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Abstract We analyse the Finsler geometries of the kine-
matic space of spinless and spinning electrically charged
particles in an external Rañada field. We consider the most
general actions that are invariant under the Lorentz, electro-
magnetic gauge and reparametrization transformations. The
Finsler geometries form a set parametrized by the gauge
fields in each case. We give a simple method to calculate
the fundamental objects of the Finsler geometry of the kine-
matic space of a particle in a generic electromagnetic field.
Then we apply this method to calculate the geodesic equa-
tions of the spinless and spinning particles. Also, we show
that the electromagnetic duality in the Rañada background
induces a simple dual map in the set of Finsler geometries.
The duality map has a simple interpretation in terms of an
electrically charged particle that interacts with the electro-
magnetic potential and a magnetically charged particle that
interacts with the dual magnetoelectric potential. We exem-
plify the action of the duality map by calculating the dual
geodesic equation.

1 Introduction

The study of the topological solutions to Maxwell’s equa-
tions in vacuum, firstly proposed by Trautman and Rañada
in [1–3], has revealed so far a rich interplay between phys-
ical systems and mathematical structures which was previ-
ously unexpected in the realm of classical electrodynamics
and classical field theory [4]. Since then, the subject of the
topological electromagnetic fields has gain momentum with
very interesting problems investigated recently, such as the
existence of topological solutions of the Einstein–Maxwell
theory [5–8] and of the non-linear electrodynamics [9–14].
Also, it has been shown that there are interesting mathemat-
ical structures that can be associated to the physical systems
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with topological electromagnetic fields and play an impor-
tant role in their dynamics, such as twistors [15], fibrations
[16] and rational functions [17,18] (see for recent reviews
[19–21]). Due to the utmost importance of Maxwell’s equa-
tions, it is essential to further investigate the properties of the
topological electromagnetic fields from both physical and
mathematical point of view.

An important mathematical structure that has applications
in the geometrization of the electromagnetism, gravity and
field theory in general is the Finsler space. In the case of the
charged particles in the electromagnetic external field, the
Finsler geometry emerges as a natural structure on the kine-
matic space. The relation between the Finsler geometry and
the particle kinematics has been known for some time [22–
26,28] and it is based on the homogeneity of the Lagrangian
functional which allows one to formulate the particle kine-
matics as a geodesic problem on the Finsler space. In general,
the Finsler metric depends on q/m where q is the electric
charge of the particle and m is its mass. Due to this depen-
dency, different geometries are generated for different types
of particles as well as for different electromagnetic back-
grounds. Another interesting feature of the description of the
electromagnetism in terms of Finsler spaces is the appearance
of alternate gauge conditions for classical charged particles
which are due to general relativistic metrics [27] ( see for
general references [29–31]).

In this paper, we are going to construct the Finsler geome-
tries determined by the topological solutions to Maxwell’s
equations and calculate the main geometrical objects. Our
approach to this problem is different from the literature in
that we are considering here the particle action that is invari-
ant, besides the Lorentz and the electromagnetic gauge trans-
formations, under the world-line reparametrization, too. In
this formulation, the kinematic space forms a set X[x, ẋ;�]
parametrized by the world-line einbein e and the electro-
magnetic potentials Aμ(x). We denote these variables collec-
tively by�. Each of these spaces has its own Finsler geometry
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and a particular Finsler geometry can be selected by choosing
the gauge fields. The gauge fixing is useful for analysing the
physical properties of the system. On the other hand, from the
geometrical point of view, it is more interesting to have the
geometry defined generally by leaving the gauge fields arbi-
trary. Thus, the gauge fields can be interpreted as parameters
that enter the Lagrangian of the particle as Lagrange multipli-
ers of the first class constraints. In general, the Lagrangians
of the relativistic systems have singular Hessian matrices.
This property is due to the alternating sign of the pseudo-
riemannian metric. However, the physical kinematics of the
classical massive particles takes place in the future light-cone
defined by the relation ημν ẋμ ẋν > 0. Since this relation
defines a conical submanifold M∨

x (M) ⊂ Tx (M) one can
construct a Finsler space on the physical kinematic space.
We use this generic feature of the particle kinematics to for-
mulate the Finsler geometry of X[x, ẋ;�] in terms of the
topological electromagnetic field for a spin zero and a spin-
ning relativistic particle [32].

The paper is organized as follows. In Sect. 2, we give
the Finsler geometry of the kinematic space for a relativistic
particle in an arbitrary external electromagnetic field. We use
the most general particle action in which all symmetries are
manifest, i. e. the Lorentz symmetry, electromagnetic gauge
and world-line reparametrization [33–35]. The main prob-
lem here is to find the fundamental geometrical objects such
as the Finsler metric, the inverse metric, the angular metric
tensor and the Cartan metric. We give a simple method to
find these objects which are in general non-linear and non-
polynomial in all variables. In Sect. 3, we apply the results
from the previous section to determine the Finsler geometry
for the particular case of an electrically charged particle in a
topological solution to Maxwell’s equations. These type of
solutions, which we call Rañada fields, are parametrized in
terms of two complex scalar fields associated to the electric
and magnetic field lines, respectively. Here, we calculate the
fundamental objects of the Finsler geometries as functions
of the complex scalar fields. We find that there is a duality
map between the Finsler geometries induced by the electro-
magnetic duality of Maxwell’s equations in vacuum. In Sect.
4, we formulate the Finsler geometry of the kinematic space
of the spinning particle. In this case, the kinematic space is
Z2 graded due to the supersymmetry of the model. However,
the Finsler geometry is defined with respect to the commuta-
tive variables only. We apply the same method from Sect. 2
to calculate the geometrical objects of the Finsler geometry.
We conclude the paper in the last section. To make this paper
self-consistent, we collect the basic concepts of the Finsler
geometry that we are using throughout it in the Appendix A.
In the Appendix B we give the formulas for the angular met-
ric tensor and the Finsler geodesic equation for the spinless
particle. In the Appendix C, we give the same formulas for the
spinning particle. Also, we present the geodesic Finsler equa-

tion in the dual geometry calculated from the duality map.
The main source of Finsler geometry that we use throughout
the paper are the references [29–31]. We use the natural units
h̄ = c = 1.

2 Finsler geometry of kinematic space

In this section, we formulate the Finsler geometry of the kine-
matic space X[x, ẋ;�] associated to a particle that moves in
an external electromagnetic field. As mentioned in the intro-
duction, the connection between the Finsler geometry and the
particle kinematics is known for some time [22,23]. The nov-
elty here is that we construct the Finsler geometry for the most
general particle Lagrangian that is invariant under all space-
time and gauge transformations and give a simple method
to calculate the fundamental objects whose definitions and
properties can be found in e. g. [29,30]. For convenience, we
have listed these definitions in the Appendix.

2.1 Calculation of the fundamental objects

The kinematic space of the relativistic particle denoted by
X[x, ẋ;�] is the space of all positions and velocities asso-
ciated to the particle world-line that, at its turn, is an equiv-
alence class in the set of curves connecting two events from
space-time x : [τ1, τ2] → R

1,3. Here, we designate by � all
other variables of the system which are usually associated to
the gauge symmetries, the classical spin degrees of freedom
and the external fields. In our case, these variables depend
only on the world-line coordinate with the only exception of
the electromagnetic potentials that depend on position. Some
of the parameters from � that are related to the gauge sym-
metries can be interpreted as Lagrange multipliers for the
constraints of the system. In the case of the classical parti-
cle, which is our object of study here, the curves xμ(τ) are
smooth.

The most general formulation of the spin-0 particle in
the external electromagnetic potential Aμ(x) is given in
terms of an action functional that is manifestly invariant
under the Lorentz group SO(1, 3), the U (1) group of the
electromagnetic gauge transformations and the world-line
reparametrization, and it has the following form [33,34]

S[x, ẋ; e, A] =
∫

dτ L[x, ẋ; e, A]

=
∫ τ2

τ1

dτ

[
1

2e
ημν ẋ

μ ẋν + 1

2
em2 + q Aμ(x)ẋμ

]
.

(1)

Here,m and q are the mass and electric charge of the particle.
For simplicity of notation, let us drop off formulas the argu-
ments of functions unless they are necessary. The dynamics
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of the particle is obtained by applying the variational princi-
ple to the action (1). The equations of motion are

dpμ

dτ
− q∂μAν ẋ

ν = 0 , (2)

ẋ2

e2 − m2 = 0 , (3)

where

pμ := ∂L

∂ ẋμ
= 1

e
ẋμ + q Aμ . (4)

For the spin-0 particle, the set of extra variables is � =
{e, A}, where e = e(τ ) is an auxiliary scalar function
(einbein) that makes the reparametrization invariance mani-
fest. By introducing it, the action of the relativistic particle
is simultaneously polynomial in the coordinates and non-
singular for massless particles. Also, e determines the Hes-
sian matrix of the Lagrangian which is non-null and non-
singular for an arbitrary non-vanishing einbein

det

[
∂2L[x, ẋ, e; A]

∂ ẋμ∂ ẋν

]
= − 1

e4 . (5)

Note that, once the equations of motion are imposed on the
coordinates and fields, the Hessian given by the Eq. (5) is
formally undetermined since the particles that travel with
the speed of light are massless.

In order to construct the Finsler geometry of the kinematic
space, we recall that the points from R

1,3 that are causally
connected satisfy the relation ημν ẋμ ẋν > 0. That shows that
the light-cone at x ∈ R

1,3 defines a conical region of the
tangent space at x , namely

M∨
x (R1,3) =

{
(x, ẋ) ∈ T ∗

x (R1,3) : ημν ẋ
μ ẋν > 0

}
. (6)

The determinant of the Hessian matrix of L2[x, ẋ; e, A] can
be written as

det
[
Hμν

] = −
(

2L

e

)4 (
1 + e

L
p2

)
, pμ := ∂L

∂ ẋμ
. (7)

From that, we can see that the Hessian is non-singular unless

ẋ2 + 3qeAẋ + e2q2A2 + e2

2
m2 = 0 . (8)

The above equation defines a surface in T ∗
x (R1,3) which

depends on the world-line parametrization and on the elec-
tromagnetic field through e and Aμ. However, this surface
does not always intersect the set of the causally connected
physical events or the world-line. A counterexample is given

by the particle in the proper time parametrization and in the
absence of the electromagnetic field for which

ẋ2 = −1

2
< 0 . (9)

In what follows, we consider only admissible Lagrangians for
which the Hessians of L2[x, ẋ; e, A] are non-singular. Then
the triplet {R1,3,M∨

x (R1,3), L[x, ẋ; e, A]} defines a four-
dimensional Finsler space. This induces a Finsler structure
onX[x, ẋ; e, A]which contains points from the tangent space
at x together with the values of e and A. Thus, the geometries
onX[x, ẋ; e, A] are parametrized by the einbein e(τ ) and the
four-vector potential Aμ(x), hence the notation.

The main geometrical objects of the Finsler geometries
are defined by the relations reviewed in the Appendix which
are proved in e. g. [29]. Our main task here is to determine
the formulas of the fundamental tensors and the geodesic
equations for the geometries of X[x, ẋ; e, A]. In order to
do that, the primary problem to be solved is to invert the
Finsler metric. Here, we give a simple procedure to obtain the
inverse metric as a non-linear and non-polynomial function
on variables and parameters as follows. By definition, the
fundamental metric tensor gμν[x, ẋ; e, A] can be written as

gμν = 1

2

∂2L2

∂ ẋμ∂ ẋν
= ∂L

∂ ẋμ

∂L

∂ ẋν
+ L

∂2L

∂ ẋμ∂ ẋν
. (10)

Then, by using the action (1), we can write the Eq. (10) as
follows

gμν = L

e

[
ημν + e

L
pμ pν

]
. (11)

We look for the inverse metric gμν of the following form

gμν = e

L

[
αημν + L

e
β

(
p−1

)μ (
p−1

)ν
]

,

(
p−1

)μ = pμ

p2 , p2 = ημν pμ pν , (12)

where α and β are real functions. For the inverse metric to
exists, it is necessary that

p2 �= 0 , (13)

where pμ is given by the Eq. (4). From this definition, we
can see that the presence of the electromagnetic field lifts
in general the singularity in momenta. After some simple
algebra, one arrives at the following coefficients α and β

α = 1 , β = − ep2

L
(

1 + L
ep2

) . (14)
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Then by plugging the coefficients from the Eq. (14) into the
inverse metric from the Eq. (12) we obtain the following
expression

gμν = e

L

[
ημν − pμ pν

p2 + L
e

]
. (15)

Again, in order for gμν to exist, the following condition must
be satisfied

p2 + L

e
�= 0 . (16)

This condition is in general valid. Next, we calculate the
Finsler–Christoffel symbols by plugging the Eqs. (12) and
(15) into the definition (A.4). The results is the following
formula

	μ
νρ = e

2L

(
ημλ − pμ pλ

p2 + L
e

) [
1

e

(
ηνλ∂ρL + ηρλ∂νL − ηνρ∂λL

)

+ ∂ρ (pν pλ) + ∂ν

(
pρ pλ

) − ∂λ

(
pν pρ

)]
. (17)

With these relations at hand, we can write down the Finsler
geodesic equation defined by the Eq. (A.5). Before presenting
it, it is useful to introduce the following shorthand notations
in which the equations have a more compact form

∂ = ẋμ∂μ , V = ẋμVμ , (18)

where Vμ(x) is an arbitrary four-vector. Also, we recall that
the variables xμ and ẋμ are independent on each other and
that the indices are raised and lowered with the inverse and the
direct Minkowski metric, i. e. Vμ = ημνVν , etc. With these
notations, the Finsler geodesic equation takes the following
form

d2xμ

dτ 2 + e

2L

(
ημν − pμ pν

p2 + L
e

) [
1

e

(
2xν∂L − ẋ2∂νL

)

+∂ (ppν) − ∂ν

(
p2

)]
= ẋμ d

dτ
[ln(L)] . (19)

For completeness, we give here the angular metric tensor and
the Cartan tensor. From the definition (A.1) we can immedi-
ately write

hμν = L

e

[
ημν + e

L
pμ pν

]
− ẋμ ẋν

L2 . (20)

Also, from the definition (A.2) we obtain the following result

Cμνρ = 1

2
ημν

∂L

∂ ẋρ
+ 1

e
δρ(μ pν) . (21)

We remark that the fundamental objects of the Finsler geom-
etry obtained above are in general non-linear and non-
polynomial in the variables xμ and ẋμ. This is due to the
fact that the inverse metric contains negative powers of these
variables.

The fundamental tensors and the Finsler geodesic equa-
tion are parametrized by e and Aμ (the potential vector is
implicit in L). Therefore, to each set of functions e and Aμ

corresponds a geometry. This observation is important if we
recall that by choosing particular values for e and Aμ one
fixes the reparametrization and the electromagnetic gauge
symmetries, respectively. In the classical theory, e can have
certain values even if the reparametrization symmetry does
not allow these values [35]. However, in the quantum theory
the gauge structure must be respected.

2.2 Action of gauge symmetries on Finsler geometries

The gauge transformations of the action from the Eq. (1)
induce transformations among the Finsler geometries in the
parameters e and A. A finite world-line reparametrization is
defined by the following transformations

τ ′ = f (τ ) , x ′μ(τ) = xμ( f (τ )) , edτ = e′d f (τ ) , (22)

where f is an arbitrary smooth function that has the following
properties

d f (τ )

dτ
> 0 , f (τ1) = 0 , f (τ2) = 1 . (23)

One can easily verify that the fundamental metric tensor, the
angular metric tensor and the Cartan tensor transform under
the transformations (23) as follows

g′
μν = gμν , h′

μν = hμν , C ′
μνρ = d f

dτ
Cμνρ . (24)

The Finsler geodesic equation Fμ = 0 is rescaled as

Fμ =
(
d f

dτ

)2

F ′μ = 0 , (25)

which for arbitrary f implies that F ′μ = 0. The infinitesimal
reparametrizations form an infinite dimensional continuous
group that can be interpreted as a gauge group. The corre-
sponding transformations can be obtained from the finite ones
by setting f (τ ) = 1 + ε(τ ), |ε(τ )| 	 1 for all τ ∈ [τ1, τ2].

The action (1) is invariant under the electromagnetic gauge
transformations of the following form

A′
μ(x) = Aμ(x) + ∂μ�(x) , (26)
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where �(x) is a smooth but arbitrary function on xμ’s only.
The Lagrangian is invariant under the transformations (26)
up to a surface term

L ′ = L + q∂� . (27)

One can easily verify that the Finsler metric tensor, angular
metric tensor and Cartan tensor transform as follows under
the gauge transformations

g′
μν = gμν + q2 [

2A(μ∂ν)� + ∂μ�∂ν�
]

+ q

e

[
ημν∂ρ� + 2ηρ(μ∂ν)�

]
ẋρ , (28)

h′
μν = hμν + q2 [

2A(μ∂ν)� + ∂μ�∂ν�
]

+ q

e

[
ημν∂ρ� + 2ηρ(μ∂ν)�

]
ẋρ

− ẋμ ẋν

L2

∞∑
n=1

(
− q

L
∂�

)n
, (29)

C ′
μνρ = Cμνρ + q

2e
ημν∂ρ� + q

e
ηρ(μ∂ν)� . (30)

The above transformations establish a relationship among
different Finsler geometries that can be associated to the
same physical system. As in the case of the world-line
reparametrization, by fixing a gauge one fixes the Finsler
geometry on the kinematic space. This is important if one
wishes to quantize the system by using the Finsler space
structure.

We recall that the gauge symmetry leaves the electromag-
netic field invariant, thus inducing an equivalence relation
among electromagnetic potentials on physical grounds. By
using the same argument, we can define and equivalence rela-
tion among the Finsler geometries if the fundamental tensor
objects are related as in the Eqs. (28–29). The practical appli-
cation of this definition is that it guarantees the equivalence of
the classical physics among all Finsler geometries connected
by gauge transformations.

2.3 Dual Finsler geometries from Rañada fields

In this section, we will apply the results obtained previously
to the relativistic particle that moves in a topological electro-
magnetic field which is a solution to Maxwell’s equations in
vacuum. The most general form of a topological electromag-
netic field was given by Rañada in [2,3] and in what follows
we will focus on the Rañada fields.1

1 The physics of a relativistic particle moving in a particular type of
topological electromagnetic field was discussed previously in [36] but
without any reference to the associated Finsler space.

The dynamics of the electromagnetic field in vacuum is
given by the well-known homogeneous Maxwell equations

∂μF
μν = 0 , (31)

εμνρσ ∂νFρσ = 0 , (32)

where Fμν = ∂μAν − ∂ν Aμ. The most general topological
solutions of Maxwell’s equations (31) and (32) are given by
the Rañada fields which are parametrized by two smooth
complex scalar fields φ : R1,3 → C and θ : R1,3 → C and
have the following form [2,3]

Fμν =
√
a

2π i

∂μφ̄∂νφ − ∂νφ̄∂μφ

(1 + |φ|2)2 , (33)

∗Fμν =
√
a

2π i

∂μθ∂ν θ̄ − ∂νθ∂μθ̄

(1 + |θ |2)2 , (34)

where a is a positive real constant and ∗Fμν = 1
2εμνρσ Fρσ .

The fields φ and θ describe the electric and magnetic lines
through the equations φ(x) = constant and θ(x) = constant,
respectively. Thus, the Rañada fields (33) and (34) are ade-
quate to describe the topological and geometrical properties
of the electromagnetic field in terms of its integral lines.

Let us determine the Finsler structures of the kinematic
space of the charged particle in the Rañada field given by the
Eqs. (33) and (34) above. The electromagnetic potentials Aμ

and Cμ of the fields Fμν and ∗Fμν are given by the following
relations

Aμ =
√
a

4π i

(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
)

, (35)

Cμ =
√
a

4π i

(
θ̄∂μθ − θ∂μθ̄

1 + |θ |2
)

. (36)

Since Maxwell’s equations in vacuum are invariant under the
electromagnetic duality transformations, the scalars φ and θ

are not independent on each other. The constraints imposed
by the duality on φ and θ are given by the following non-
linear equations [2,3]

1(
1 + |φ|2)2 εi jk∂iφ∂ j φ̄ = 1(

1 + |θ |2)2

(
∂0θ̄∂kθ − ∂0θ∂k θ̄

)
,

(37)
1(

1 + |θ |2)2 εi jk∂i θ̄∂ j θ = 1(
1 + |φ|2)2

(
∂0φ̄∂kφ − ∂0φ∂k φ̄

)
.

(38)

The Eqs. (35) and (36) show that we can define two
Finsler metric structures with the fundamental metric tensors
gμν[x, ẋ, e; A] and g̃μν[y, ẏ; f,C] associated to the Finsler
spaces X[x, ẋ; e, A] and Y[y, ẏ; f,C]. We call these dual
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Finsler geometries since the scalar fields φ and θ are dual to
each other according to the Eqs. (37) and (38).

An important problem about the dual Finsler geometries
given above is whether there is any relationship between
them. Instead of addressing this problem by tempting to find a
solution to the Eqs. (37) and (38) which are non-linear, we are
going to solve it by noting that while the spaceX[x, ẋ; e, A] is
again the kinematic space of the electrically charged particle
that interacts with the topological field Fμν , the interpretation
of the second space Y[y, ẏ; f,C] is not so straightforward.
If we stick to the representation of the Finsler geometry as
a structure of a kinematic space, then the most natural inter-
pretation that can be given to Y[y, ẏ; f,C] is in terms of a
charged particle that would move itself in the dual field ∗Fμν

according to the formal action

S[y; f,C] =
∫

dτ L̃[y, ẏ; f,C] =
∫ τ2

τ1

dτ

[
1

2 f
ημν ẏ

μ ẏν

+1

2
f M2 + kCμ(x)ẏμ

]
, (39)

where by analogy to the action from the Eq. (1), M is the mass
of the particle and k is its charge. In this interpretation, it is
tempting to formally identify the (M, k) dual particle with
the magnetic monopole of magnetic charge k andCμ(x) with
an external magnetoelectric potential. Indeed, the magnetic
monopole cannot be the source of the Rañada field as it would
introduce a Dirac string related to the singularity of Aμ(x)
that would be the result of the violation of the corresponding
Bianchi identity.

By using the Eqs. (35) and (36) into the Eq. (11), we can
write down immediately the fundamental metric tensors of
X[x, ẋ; e, A] and Y[y, ẏ; f,C] and we obtain the following
relations

gμν [x, ẋ; e, A]

= m2

2
ημν − q2a

16π2

(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
)(

φ̄∂νφ − φ∂νφ̄

1 + |φ|2
)

+ q

e

[
ημν

(
φ̄∂ρφ − φ∂ρφ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]
ẋρ

+ 1

2e2

[
ημν ẋ

2 + 2ημρηνσ ẋ
ρ ẋσ

]
, (40)

g̃μν [y, ẏ; f,C]

= M2

2
ημν − k2a

16π2

(
θ̄∂μθ − θ∂μθ̄

1 + |θ |2
)(

θ̄∂νθ − θ∂ν θ̄

1 + |θ |2
)

+ k

f

[
ημν

(
θ̄∂ρθ − θ∂ρ θ̄

) + 2ηρ(μ

(
θ̄∂ν)θ − θ∂ν)θ̄

)
1 + |θ |2

]
ẏρ

+ 1

2 f 2

[
ημν ẏ

2 + 2ημρηνσ ẏ
ρ ẏσ

]
. (41)

The introduction of the formal kinematic space for the dual
particle exploits the similarity between the solutions (33)

and (34). Beside that, it allows one to establish the sought for
map between the dual Finsler geometries by observing that
the fundamental metric tensor gμν[x, ẋ; e, A] is mapped into
g̃μν[y, ẏ; f,C] by the following mapping

gμν[x, ẋ, e; A] → g̃μν[y, ẏ, f ;C]
:= {x → y , e → f , φ → −θ ,m → M , q → −k} .

(42)

The above relation represents the duality mapping of the dual
Finsler geometries and it is obviously invertible. It can be
applied to derive other fundamental objects on X[x, ẋ; e, A]
and Y[y, ẏ; f,C] from each other. Its simplicity is due to
the introduction of the formal action (39) which provides the
Finsler metric function L̃[y, ẏ; f,C] and allows one to inter-
pret the second Finsler space as a formal kinematic space for
the movement of a magnetically charged dual particle in the
dual field. The Lagrangians L[x, ẋ; e, A] and L̃[y, ẏ; f,C]
can also be mapped into each other by the relations (42).
If one does not use the dual particle interpretation of the
second Finsler geometry, it is non-trivial to determine a rela-
tionship between the dual Finsler geometries corresponding
to the Rañada fields since the Eqs. (37) and (38) that relate
the complex fields to each other are non-linear. We note that
there is a relationship between the duality map (42) and the
electromagnetic duality of Maxwell’s equations with sources
which end up producing the same terms in the Lagrangians.
However, the magnetically charged particle described by
L̃[y, ẏ, f ;C] should be formal rather than physical since
it must preserve the Bianchi identities for the electromag-
netic and magnetoelectric potentials, respectively, which are
key to constructing the Rañada fields.

To illustrate the importance of the knowledge of the
duality map between the dual Finsler geometries, we con-
sider the Finsler geodesic equation in X[x, ẋ; e, A] which is
obtained by using the Rañada potentials from the Eqs. (35)
and (19). The results is a non-linear equation that involves
non-polynomial terms. The geodesic equation on the dual
space Y[y, ẏ; f,C] can be obtained either by direct calcu-
lations or by applying the duality map (42) to the geodesic
equation onX[x, ẋ; e, A]. Since the results are given by large
formulas, they are presented in the Appendix B.

For completeness, we give here the Cartan tensor in the
field Aμ

Cμνρ [x, ẋ, e; A]

= +q

e

[
ημν

(
φ̄∂ρφ − φ∂ρφ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]

+ 1

e2

[
ημνηρσ + ημρηνσ + ημσ ηνρ

]
ẋσ , (43)

The angular metric tensor has a more extended formula which
is presented in the Appendix B. The duality map (42) pro-
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vides the corresponding tensor objects in the Cμ field. Since
its application is very simple, we leave it as an exercise to
the reader.

3 Finsler geometries from spin- 1
2 particle in Rañada

background

In this section, we will generalized the construction pre-
sented above to the classical spinning particle of one-half
spin. The kinematic space of the free spinning particle
X( 1

2 )[x, ẋ, ψ, ψ̇; e, χ, A] is constructed over the functions

{xμ, ẋμ,ψμ, ψ̇μ, ψ5, e, χ} on the particle world-line. The
variables {xμ} are bosonic and {ψμ,ψ5} are fermionic. The
variables {ψμ,ψ5} are introduced to define the spin in the
classical model. By definition, they satisfy the following Clif-
ford algebra relations

[
ψμ, ψν

]
+ = ημν ,

[
ψ5, ψ5

]
+ = −1 ,

[
ψμ, ψ5

]
+ = 0 , (44)

where the brackets are anti-commutators. The most general
action of the free spinning particle that is invariant under
the supersymmetry and reparametrization transformation is
obtained by integrating the following Lagrangian [34]

L0[x, ẋ, ψ, ψ̇, e, χ; A] = 1

2e
ημν ẋ

μ ẋν + 1

2
em2

+ i

2

(
ψ̇μψμ − ψ̇5ψ5

) − i

2e
χψμ ẋ

μ + imχψ5 .

The functions e andχ are Lagrange multipliers of the two first
class constraints that must be introduced into the action. The
electromagnetic potential Aμ(x) plays the role of an external
field as in the case of the spin-0 particle. The interaction
between the spinning particle and the electromagnetic field
is expressed by the following Lagrangian

Lint [x, ẋ, ψ, ψ̇, e, χ; A]=q Aμ ẋ
μ+ iq

2
eFμνψ

μψν . (45)

Then the total Lagrangian of the spin- 1
2 particle in the elec-

tromagnetic field has the form

L( 1
2 )[x, ẋ, ψ, ψ̇, e, χ; A]

= 1

2e
ημν ẋ

μ ẋν + 1

2
em2 + i

2

(
ψ̇μψμ − ψ̇5ψ5

)

− i

2e
χψμ ẋ

μ + imχψ5

+ q Aμ ẋ
μ + iq

2
eFμνψ

μψν . (46)

We note that L( 1
2 )[x, ẋ, ψ, ψ̇, e, χ; A] is invariant under the

super-reparametrization and electromagnetic gauge transfor-
mations (see for details [34]).

The kinematic space X( 1
2 )[x, ẋ, ψ, ψ̇, e, χ; A] is Z2-

graded as it contains both bosonic and fermionic variables

X( 1
2 )[x, ẋ, ψ, ψ̇; e, χ, A] = X0[x, ẋ; e, A] ⊕ X1[ψ, ψ̇;χ ] .

(47)

The space X0[x, ẋ; e, A] is associated to the particle world-
line as in the spin-0 case and one can try to give it a Finsler
space structure in terms of the bosonic coordinates. However,
we expect that the corresponding Finsler fundamental tensor
depend on the anti-commutative variables as well due to the
interaction with the electromagnetic field. In what follows
we will drop off the arguments of the functions in formulas.
The determinant of the Hessian matrix of L( 1

2 ) with respect

to the bosonic variables ẋμ is

det

[
∂2L( 1

2 )

∂ ẋμ∂ ẋν

]
= − 1

e4 . (48)

As in the case of the spinning particle, the Hessian of L2
( 1

2 )

is zero only if

ẋ2 + 9qeAẋ + 3e2q2A2 + 3

2
m2e2 − 3ieχ (ψ ẋ + qeAψ − mψ5)

+ 3i

2
e
(
ψ̇ψ − ψ̇5ψ5

) + 3q

2
e2FS = 0 , (49)

where we have suppressed the summation indices. In the
absence of the external field, the real part of equation (49)
does respect the classical causality.

We define the Finsler space of the spinning particle as in
the spin-0 case by the triple {S1,3,M∨

x (S1,3), L( 1
2 )} where

S
1,3 is the superspace associated to the R

1,3 such that the
coordinates of each point P ∈ S

1,3 are {xμ,ψμ}. The con-
ical region M∨

x (S1,3) is defined with respect to the bosonic
coordinates by the Minkowski metric. The induced Finsler
structure on the kinematic space X( 1

2 )[x, ẋ, ψ, ψ̇; e, χ, A]
has the same form as the general kinematic spaceX[x, ẋ;�],
therefore we can apply the same method to calculate the fun-
damental objects.

The Finsler metric is defined with respect to the bosonic
variables ẋμ and it has the following form

g
( 1

2 )
μν = m2

2
ημν − q2a

16π2

(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
)(

φ̄∂νφ − φ∂ν φ̄

1 + |φ|2
)

+ q

e

[
ημν

(
φ̄∂ρφ − φ∂ρφ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]
ẋρ

+ 1

2e2

[
ημν ẋ

2 + 2ημρηνσ ẋ
ρ ẋσ

]
+ i

2e
ημν

(
ψ̇ρψρ − ψ̇5ψ5

)
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− i

2e
χ

[√
a e

2π i

(
ψ(μφ̄∂ν)φ − ψ(μφ∂ν)φ̄

1 + |φ|2
)

+ ημν

(
ψρ ẋ

ρ − 2mψ5
)]

+ ημν
q
√
a

8π i

(
∂ρ φ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ . (50)

One can generalize the duality among the Finsler geome-
tries from the spin-0 particle to the spin- 1

2 particle as follows

g
( 1

2 )
μν [x, ẋ, ψ, ψ̇; e, χ, A] → g̃

( 1
2 )

μν [y, ẏ, ξ, ξ̇ ; f, κ,C] :
{x → y , e → f , ψ → ζ , χ → κ , φ → −θ ,m → M , q → −k} .

(51)

These maps leave the Lagrangian invariant but change the
description of the spinning particle in the electromagnetic
field Aμ to a formally magnetic charged spinning particle in
the dual field Cμ.

Similarly, the calculation of the Cartan tensor produces
the following result

C
( 1

2 )
μνρ = +q

e

[
ημν

(
φ̄∂ρφ − φ∂ρφ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]

+ 1

e2

[
ημνηρσ + ημρηνσ + ημσ ηνρ

]
ẋσ − i

2e
χημνψρ . (52)

We can see that the above relations reduce to their spin-0 par-
ticle counterparts in the absence of the spinning variables and
can be simplified by choosing convenient reparametrizations

of the world-line. For example, the metric g
( 1

2 )
μν from the Eq.

(50) simplifies considerably in the proper-time gauge, that is
for e = 1/m and χ = 0. Other gauges are possible, and they
are obtained by using the equations of motion.

The angular metric tensor and the Finsler geodesic equa-
tions of motion in the Rañada background can be computed
from their respective definitions. The corresponding relations
show that the dependency of these objects on the topological
data of the background field, encoded by the function φ, is
highly nonlinear. Since the formulas are quite large, they are
presented in the Appendix C.

4 Conclusions

In summary, we have constructed the Finsler geometries and
calculated the fundamental objects for the kinematic spaces
of the spin-0 and spin- 1

2 particles in an arbitrary electromag-
netic field in the most general formulation of the particle
action in which all symmetries are manifest. We have given
a simple method to calculate the metric tensor, the angu-
lar metric tensor, the Cartan tensor and the geodesic equa-
tions that are all parametrized by the world-sheet einbein and
its supersymmetric partner that are associated to the gauge
reparametrization transformations and to the electromagnetic

potentials. Due to this parametrization, the Finsler structure
is actually a set of Finsler spaces. Our calculations show that,
in general, the inverse metric and the objects derived from it
are non-polynomial and non-linear in all variables. Next, we
have applied this method to calculate the fundamental ten-
sors of the Finsler geometry for the particle in motion in the
topological Rañada field. Here, we have showed that there is
a duality map among Finsler geometries induced by the elec-
tromagnetic duality. We have given a simple interpretation of
this map as a transformation between the original particle in
the electromagnetic field and a formal magnetically charged
particle moving in the dual field and we have exemplified its
application by calculating the geodesic equation in the dual
Finsler geometry in the spin-0 case.

Working with the full symmetries of the particle action
is important for determining the full set of Finsler spaces as
the gauge fixed actions, e. g. the proper-time action, misses
spaces from this set. However, for practical applications such
as solving the geodesic equation and quantization, it is nec-
essary to fix the reparametrization and the electromagnetic
gauges by which a particular Finsler geometry is also selected
from the set of allowed geometries. Nevertheless, even if
the gauge symmetries are fixed, it is difficult to solve the
geodesic equation due to the non-polynomial and non-linear
terms present in it.

The results obtained here open up a rich set of research
lines for future investigations. One interesting problem is
whether the dual map between the Finsler geometries has
generators and, more generally, the structure of the duali-
ties among the geometries and their relation with physics.
Another problem is to study the Finsler geometries corre-
sponding to the polynomial action which implies including
the constraints in the fundamental Finsler function. New gen-
eralizations of the Rañada fields have been presented recently
in the literature, see e. g. [5–8] for topological solutions in
the presence of the gravitational field and [9–14] for general-
ization to the non-linear electrodynamics. It should be inter-
esting to generalize the construction presented in this paper
to determine the Finsler geometries associated to these sys-
tems. In particular, it would be interesting to see whether any
of these solutions can be connected to the b-Finsler geometry
[39–41]. While the results presented here have been obtained
by applying classical analytic methods of differential geome-
try, it is certainly interesting to implement a computer assisted
algorithm for investigating the aforementioned problems and
other. For example, the geodesic equations obtained in this
paper are highly non-linear. Therefore, from the point of view
of the applications of these results, it is important to investi-
gate the solubility of the geodesic equations and their solu-
tions either analytically as well as numerically.
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Appendix A: basic concepts of Finsler geometry

In this Appendix, we review some basic concepts and rela-
tions of Finsler geometry that have been used above. For
more details we refer to [29].

Let M be a real manifold of dimension n endowed with a
real scalar function F[x, y] where x ∈ M and y ∈ Tx (M)

which is the tangent space at x . The function F[x, y], called
the fundamental function of the Finsler space or the Finsler
metric function, is required to have the following local prop-
erties:

(i) F[x, y] is smooth with respect to x and y.
(ii) There is a conical submanifold M∨

x (M) ⊂ Tx (M)

such that:
F[x, y] > 0 and det [∂2

yy F
2[x, y]] �= 0 for any y ∈

Vx (M).
(iii) F[x, y] is homogeneous of degree one in y, i. e.

F(x, λy) = λF[x, y] for any λ > 0 and any y ∈
M∨

x (M).

An n-dimensional Finsler space is a triple (M,M∨
x (M),

F[x, y]) with the properties (i)–(iii) above. From these prop-
erties, one can readily write the fundamental objects of the
Finsler geometry in local coordinates {xi }, where i = 1, n
on M. The first such objects are the Finsler metric tensor
gi j [x, y], the unit tangent vector li and the angular metric
tensor hi j [x, y] defined by the following relations

gi j [x, y] := 1

2

∂2F2[x, y]
∂yi∂y j

, li [x, y] := yi
F[x, y] ,

hi j [x, y] := gi j [x, y] − li [x, y]l j [x, y] . (A.1)

The Cartan tensor can also be expressed in terms of the
fundamental function as follows

Ci jk[x, y] := 1

2

∂gi j [x, y]
∂yk

= 1

4

∂3F2[x, y]
∂yi∂y j∂yk

. (A.2)

Of interest in the Finsler geometry of the kinematic space
of a physical particle is the Finsler geodesic equation as the
variational problem of the equation of motion can be reduced
to the geodesic problem [29]. By generalizing the definition
from the Riemann geometry, the Finsler geodesic is defined
as the stationary solution to the variational problem

δ I [γ ] = δ

∫
γ

F(x, y = dx) = 0 , (A.3)

where γ : [τ1, τ2] ⊂ R → M is a smooth curve
parametrized by τ with fixed endpoints x1 = γ (τ1) and
x2 = γ (τ2). The Finsler geodesic equation takes a similar
form to the geodesic equation from the Riemann geometry
when expressed in terms of the Finsler-Christoffel symbols
defined by the usual relations

	i
jk := 1

2
gir

(
∂grk
∂x j

+ ∂gr j
∂xk

− ∂g jk

∂xr

)
. (A.4)

Then, the variational problem (A.3) generates the Finsler
geodesic equation

d2xi

dτ 2 + 	i
jk
dx j

dτ

dxk

dτ
− dxi

dτ

d

dτ
[ln(F)] = 0 . (A.5)

As is well known, the similarity between the Riemann geom-
etry and the Finsler geometry is not accidental. The Riemann
geometry is a particular case of the Finsler geometry for the
metric tensor g[x, y] independent on y which implies that
Ci jk = 0.

Appendix B: dual geodesic equations

Here, we present the angular metric tensor and the Finsler
geodesic equation for the spinless particle in the Rañada
background. The angular metric tensor has the following
form

hμν [x, ẋ, e; A]

= m2

2
ημν − q2a

16π2

(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
) (

φ̄∂νφ − φ∂νφ̄

1 + |φ|2
)

+ q

e

[
ημν

(
φ̄∂ρφ − φ∂ρφ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]
ẋρ ,
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−
{[

1

4e2

(
ẋ2

)2 + 1

4
e2m4 − aq2

16π2

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)

×
(

φ̄∂σ φ − φ∂σ φ̄

1 + |φ|2
)
ẋρ ẋσ

]−2

+ m2

2
ẋ2 + q

√
a

8πei

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ ẋ2

+ qe
√
a

8m2πei

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

}
ẋμ ẋν . (B.1)

One can calculate the Finsler geodesic equations in the
spaces X[x, ẋ; e, A] and Y[y, ẏ; f,C]. The first equation is
obtained from the Eqs. (35) and (19) and has the following
form

d2xμ

dτ 2 + e

2

{[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]}−1

×
{
ημν −

[
1

e2 ẋ
μ ẋν + q

√
a

4π i

[(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
)
ẋν

+
(

φ̄∂νφ − φ∂νφ̄

1 + |φ|2
)
ẋμ

]]

×
[

1

e2 ẋ
2 + q

√
a

2π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

− q2a

16π2

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
) (

φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)

+ 1

2e2 ẋ
2 + 1

2
m2 + q

√
a

4π ie

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]−1
}

×
{

1

e

{
2xν∂

[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]

− ẋ2∂ν

[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]}

+
√
a

4π i
ẋρ∂ρ

[(
1

e
ẋ2 + ẋσ φ̄∂σ φ − φ∂σ φ̄

1 + |φ|2
)

×
(

1

e
ẋν + q

√
a

4π i

(
φ̄∂νφ − φ∂νφ̄

1 + |φ|2
))]

− ∂ν

[
1

e2 ẋ
2 + q

√
a

2π i

(
φ̄∂λφ − φ∂λφ̄

1 + |φ|2
)
ẋλ

− q2a

16π2

(
φ̄∂λφ − φ∂λφ̄

1 + |φ|2
) (

φ̄∂λφ − φ∂λφ̄

1 + |φ|2
)]}

= ẋμ d

dτ

{
ln

[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]}
.

(B.2)

The geodesic equation is non-linear and non-polynomial
in all its variables. The geodesic equation can be calculated
in two ways, either from its definition or by applying the
duality map (42) to the geodesic equation (B.2). The result
is the following equation

d2yμ

dτ 2 + f

2

{[
1

2 f
ẏ2 − 1

2
f M2 + k

√
a

4π i

(
θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ

]}−1

×
{
ημν −

[
1

f 2 ẏ
μ ẏν − k

√
a

4π i

[(
θ̄∂μθ − θ∂μθ̄

1 + |θ |2
)
ẏν

+
(

θ̄∂νθ − θ∂ν θ̄

1 + |θ |2
)
ẏμ

]]

×
[

1

f 2 ẏ
2 − k

√
a

2π i

(
θ̄∂θ θ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ − k2a

16π2

×
(

θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
) (

θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)

+ 1

2 f 2 ẏ
2 + 1

2
M2 − k

√
a

4π i f

(
θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ

]−1
}

×
{

1

f

{
2yν∂

[
1

2 f
ẏ2 + 1

2
f M2 − k

√
a

4π i

(
θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ

]

− ẏ2∂ν

[
1

2 f
ẏ2 + 1

2
f M2 − k

√
a

4π i

(
θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ

]}

+
√
a

4π i
ẏρ∂ρ

[(
1

f
ẏ2 + ẏσ θ̄∂σ θ − θ∂σ θ̄

1 + |θ |2
) (

1

f
ẏν − k

√
a

4π i

×
(

θ̄∂νθ − θ∂ν θ̄

1 + |θ |2
))]

− ∂ν

[
1

f 2 ẏ
2 − k

√
a

2π i

(
θ̄∂λθ − θ∂λφ̄

1 + |θ |2
)
ẏλ − k2a

16π2

(
θ̄∂λθ − θ∂λφ̄

1 + |θ |2
)

×
(

θ̄∂λθ − θ∂λφ̄

1 + |θ |2
)]}

= ẏμ d

dτ

{
ln

[
1

2 f
ẏ2 + 1

2
f M2 − k

√
a

4π i

(
θ̄∂ρθ − θ∂ρ θ̄

1 + |θ |2
)
ẏρ

]}
.

(B.3)

Since the duality map only requires a simple substitu-
tion of variables, it is provides a faster way to construct the
geometrical objects from the dual geometry. The geodesic
equations from above illustrate the advantage of knowing the
duality map from the computational point of view. Since the
system formed by the electrically and magnetically charged
particles support the two dual geometries, the physical con-
tent is unchanged by performing the dual transformations
between these geometries, which is the content of the equiv-
alence of the geometries under the duality map.

Appendix C: Angular metric and geodesic equation for
spinning particle

Here, we present the angular metric tensor and the Finsler
geodesic equation on the space X( 1

2 )[x, ẋ, ψ, ψ̇; e, χ, A].
The field angular metric tensor for the spinning particle

in the field Aμ has been calculated from its definition. After
some simplifications, it can be put under the following com-
pact form

h
( 1

2 )
μν = m2

2
ημν − q2a

16π2

(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
) (

φ̄∂νφ − φ∂ν φ̄

1 + |φ|2
)

+ q

e

[
ημν

(
φ̄∂ρφ − φ∂ρ φ̄

) + 2ηρ(μ

(
φ̄∂ν)φ − φ∂ν)φ̄

)
1 + |φ|2

]
ẋρ

+ 1

2e2

[
ημν ẋ

2 + 2ημρηνσ ẋ
ρ ẋσ

] + i

2e
ημν

(
ψ̇ρψρ − ψ̇5ψ5

)

− i

2e
χ

[ √
a e

2π i

(
ψ(μφ̄∂ν)φ − ψ(μφ∂ν)φ̄

1 + |φ|2
)

+ ημν

(
ψρ ẋ

ρ − 2mψ5
)]

+ ημν

q
√
a

8π i

(
∂ρ φ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ

−
[

1

2e
ẋ2 + 1

2
em2 + i

2

(
ψ̇λψλ − ψ̇5ψ5

) − i

2e
χψλ ẋ

λ + imχψ5
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+ q
√
a

4π i

(
φ̄∂ρφ − φ∂ρ φ̄

1 + |φ|2
)
ẋρ + iq

√
a

4π i
e

(
∂ρ φ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ

]−2

ẋμ ẋν .

(C.1)

The Finsler geodesic equation of the spinning particle, cal-
culated from its definition, has the following form

d2xμ

dτ 2 + e

2

{[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂λφ − φ∂λφ̄

1 + |φ|2
)
ẋλ

+ i

2

(
ψ̇λψ

λ − ψ̇5ψ
5
)

− i

2
χθλ ẋ

λ + inχθ5

+ q2√a

4π i
e

(
∂ρφ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ

]}−1

×
{
ημν −

[
1

e2 ẋ
2 + q

√
a

4π i

[(
φ̄∂μφ − φ∂μφ̄

1 + |φ|2
)
ẋν

+
(

φ̄∂νφ − φ∂νφ̄

1 + |φ|2
)
ẋμ

− iχψ(μ

(
1

e
ẋν) + q2√a

4π i

(
φ̄∂ν)φ − φ∂ν)φ̄

1 + |φ|2
))]]

×
[

1

e2 ẋ
2 + q

√
a

2π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

− q2a

16π2

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
) (

φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)

− i

e
χηρσ ψ(ρ

(
ẋσ) + q2√a

4π i

(
φ̄∂σ)φ − φ∂σ)φ̄

1 + |φ|2
))

+ 1

2e2 ẋ
2 + 1

2
m2 + q

√
a

4π ie

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

+ i

2

(
ψ̇λψ

λ − ψ̇5ψ
5
)

− i

2
χθλ ẋ

λ + inχθ5

+ q2√a

4π i
e

(
∂ρφ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ

]−1
}

×
{

1

e

{
2xν∂

[
1

2e
ẋ2 + 1

2
em2

+q
√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]

− ẋ2∂ν

[
1

2e
ẋ2 + 1

2
em2

+ q
√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

]}

+
√
a

4π i
ẋρ∂ρ

[(
1

e
ẋ2 + ẋσ φ̄∂σ φ − φ∂σ φ̄

1 + |φ|2
)

(
1

e
ẋν + q

√
a

4π i

(
φ̄∂νφ − φ∂νφ̄

1 + |φ|2
))]

− ∂ν

[
1

e2 ẋ
2 + q

√
a

2π i

(
φ̄∂λφ − φ∂λφ̄

1 + |φ|2
)
ẋλ

− q2a

16π2

(
φ̄∂λφ − φ∂λφ̄

1 + |φ|2
) (

φ̄∂λφ − φ∂λφ̄

1 + |φ|2
)

+ q2√a

4π

(
2∂ρ

(
∂ωφ̄∂σ φ − ∂ωφ∂σ φ̄

1 + |φ|2
)
xν ẋ

ρ

+∂ν

(
∂ωφ̄∂σ φ − ∂ωφ∂σ φ̄

1 + |φ|2
))

ψωψσ

− q

2
χ

(
∂ρ Aω ẋ

ρ ẋωψν − ψσ

q
√
a

2π i
∂ν

(
φ̄∂σ φ − φ∂σ φ̄

1 + |φ|2
))]}

= ẋμ d

dτ

{
ln

[
1

2e
ẋ2 + 1

2
em2 + q

√
a

4π i

(
φ̄∂ρφ − φ∂ρφ̄

1 + |φ|2
)
ẋρ

+ i

2

(
ψ̇λψ

λ − ψ̇5ψ
5
)

− i

2
χθλ ẋ

λ + inχθ5

+q2√a

4π i
e

(
∂ρφ̄∂σ φ − ∂ρφ∂σ φ̄

1 + |φ|2
)
Sρσ

]}
. (C.2)
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