary distribution

φ±(ω) ≡
∫ ω

0
dτ [φ+(τ ) − φ−(τ )], (27)

with the boundary conditions φ±(0) = φ±(∞) = 0. The
derivation is g′+(σmBs ) = (d/dσ) g+(σmBs ). We give sev-
eral comments in orders:

(i) With taking into account the quark mass effect, our results
shown in Eqs. (24, 25) consist with the calculations of
B → D∗

0 form factors [69].
(ii) FT,p(q2) and FT,q(q2) are obtained by matching the

coefficients associated with different Lorentz structures
(say, pν and qν , respectively) with the matrix element
sandwiched by the tenser current. In principle, they
should be equal to each other when considering only

the two-particle DAs,3 so we use the unified notation
FT (q2).

(iii) In the heavy quark limit σ → 0, we reproduce the rela-
tionsF+(0) = 2mBs/(mBs +mS)FT (0) andF−(0) = 0
at the full recoiled point.

Multiplying both sides of Eq. 20 by qν , we derive the
matrix elements deduced by the pseudo-scalar current J P =
imbs̄γ5b,

〈S(p)|J P (0)|Bs(p + q)〉 = (m2
Bs − m2

S)F0(q
2), (28)

which suggests another sum rules,

m f0 f̄
s
f0 (m2

Bs − m2
f0)F

B̄s→ f0
0 (q2) e

−m2
f0

/M2

= fBsm
2
Bsmb

{ ∫ σ0

0
dσ e−sq/M2

·
[ (σ̄ 2m2

Bs
− q2) φ+(σmBs )

2σ̄ 2mBs
− 3 φ±(σmBs )

σ̄

−
[
2σ̄m2

f0 − 2σq2 + (1 − 2σ)(m2
Bs − m2

f0 − q2)
]

·
(

σ̄mBs g+(σmBs )

(σ̄ 2m2
Bs

− q2)2
+ g′+(σmBs )

2mBs (σ̄
2m2

Bs
− q2)

) ]

+ΔF0(q
2, s0, M

2)
}
. (29)

We remark that Eq. 28 is established on the heavy quark limit,
so the new LCSRs in Eq. 29 can be used to estimate how well
does the heavy quark expansion work by comparing it with
the original LCSRs in Eqs. (24, 25).

The contributions from three-particle DAs of B meson are
arranged in an universal form

ΔFi (q
2, s0, M

2)

=
∫ σ0

0
dσ e−sq/M2

(
−I1,i (σ ) + I2,i (σ )

M2 − I3,i (σ )

2M4

)

+e−s0/M2

m2
Bs

{
η(σ )

[
I2,i (σ ) − I3,i (σ )

2

(
1

M2 + 1

m2
Bs

dη

dσ

)

− η

2m2
Bs

d I3,i (σ )

dσ

]}∣∣∣
σ=σ0

, (30)

where the dimensionless variable η = (σ̄ 2m2
Bs

)/(σ̄ 2m2
Bs

−
q2 + m2) can be understood as the ratio between the mini-
mal virtuality of the b quark field and the maximal virtuality
carried by the internal light quark. The integral over the three-
particle DAs is written as

IN ,i (σ ) = 1

σ̄ N

∫ σmBs

0
dω

∫ ∞

σmBs−ω

dζ

ζ

·
{
CΨA
N ,i (σ, u, q2) ΨA(ω, ζ )

3 Because the coefficients of three-particle correlation in ΔFT,p may
have the 1/q2 factor, we would take ΔFT,q for this part contribution in
numerical analysis.
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+CΨV
N ,i (σ, u, q2) ΨV (ω, ζ )

+CXA
N ,i (σ, u, q2) X A(ω, ζ )

+CY A
N ,i (σ, u, q2)

[
Y A(ω, ζ ) + W (ω, ζ )

]

+C X̃ A
N ,i (σ, u, q2) X̃ A(ω, ζ )

+CỸ A
N ,i (σ, u, q2) Ỹ A(ω, ζ )

+C
=
W
N ,i (σ, u, q2)

=
W (ω, ζ )

+C
=
Z
N ,i (σ, u, q2)

=
Z(ω, ζ )

}∣∣∣
u=(σmBs−ω)/ζ

, (31)

here another two auxiliary distributions are introduced for

X A,Y A,W , X̃ A, Ỹ A and
=
W ,

=
Z ,

f ≡
∫ ω

0
dτ f (τ, ζ ),

=
f ≡

∫ ω

0
dτ

∫ ζ

0
dτ ′ f (τ, τ ′). (32)

The lower indicator N = 1, 2, 3 stands for the power of
Borel mass M−2(N−1) premultiplied with the integrals, the
coefficients CN ,i associated to each three-particle DA are
presented in Appendix B.

We take mb(mb) = 4.2 GeV for b quark mass in the
typical MS scheme, and use fBs = 0.242 GeV obtained
from lattice QCD [70] and two-point QCD sum rules [71].
The inverse moment of B̄s DAs is chosen in the interval
λB̄s = 450 ± 50 MeV, a little bit smaller then the conven-
tional value 500±50 MeV, by considering the possible next-
to-leading-order radiative correction effects4 [11,72]. The
same ballpark of the LCSRs parameters, say, M2 = 1.0±0.1
GeV2 and s0 = 2.0 ± 0.2 GeV2, are used here as in the two-
point sum rules in the last section, with which the OPE con-
vergence is automatically manifested by the relative small
three-partical DAs contribution F3p(Q2)/F2p(Q2) � 30%
for Q2 ∈ [0, 5] GeV2. We plot in Fig. 1 for the B̄s → f0
form factors obtained under the narrow width approxima-
tion, where the lightgray shadows reveal the total uncertainty
came from the inverse moment λB̄s and the LCSRs parame-
ters. The high twist B meson DAs with two-particle config-
uration (g+) give about 25% decrease to F+ and FT , about
20% increase to F−, the tiny change of F0 from g+ can be
understood by the interplay between the negative correction
for F+ and the positive correction for F−. The three-particle
B̄s DAs bring another 25% decrease and increase to FT and
F−, respectively, while its corrections to F+ and F0 are tiny,
indicating that the heavy quark limit is broken with consider-
ing the three-particle DAs correction. We compare our result
for B̄s → f0 form factors with other methods in Table 1.

4 Where λB = 358+38
−30(343+22

−20) MeV is obtained by comparing the
B → π(ρ) form factor from LCSRs with pion [73] (rho [8]) and B
meson DAs.

Fig. 1 LCSRs predictions for B̄s → f0 form factors with Q2 = q2,
where the red-dashed and blue-dotted curves represent the contributions
with considering only the leading twist and also the high twists two-
particle DAs of B̄s meson, respectively. The black curves indicate the
form factors obtained with including both two- and three-particle DAs
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Table 1 B̄s → f0(980) form factors at q2 = 0 (q2 = 4m2
π for [75]) predicted in different methods

Methods F+ F− FT

PQCD [74] 0.70 ≡ 0 0.40

CLFD [75] 0.80 ≡ 0 −
CQM [76] 0.254 − 0.285

QCDSRs [33] 0.12 −0.07 −0.08

LCSRs [34] 0.37 ≡ 0 0.228

LCSRs − chiral [35] 0.44 −0.44 0.58

LCSRs [36] 0.90 0.14 0.60

This work 0.52 0.04 0.21

4 The width effect and the B̄s → K K form factors

To investigate the width effect of intermediate states, let’s
look back to the dispersion relation of correlation function
in Eq. 15,

Πν(p, q) = 1

π

∫ ∞

0
ds

ImΠν(s, q2)

s − p2 − iε
. (33)

The imaginary part in the numerator, corresponding to the
physical regions (q2 > 0), can be obtained by interpolat-
ing a complete set of intermediate states between two local
currents in the correlation function,

2 ImΠν(s, q
2) =

∑
n

∫
dτn (2π)4δ(s − p2

n)

·〈0|J s |Sn(p)〉 〈Sn(p)|JIν (q2)|B̄s(q + pn)〉, (34)

where p and dτn denote the momentum and phase space
volume of each state |Sn〉, respectively. In the narrow width
approximation, |Sn〉 are single mesons and the dispersion
relation reduces to

Πν(p
2, q2) = m f0 f̄

s
f0

〈 f0(p)|JIν (q)|B̄s(p + q)〉
m2

f0
− p2 − iε

+ 1

π

∫ ∞

s0

ds
ImΠν(s, q2)

s − p2 − iε
. (35)

In Eq. 35, only the contribution from ground state is singled
out while the rest parts are retained in the integral, this is
exactly what we did in the last section.

A straightforward way to consider the width effect is to
substitute the interpolation of single mesons by stable multi-
meson states, such as the KK , ππ, ηη and their continuum
states [12],

Πν(k
2, q2) = 1

π

∫ s2K
0

4m2
K

ds
∫

dτ2K

· 〈0|J s |KKI=0〉 〈KKI=0|JIν (q)|B̄s(k + q)〉
s − k2 − iε

+ · · · .

(36)

Here we only write out explicitly the term contributed from
KK state, the ellipsis denotes the contributions from ππ ,
4π , ηη, ηη′ and their excited states. Because it is much more
harder to generate a s̄s pair than a n̄n pair from vacuum, the
contribution from ηη, ηη′ channels can be expected to be
small. The contributions from ππ and 4π channels are also
small since they are produced via KK → ππ, 4π rescatter-
ing, which exceeds the scope we are discussing here. In the
follow calculation we consider KK state as the ground state
which gives dominant contribution to the correlation func-
tion, while the contributions from high excited multi-meson
states are suppressed by the Borel exponent e−s/M2

(with the
Borel mass M2 � 1.1 GeV2).

4.1 Formalism

The scalar isoscalar kaon form factor is defined as [77]

〈
K ρ(k1)K

σ (k2)I=0
∣∣ J s ∣∣ 0

〉 = Γ s
K (k2)

ms
δρσ . (37)

There is no experiment measurement for Γ s
K as yet,5 so

our calculation relies on the theoretical input. In the chiral
perturbative theory (CHPT), Γ s

K has been derived to next-
to-leading-order [84] with supplementing by the unitarity
constraint [85], however, the unitarized CHPT works only at
low energies, say, s < 1.1 GeV2 [86,87]. In order to include
the high energy behaviour, one is forced to employ a model
[88,89] and/or to adopt the perturbative QCD approximation
[90].

From the view of hadron, Γ s
K is relevant to the T matrix

elements of ππ → KK and KK → KK scatterings [88,89]
via

Γ s
K (k2) = MK (k2) + TKiGii Mi , (38)

5 For the scalar isoscalar pion form factor Γπ defined with n̄n source
current, the N -subtracted omnés representation gives a good description
for the data up to k2 = 1.52 GeV2 with considering the generalized
Watson theorem of the ππ → ππ phase [78–83].
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Fig. 2 The moduli of Γ s
K obtained from I = J = 0 hadronic KK →

KK scattering

where Mi , in principle, is an analytic term describing the
transition from the scalar isoscalar source to the channel i
(i = 1 represents for ππ and i = 2 for KK ), and Gii is
the free propagation of the particles in channel i . The ππ

channel does not contribute to the s̄Γ I
ν b transition at Born

level, which is one of the reasons we can obtain the approx-
imate dispersion relation in Eq. 36, with retaining only the
KK channel. To maintain the self-consistency of the intre-
polation, we take only the KK channel in Eq. 38 too, and the
transition from source current J s to KK channel happens as
GKK MK = 1 with subsequently the free propagating . In
this way, a simple relation is obtained as

Γ s
K (k2) = MK (0) + TKK (k2), (39)

with the normalisation MK (0) = m2
K − m2

π/2.
We can read from Eqs. (38, 39) that the phase of s flavoured

kaon form factor is only determined by the KK → KK
scattering amplitude, whose expression with definite isospin
(I ) and partial wave (J ) is parameterised as

T I
J (k2) = 1

2iβK (k2)

[
ηI
J (k

2) e2iδ IJ (k
2) − 1

]

= |T I
J (k2)| eiφ I

J (k
2). (40)

In the above equation, βK (k2) =
√

1 − 4m2
K /k2 is the phase

space of KK system, ηI
J and δ IJ are the inelasticity and phase

shift, respectively, and φ I
J is the phase. We would use the

result of T 0
0 (k2) obtained from the amplitude analysis [91,92]

as input for the scalar form factor,6 which, as they claimed,
can be extrapolated to a high energy ∼ 5 GeV2. We show in
Fig. 2 for the result in the energy regions k2 ∈ [4m2

π , 2.0]
GeV2, these curves consist with the result obtained from
CHPT in the low energy regions k2 < 1.1 GeV2 [86], and
also consist with the fully K -matrix description in the high
energies [89]. The amplitude analysis result we adopted here

6 We thanks Ling-yun Dai for sharing us with the original result of their
global fit analysis.

considered all the measured data, the ππ − K K̄ final state
interaction, the mass difference between the charged and
neutral kaon, and the low energy Roy equation [93]. In the
amplitude analysis demonstrated by coupled-channel treat-
ment and combined fitting, the source current with ss̄ con-
figuration is overwhelming coupled to KK channel through
f0, while the coupling to ππ is tiny.

The remaining matrix element in Eq. 36 are defined in
terms of B̄s → KK transition form factors [94], for the
axial-vector current j Aν we have

−i〈K+(k1)K
−(k2)|s̄γνγ5b|B̄s(q + k)〉

= Ft
qν√
q2

+ F0
2
√
q2

√
λB

(
kν − k · q

q2 qν

)

+ F‖√
k2

(
k̄ν − 4(q · k)(q · k̄)

λB
kν + 4k2(q · k̄)

λB
qν

)
. (41)

The kinematics of B̄s decay to KK state are described by
three independent variables: k2, q2 and θK , denoting the
invariant mass of KK system, the squared momentum trans-
fer in the weak decay and the angle between the 3 momentum
of K−(k2) and B̄s meson in the K+K− rest frame, respec-
tively. The dot products are

q · k = 1

2
(m2

Bs − k2 − q2),

q · k̄ =
√

λB

2
βK (k2) cos θK , (42)

with the kinematic Källén function λB ≡ λ(m2
Bs

, q2, k2) =
m4

Bs
+ k4 +q4 −2(m2

Bs
k2 +m2

Bs
q2 + k2q2). By the way, the

matrix element in Eq. 41 can also be defined by the helicity
amplitudes,

Hλ = 〈K+(k1)K
−(k2)|s̄γνγ5b|B̄s(q + k)〉. (43)

The helicity definition provides a possibility to study the
contributions from different partial waves, because Hλ, with
λ = t, 0,+,−, can be expanded in terms of the associated
Legendre polynomials. To study the partial waves contribu-
tions within the convenient definition in orthogonal Lorentz
structures, we translate the partial wave expansion from the
helicity amplitudes Hλ to the form factors Fi ,

F0,t (q
2, k2, q · k̄)

=
∞∑
l=0

√
2l + 1 F (l)

0,t (q
2, k2)P(0)

l (cos θπ ),

F‖(q2, k2, q · k̄)

=
∞∑
l=1

√
2l + 1 F (l)

‖ (q2, k2)
P(1)
l (cos θπ )

sin θπ

. (44)
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Considering the decomposition of isoscalar KK state,

|KKI=0〉 = 1√
2
|K+K−〉 + 1√

2
|K 0 K̄ 0〉, (45)

substituting Eqs. 41 and 44 into Eq. 36, we obtain the
S−wave contribution to the imaginary part with interpolating
scalar isoscalar KK state,
∫

dτ2K 〈0|J s |KKI=0〉 〈KKI=0|JAν (q)|B̄s(k + q)〉

=
∫

dτ2K 2
Γ s∗
K (k2)

ms
〈K+(k1)K

−(k2)|J A
ν (q)|B̄s(p + k)〉

= 2i
βK (s)

8π

Γ s∗
K (s)

ms

[
F (l=0)

0 (q2, s)
2
√
q2

√
λB

kν

+
( F (l=0)

t (q2, k2)√
q2

− F (l=0)
0 (q2, s)

2
√
q2

√
λB

k · q
q2

)
qν

]
.

(46)

In fact, the phase space dτ2K plays as a S−wave projector for
the timelike-helicity form factors Ft,0, which means that only
the S−wave component F (l=0)

t,0 survives after integrating over
the angle θK . For the form factor F‖, the role of S−wave
projector vanishes and the contribution starts from D-wave
component (l = 2n, n = 1, 2, 3 . . . ), which part is expected
tiny in the B̄s → KK transtion and would not be discussed
in this paper.

We take the global duality to eliminate the contributions
beyond KK state with the threshold s2K

0 ,

1

π

∫ ∞

s2K
0

ds e−s/M2
ImΠν(s, q

2)

= 1

π

∫ ∞

s2K
0

ds e−sq/M2
ImΠOPE

ν (sq , q
2), (47)

and arrive at the LCSRs result for S−wave B̄s → KK tran-
sition,

∫ s2K
0

4m2
K

ds e−s/M2 βK (s)

4π2

Γ s∗
K (s)

ms
F (l=0)

0 (q2, s)

√
q2

√
λB

= fBsm
2
Bs

{ ∫ σ 2K
0

0
dσ e−sq/M2

[
φ+(σmBs )

−φ±(σmBs )

σ̄mBs
− 8σ̄ 2m2

Bs
g+(σmBs )

(σ̄ 2m2
Bs

− q2)2

− 4σ̄ g′+(σmBs )

(σ̄ 2m2
Bs

− q2)

]
+ ΔF+(q2, s2K

0 , M2)
}
, (48)

∫ s2K
0

4m2
K

ds e−s/M2 βπ(s)

8π2

Γ s∗
K (s)

ms

·
( F (l=0)

t (q2, k2)√
q2

− F (l=0)
0 (q2, s)

2
√
q2

√
λB

k · q
q2

)

= fBsm
2
Bs

{ ∫ σ 2K
0

0
dσ e−sq/M2

[
− σ

σ̄
φ+(σmBs )

−φ±(σmBs )

σ̄mBs
+ 8σ̄ σm2

Bs
g+(σmBs )

(σ̄ 2m2
Bs

− q2)2

+ 4σ g′+(σmBs )

(σ̄ 2m2
Bs

− q2)

]
+ ΔF−(q2, s2K

0 , M2)
}
, (49)

Multiplying both sides of Eq. 46 by qν , we obtain another
independent LCSRs for the timelike-helicity form factor
F (l=0)
t (q2, s),

∫ s2K
0

4m2
K

ds e−s/M2 βπ(s)

8π2

Γ s∗
K (s)

ms

√
q2 F (l=0)

t (q2, s)

= fBsm
2
Bsmb

{ ∫ σ 2K
0

0
dσ e−sq/M2

·
[ (σ̄ 2m2

Bs
− q2) φ+(σmBs )

2σ̄ 2mBs
− 3 φ±(σmBs )

σ̄

−
[
2σ̄m2

f0 − 2σq2 + (1 − 2σ)(m2
Bs − m2

f0 − q2)
]

·
(

σ̄mBs g+(σmBs )

(σ̄ 2m2
Bs

− q2)2
+ g′+(σmBs )

2mBs (σ̄
2m2

Bs
− q2)

) ]

+ΔF0(q
2, s2K

0 , M2)
}
. (50)

4.2 Models

Equations (48, 49, 50) are the main results in this section.
Due to the convoluted integral, we can not solve out the form
factors F (l=0)

t/0 in terms of the B meson DAs. To propel the
calculation, one way we can try is to introduce the parame-
terisation of S−wave B̄s → KK form factors, and the first
candidate coming into our mind is the single resonance ( f0)
model in the generalized Breit–Wigner formula.7

F (l=0)
0 (s, q2)

√
q2

√
λB

= 1√
2

g f0KK F B̄s→ f0+ (q2)

m2
f0

− s − i
√
s Γ f0(s)

eiφ f0 (s,q2),

(51)

1√
2

( F (l=0)
t (s, q2)√

q2
− F (l=0)

0 (s, q2)

√
q2

√
λB

m2
Bs

− s − q2

q2

)

= g f0KK F B̄s→ f0− (q2)

m2
f0

− s − i
√
s Γ f0(s)

eiφ f0 (s,q2), (52)

1√
2
F (l=0)
t (s, q2)

√
q2

7 We drop the σ with the same reasons as described in Sect. 3, which,
phenomenologically, is further supported by the fact that no any signal
is found for KK coupling to σ [50].
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= g f0KK F B̄s→ f0
0 (q2)(m2

Bs
− m2

f0
)

m2
f0

− s − i
√
s Γ f0(s)

eiφ f0 (s,q2),

(53)

The strong coupling g f0ππ is normalized as

〈K+(k1)K
−(k2)| f s0 (k1 + k2)〉 = g f0K+K− = g f0KK√

2
. (54)

An underlying condition implied in Eqs. (48, 49, 50) is the
reality of expressions on the left hand side, and we take the
more strict local reality at each point of invariant mass,

Im
[
Γ s∗
K (s)F (l=0)

0/t (q2, s)
]

= 0. (55)

To fulfil this requirement, a strong phase φ f0 is introduced
to compensate the phase difference between the kaon form
factor and the modeled B̄s → KK form factors. Generally
speaking, φ f0 should depend on both the two variables s
and q2, while in the single f0 model the q2−dependence
disappears,

δΓ s
K
(s) − φ f0(s) = Arg

[ g f0KK

m2
f0

− s − i
√
sΓ f0(s)

]
. (56)

The simple model in Eqs. (51–53) is inspired by the
physics that the sum rules obtained for the B̄s → KK form
factors, in the narrow width approximation, should reproduce
the sum rules for the form factors of B̄s → f0 transition. To
check this, let’s consider the energy-dependent width of f0
with including the loop effects of two kaons coupling,

Γ f0(s) = g2
f0KKβK (s)

4
√

2π
√
s

Θ(s − 4m2
K )

= Γ tot
f0

βK (s)

βK (m f0)

m f0√
s

Θ(s − 4m2
K ). (57)

The width of f0 is usually parameterized under the Flatté
model [95,96] with considering the location of f0 in the
invariant mass, say, below or above the threshold. While in
the B̄s decays, the case is different because the invariant mass
is alway above the threshold,8 then we can take the conven-
tional form of the width as described in Eq. 57, In the single
f0 model, the s flavoured kaon form factor is written as

Γ s∗
K (s)

ms

∣∣∣
f0

= g f0KKm f0 f̄
s
f0

m2
f0

− s + i
√
sΓ f0(s)

e−iφ f0 (s,q2). (58)

Substituting Eqs. (51, 58) into Eq. 48, the left hand side of
Eq. 48 becomes

m f0 f̄ f0 F B̄s→ f0+ (q2)

∫ s2K
0

4m2
K

dse−s/M2 1

π

Γ f0(s)
√
s

(m2
f0

− s)2 + sΓ 2
f0
(s)

8 Another reason for us not using the Flatté model is that it gives a
smaller value of I f0 = 4.44+0.81

−0.98, which is close to I f ′
0 and damages

the contribution hierarchy from different resonances, as we would see
in Eqs. (68, 69).

Γ tot
f0

→0
−−−−→ m f0 f̄

s
f0 F

B̄s→ f0+ (q2) e
−m2

f0
/M2

. (59)

Similarly, we can reproduce the LCSRs for form factors

F B̄s→ f0− and F B̄s→ f0
0 with taking into account the resonance

models in Eqs. 52 and 53, respectively. What’s more, the rela-
tion defined in Eq. 23 also holds in the resonance models.

4.3 Numerics

We employ the z−series expansion for heavy-to-light tran-
sition form factors [97], with j = +,−, 0,

F B̄s→ f0
j (q2) = F B̄s→ f0

j (0)

1 − q2/m2
Bs

{
1 + bF j ζ(q2) + cF j ζ 2(q2)

}
.

(60)

F B̄s→ f0
j (0) is the value at the full recoiled energy, the param-

eters bF j , cFi indicate the coefficients associated with the
ζ−functions,

ζ(q2) = z(q2) − z(0), (61)

z(q2) =
√
t+ − q2 − √

t+ − t0√
t+ − q2 + √

t+ − t0
, (62)

with the definitions t± ≡ (mBs ± m f0)
2 and t0 ≡ t+(1 −√

1 − t−/t0).
The S−wave B̄s → KK form factors, under the single

f0 model, is rearranged in a general formula as

[
XF j I (s

2K
0 , M2, Γ tot

f0 )
] κF j + ηF j ζ(q2) + ρF j ζ

2(q2)

1 − q2/m2
Bs

= IOPE
j (s2K ,

0 M2, q2), (63)

where for the sake of brevity we introduce the following
notations:

κF j ≡ |g f0KK |F B̄s→ f0
j (0),

ηF j ≡ bF j |g f0KK |F B̄s→ f0
j (0),

ρF j ≡ cF j |g f0KK |F B̄s→ f0
j (0),

XF+ = XF− = 1, XF0 = (m2
Bs − m2

f0). (64)

The integral coefficient on the left hand side reads as

I (s2K
0 , M2, Γ tot

f0 )

= 1

4
√

2π2

∫ s2K
0

4m2
K

dse−s/M2 βK (s)|Γ s
K (s)/ms |√

(m2
f0

− s)2 + sΓ 2
f0
(s)

.

(65)

IOPE
j represents the OPE calculations on the right hand side

of Eqs. (48, 49, 50). There is no physical requirement that
the threshold value s2K

0 should be equal to s0, we fixed it in
an independent way by considering the correlation function
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in Eq. 1 with KK interpolating. The 2pSRs is then written
in terms of the scalar isoscalar kaon form factor,
∫ s2K

0

4m2
K

ds e−s/M2 βK (s)

8π2

∣∣∣Γ
s
K (s)

ms

∣∣∣2 = ΠOPE
2pSRs(s

2π
0 , M2).

(66)

We then determine the value s2K
0 = 2.0 GeV2, closing to it

taken in the case of single meson interpolating.
Besides the bound state f0, it is nature to question what’s

the roles of the excited states f ′
0, f ′′

0 in the B̄s → KK tran-
sition.9 To include these effects, we suggest the f0 + f ′

0 + f ′′
0

model by appending f ′
0 and f ′′

0 states to Eq. (53),

1√
2
F (l=0)
t (s, q2)

√
q2

=
∑

S= f0, f ′
0, f ′′

0

gSK K F B̄s→S
0 (q2) (m2

Bs
− m2

S)

m2
S − s − i

√
sΓS(s)

eiφS(s).

(67)

We tacitly assume that the strong phase φS associated to
each intermediate state is only dependent on the invariant
mass of dikaon state, which means we do not consider the
interaction effect between different resonances when intro-
ducing the strong phases to satisfy Eq. 55. By this way,
the B̄s → S form factors for different intermediate reso-

nances are linear to each other: F f ′
0

j (q2) = γ
f ′
0

F j
F f0

j (q2) and

F f ′′
0

j (q2) = γ
f ′′
0

F j
F f0

j (q2). The dimensionless parameters γ
f ′
0

F j

and γ
f ′′
0

F j
indicate the relative size of B̄s → f ′

0 and f ′′
0 form

factors comparing to the B̄s → f0 form factors, respectively.
The LCSRs in Eq. 63, in the case of three resonance model,
is modified to

∑
S= f0, f ′

0, f ′′
0

[
γ S
F j

X S
F j

I S
]κF j + ηF j ζ(q2) + ρF j ζ

2(q2)

1 − q2/m2
Bs

= IOPE
j (s2K ,

0 M2, q2). (68)

We quote the values of the integral coefficients (in unit of
10−2)

I f0 = 9.54+1.48
−1.54, I f ′

0 = 3.67+2.30
−1.38, I f ′′

0 = 1.82+0.73
−0.57. (69)

In these integrals with taking the bound limit at 4m2
K , only

the right half of the peaking region in Fig. 2 is taken into
account, so the relative sizes of integral coefficients I f ′

0 , I f ′′
0

to I f0 (I f ′
0/I f0 , I f ′′

0 /I f0 ) can be expected to be double of
that in the B → ππ case [12].

The fitting result in the f0 + f ′
0 + f ′′

0 model are pre-
sented in Table 2, where the errors come from the sum rules

9 Hereafter we take f0, f ′
0 and f ′′

0 to denote the meson states f0(980),
f0(1500) and f0(1710), respectively. We do not consider f0(1370) as a
separated resonance due to the weak coupling of f0(1370) to KK state.

Table 2 The fitting result for Fi in f0 + f ′
0 + f ′′

0 model

|gSππ |F j |gSππ |F+ |gSππ |F0

κ
f0
F j

(GeV) 0.56+0.02
−0.08 0.40+0.01

−0.05

η
f0
F j

(GeV) −0.97−0.01
+0.13 0.19+0.15

−0.19

ρ
f0
F j

(GeV) −12.5+2.60
−1.42 0.61−0.60

+0.57

γ
f ′
0

F j
0.49+0.45

−0.17 0.48+0.26
−0.16

γ
f ′′
0

F j
0.66+0.80

−0.20 0.62+0.58
−0.26

F B̄s→ f0+ (0) F B̄s→ f0
0 (0)

0.52 ± 0.10 0.37 ± 0.06

parameters. For the total widths of the intermediate reso-
nances we choose Γ tot

f0
= 0.055 GeV, Γ tot

f ′
0

= 0.112 GeV

and Γ tot
f ′′
0

= 0.123 GeV [50]. We note that varying the width

of f0 in [0.01, 0.1] GeV brings another uncertainty to I f0

by |+2.55
−1.40, while the width effects of f ′ ( f ′′) to I f ′

0 (I f ′′
0 ) is

negligible since their widths are much smaller. In the fit we
also use the condition at q2 = 0

∑
S= f0, f ′

0, f ′′
0

[
γ S
F j

X S
F j

I S
]
κF j = IOPE

j (s2K ,
0 M2, 0), (70)

and also the hierarchy anstz of different resonances in the left

hand side of Eq. 68, say, 0 < γ
f ′
F j

, γ
f ′′
F j

< 1. At the bottom

of Table 2, for the comparison we supplement the B̄s → f0
form factors calculated in Sect. 3 under the narrow width
approximation. In principle, the strong coupling |g f0KK | can
be extracted out in case we have the reliable prediction for
B̄s → f0 form factors, F+ and F0. With the result obtained
in the narrow width approximation as we demonstrated in the
last section, we can estimate |g f0KK | = 1.08+0.05

−0.14 GeV, but
keep in mind that the width/non-resonant effect is sizeable
and we reserve another ∼ 50% uncertainty.

The contribution from each resonance to the OPE result
(Eq. 68) is listplotted in Fig. 3, from which the expected
leading role of f0 is confirmed. We plot in Fig. 4 for the
S−wave B̄s → KK form factors in the f0 + f ′

0 + f ′′
0

model, for convenience we also show the part of contribu-
tions from f0 in blue dashed curves. It is easy to see the over-
whelming role of f0, while the contributions from f ′

0 and f ′′
0

account only ∼ 5%. The result at the full recoiled energy√
q2F (l=0)

t (1, 0)/mBs = 54.0+4.0
−7.0 is much larger than the

result for S−wave B → ππ form factors obtained in the
LCSRs with 2πDAs [98–100], with the asymptotic predic-
tion

√
q2F (l=0)

t,asy (4m2
π , 0)/mB = 5.40 ± 1.00, this discrep-

ancy is explained by the strong threshold effect of f0 in the
B̄s → KK decay.
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Fig. 3 The contributions to the OPE result IOPE
F+ (up) and IOPE

F0
(down)

in the f0 + f ′
0 + f ′′

0 model

Fig. 4
√
q2F (l=0)

0 (1, q2)/mBs and
√
q2F (l=0)

t (1, q2)/mBs obtained
under the f0 + f ′

0 + f ′′
0 model

5 Conclusion

In this paper we calculate the B̄s → f0(980) form fac-
tor from the light-cone sum rules with B−meson DAs, and
investigate the S−wave B̄s → KK form factors to study
the width effect, basing on the assumption that f0 is domi-
nated by the s̄s configuration. With taking the conventional
quark–antiquark assignment, we revisit the 2pSRs for the
mass and decay constant of f0(980). For the B̄s → f0(980)

form factors, we find that the high twist two-particle and
the three-particle B−meson DAs give 25% correction sepa-
rately, and their total correction to certain form factors can
be about 50%. In order to investigate the width effect, we
suggest the three resonance states model to parameterize the
S−wave B̄s → KK form factors, the fitting result shows
the dominant role of f0, and as a by-product, suggest a new
way to determine the strong coupling |g f0KK |. The residual
uncertainty of our prediction mainly comes from the freedom
to choose the widths of f0.
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A B meson LCDAs

Several models have been suggested for the LCDAs with def-
inite twists, which incorporate the correct low-momentum
behaviour and satisfy the (tree-level) equation of motion
(EOM) constraints [62,65,101]. In [63], a more general
ansatz is proposed with comprising all of these models as
particular cases.

For the two-particle Bs meson DAs demonstrated in Eq.
18, φ+(ω) and φ−(ω) are the leading and subleading twist
DAs, and g+(ω) and g−(ω) are DAs at twist-4 and twist-5,
respectively. The general model are quoted as [63]

φ+(ω) = ω f (ω), (71)

φ−(ω) = F(ω)

−1

6
�(λ2

E − λ2
H )

[
ω2 f ′(ω) + 4ω f (ω) − 2F(ω)

]
, (72)

g+(ω) � gWW+ (ω) = 1

8

∫ ∞

ω

[
ω2 + 3ρ2 − 4�̄ρ

]
f (ρ),

(73)
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g−(ω) = −3ω

4
F(ω)

−ω

4
�(λ2

E − λ2
H )

[ω3

3
f (ω) + ωF(ω) − F(ω)

]
. (74)

The general function f (ω) is normalized as
∫ ∞

0 dωω f (ω) =
1 and decreases sufficiently fast at ω → ∞. In Eqs. (72,
74), three auxiliary functions are introduced to simplify the
expression,

f ′(ω) = d f (ω)

dω
, (75)

F(ω) ≡
∫ ∞

ω

dρ f (ρ), (76)

F(ω) ≡
∫ ∞

ω

dρ2

∫ ∞

ρ2

dρ1 f (ρ1). (77)

The normalization constant � is determined from the leading
twist function f (ω) via the EOM relations∫ ∞

0
dωωφ+(ω) = 4

3
�̄, (78)

∫ ∞

0
dωω2φ+(ω) = 2�̄2 + 1

3
(2λ2

E + λ2
H ), (79)

�−1 = 1

6

∫ ∞

0
dωω3φ+(ω) = �̄2 + 1

6
(2λ2

E + λ2
H ). (80)

Concerning the three-particle Bs meson DAs, the defini-
tions in Eq. 19 by Lorentz structures should not be confused
with the definitions by means of definite twists, and they have
the following relations [62]

ΨA(ω, ζ ) = 1

2

[
φ3(ω, ζ ) + φ4(ω, ζ )

]
,

ΨV (ω, ζ ) = 1

2

[
− φ3(ω, ζ ) + φ4(ω, ζ )

]
,

XA(ω, ζ ) = 1

2

[
− φ3(ω, ζ ) − φ4(ω, ζ ) + 2ψ4(ω, ζ )

]
,

YA(ω, ζ ) = 1

2

[
− φ3(ω, ζ ) − φ4(ω, ζ ) + ψ4(ω, ζ ) − ψ5(ω, ζ )

]
,

X̃ A(ω, ζ ) = 1

2

[
− φ3(ω, ζ ) + φ4(ω, ζ ) − 2ψ̃4(ω, ζ )

]
,

ỸA(ω, ζ ) = 1

2

[
− φ3(ω, ζ ) + φ4(ω, ζ ) − ψ̃4(ω, ζ ) + ψ̃5(ω, ζ )

]
,

W (ω, ζ ) = 1

2

[
φ4(ω, ζ ) − ψ4(ω, ζ ) − ψ̃4(ω, ζ )

+φ̃5(ω, ζ ) + ψ5(ω, ζ ) + ψ̃5(ω, ζ )
]
,

Z(ω, ζ ) = 1

4

[
− φ3(ω, ζ ) + φ4(ω, ζ ) − 2ψ̃4(ω, ζ )

+φ̃5(ω, ζ ) + 2ψ̃5(ω, ζ ) − φ6(ω, ζ )
]
. (81)

The general model for the DAs with definite twists are [63]

φ3(ω, ζ ) = −1

2
� (λ2

E − λ2
H ) ω ζ 2 f ′(ω + ζ ), (82)

φ4(ω, ζ ) = 1

2
� (λ2

E + λ2
H ) ζ 2 f (ω + ζ ), (83)

ψ4(ω, ζ ) = � λ2
E ω ζ f (ω + ζ ), (84)

ψ̃4(ω, ζ ) = � λ2
H ω ζ f (ω + ζ ), (85)

φ̃5(ω, ζ ) = −� (λ2
E + λ2

H ) ω F(ω + ζ ), (86)

ψ5(ω, ζ ) = � λ2
E ζ F(ω + ζ ), (87)

ψ̃5(ω, ζ ) = � λ2
H ζ F(ω + ζ ), (88)

φ6(ω, ζ ) = −� (λ2
E − λ2

H )F(ω + ζ ). (89)

λE and λH are the parameters entered in the normalization
conditions

ΨA(x = 0) = λ2
E

3
, ΨV (x = 0) = λ2

H

3
. (90)

It is known that the EOM, as shown in Eqs. (78–80), imply
the connections between the two-particle and three-particle
LCDAs,

ω0 = λB = 2

3
�̄, 2�̄2 = 2λ2

E + λ2
H , Exp − Model, (91)

ω0 = 5

2
λB = 2�̄, �̄2 = 2λ2

E + λ2
H , LD − model, (92)

with taking the general functions

f (ω) = 1

ω2
0

e−ω/ω0 , Exp − Model, (93)

f (ω) = 5

8ω5
0

(2ω0 − ω)3Θ[2ω0 − ω], LD − Model.

(94)

The normalization constants in these two particular models
are

� = 1

3ω2
0

, Exp − Model, (95)

� = 7

2ω2
0

, LD − Model. (96)

We use the exponential models in our numerical evaluation.

B Coefficients in the three-particle correction

B.1 Correction coefficients to F+(q2)

C ΦA−ΦV
1,F+ = −2u − 2

σ̄m2
B

,

C ΦA−ΦV
2,F+ = − (2u − 2)(m2

B − q2) + (2u + 1)σ̄ 2m2
B

σ̄m2
B

,

C ΦV
2,F+ = −6uσ̄ ,

C XA
2,F+ = (2u − 1)

mB
, C XA

3,F+ = 2(2u − 1)(σ̄ 2m2
B − q2)

mB
,

C Y A+W
2,F+ = 18

mB
, C X̃ A

2,F+ = 1

mB
, C Ỹ A

2,F+ = − 2

mB
,

C X̃ A
3,F+ = −8σ̄

[
2m2

S σ̄ + (1 − 2σ)(m2
B − m2

S − q2) − 2σq2
]

mB
,
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C Ỹ A
3,F+ = −C X̃ A

3,F+ ,

C
=
W

3,F+ = −16σ̄ (u + u2) − 4(4u2 + u)

·
[
2m2

S σ̄ + (1 − 2σ)(m2
B − m2

S − q2) − 2σq2
]

m2
B

. (97)

B.2 Correction coefficients to F−(q2)

C ΦA−ΦV
1,F− = −2u − 2

σ̄m2
B

,

C ΦA−ΦV
2,F− = − (2u − 2)(m2

B − q2) − (2u + 1)σ σ̄m2
B

σ̄m2
B

,

C ΦV
2,F− = 6uσ,

C XA
2,F− = −3(2u − 1)

mB
,

C XA
3,F− = −2(2u − 1)σ (σ̄ 2m2

B − q2)

σ̄mB
,

C Y A+W
2,F− = 18

mB
, C X̃ A

2,F− = 1

mB
, C Ỹ A

2,F− = − 2

mB
,

C X̃ A
3,F− = 8σ

[
2m2

S σ̄ + (1 − 2σ)(m2
B − m2

S − q2) − 2σq2
]

mB
,

C Ỹ A
3,F− = −C X̃ A

3,F− ,

C
=
W

3,F− = 16σ(u + u2) − 4(4u2 + u)[
2m2

S σ̄ + (1 − 2σ)(m2
B − m2

S − q2) − 2σq2
]

m2
B

. (98)

B.3 Correction coefficients to FT,p(q2)

C ΦA−ΦV
2,FT,p

= − (2u − 1)

mB
, C ΦV

2,FT,p
= − 3u

mB
,

C XA
2,FT,p

= 2
2u − 1

σ̄m2
B

,

C XA
3,FT,p

= −2
[(2u − 1)(σ̄ 2m2

B − q2)]
σ̄m2

B

C X̃ A
2,FT,p

= − 8

mB

√
q2

,

C X̃ A
3,FT,p

= 4σ̄
[σ̄ (m2

B − m2
S − q2) − 2σq2]
q2 ,

C
=
W

3,FT,p
= 3u

[
σ̄√
q2

− (mB − √
q2)

mB

√
q2

]
,

C
=
Z

3,FT,p
= (24u2 + u − 47)

·
[
σ̄ (m2

B − m2
S + q2) − 2(mB − √

q2)
√
q2

]

2mBq2 . (99)

B.4 Correction coefficients to FT,q(q2)

C ΦA−ΦV
1,FT,q

= 2u − 1

σ̄mB

C ΦA−ΦV
2,FT,q

= − (2u − 1)[σ̄ 2m2
B − q2(1 − 2σ)]

σ̄mB
,

C ΦV
1,FT,q

= 3u

σ̄mB
, C ΦV

2,FT,q
= −3u[σ̄ 2m2

B − q2(1 − 2σ)]
σ̄mB

,

C XA
1,FT,q

= −2(2u − 1)

σ̄ 2m2
B

, C XA
2,FT,q

= 4σ(2u − 1)q2

σ̄ 2m2
B

,

C XA
3,FT,q

= 2
[(2u − 1)(σ̄ 2m2

B − q2)][σ̄ 2m2
B − q2(1 − 2σ)]

σ̄ 2m2
B

,

C X̃ A
2,FT,q

= 4 − 16
√
q2

mB
,

C X̃ A
3,FT,q

= 8σ [σ̄ (m2
B − m2

S − q2) − 2σq2],

C Ỹ A
2,FT,q

= 120,

C
=
W

3,FT,p
= 6u

[
σ

√
q2 + (mB − √

q2)
√
q2

mB

]
,

C
=
Z

3,FT,p
= (24u2 + u − 47)

·
[
σ̄ (m2

B − m2
S + q2) − 2(mB − √

q2)
√
q2

]

mB
. (100)

B.5 Correction coefficients to F0(q2)

C ΦA−ΦV
1,F0

= 3(1 − 2u)

2σ̄mB
,

C ΦA−ΦV
2,F0

= 3(1 − 2u)

2σ̄mB
(σ̄ 2m2

B − q2),

C ΦV
1,F0

= − 3u

σ̄mB
, C ΦV

2,F0
= − 3u

σ̄mB
(σ̄ 2m2

B − q2),

C XA
1,F0

= 2u + 1

σ̄ 2m2
B

,

C XA
2,F0

= (2u + 7) − 2(2u + 1)(σ̄ 2m2
B − q2)

σ̄ 2m2
B

,

C XA
3,F0

= 2u + 1

σ̄ 2m2
B

(σ̄ 2m2
B − q2)2,

C X̃ A
2,F0

= 3

2
, C

=
W

3,F0
= 9u

[
σ̄ (mB −

√
q2) − σ

√
q2

]
,
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C
=
Z

3,F0
= −24u2

[
σ̄ (mB −

√
q2) − σ

√
q2

]
. (101)
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