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Abstract A natural extension of the standard cosmologi-
cal model are models that include curvature as a free param-
eter. In this work we study in detail the observational con-
straints on the non-flat �CDM model using the two main
geometric tests: SNIa and Hubble parameter measurements.
In general we show that the observational constraints on the
parameters of the �CDM model strongly depend on the cur-
vature parameter. In particular, we study the constraints on
the transition redshift (zt ) of a universe dominated by mat-
ter for a universe dominated by the cosmological constant.
Using this observable we construct a new null test defin-
ing ζ = zt, f lat − zt,non f lat . This test depends only on the
data of the Hubble parameter, the Hubble constant and the
matter density parameter. However, it does not depend on
derivative of an observable as generally many tests in the
literature. To reconstruct this test, we use the Gaussian pro-
cess method. When we use the best-fit parameters values of
PLANCK/2018, we find no evidence of a disagreement
between the data and the standard model (flat �CDM), but
if we use the value H0 from RI ESS/2018 we found a dis-
agreement with respect at the standard model. However, it is
important to note that the Hubble parameter data has large
errors for a solid statistical analysis.

1 Introduction

The standard cosmology model is the �CDM model with
flat spatial curvature. From the theoretical point of view, this
model is the simplest explanation of the accelerating expan-
sion of the universe [1,2] and is the model that best fits the
different types of observational data: SNIa, BAO, CMB, Hub-
ble parameter measurements, etc [3–7].

In particular, the recent results of the PLANCK collabora-
tion have increased an intense debate on the curvature of the
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Universe, since the PLANCK results show statistical consis-
tency with positive curvature models, i.e. closed universes.
However, the observational constraints for non-flat models
using Planck data are ambiguous, because there is no physi-
cally consistent inflationary model for the spectrum used by
Planck. 1

This evidence for closed models is observed when consid-
ering data of CMB lensing. Planck’s collaboration [6] found
more lensing effect than expected and to quantify this result,
the Alens parameter was introduced. In the reference [13]
it is considered that if the curvature is included, then CMB
lensing data indicates that the best fit corresponds to a closed
universe at more than 99% C.L.

In this same line of research in the reference [14] the author
claims a new cosmological tension, curvature tension. The
author explicitly shows that the predictions for the curvature
parameter using BAO, CMB lensing measurements and data
of the SH0ES Collaboration [15] are incompatible with each
other. However, in the reference [16] the authors using a sub-
sample of data of CMB lensing have confirmed a trend for
a closed universe, but, when adding BAO data, the standard
model remains the best fit. Another two recientes inconsis-
tencies with respect at standard model are the tension of the
Hubble constant using CMB data and low redshift data [17]
and the data of cosmic shear of KiDs-450 measurements
[18,19].

On the other hand, many other investigations using differ-
ent types of data such as BAO data, f σ8, SNIa and small-
angles CMB have also shown this compatibility with closed
models. For details to review the references: [20–30]. More
recently the references [31,32] have investigated observa-

1 From the theoretical side, it is interesting to note that inflationary
models for open and closed spaces have been proposed and investigated
for quite some time, see references [8] and [9,10]. In particular Ratra has
recently calculated the power spectrum for a closed universe in detail,
see reference [11] and [12].
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tional constraints using high-redshift QSO data and also ver-
ified statistical consistency of the data with closed models.

Additionally, in the literature different aspects have been
investigated involving the curvature parameter such as: the
equivalence between �CDM models with curvature and
dynamic dark energy models [33–36]. The influence of the
curvature on the observational constraints of the equation of
state [37]. Also the model-independent approaches has been
used to place observational constraints on the curvature: for
example, the reference [38] use the luminosity distance and
in the reference [39] the gravitational-wave standard sirens
method is used.2 The gravitational lenses have also been
used to determine constraints on the curvature, see refer-
ence [43].3 All these investigations show an intense activity
to understand the effect of the curvature on the evolution of
the Universe.

Independently if future observations demonstrate that the
data are compatible with the flat �CDM model or alter-
natives models this current polemic places to the curvature
parameter in an important position in the cosmological dis-
cussion. From the historical point of view the question of
introducing the curvature parameter in a cosmological model
is old, can be traced back to Einstein and De Sitter [44]. In this
article they considered a Universe with finite matter density,
in a homogeneous and isotropic model. The authors conclude
that the observational data available at the time do not imply
introducing the curvature, but mention that future data should
allow limiting curvature values.

On the other hand, a phenomenological parameter that
allows to characterize the accelerated expansion of any cos-
mological model is the deceleration parameter, which in turn
allows us to study the redshift of the transition from a decel-
erated universe to an accelerated universe. This parameter
has been quite studied in the �CDM model using the decel-
eration parameter [45].

The first real measurement of the transition redshift was
described in the references [46,47] by Farooq et al. using dif-
ferent statistical techniques.4 However, the determination of
the transition redshift including curvature as a free parameter
has been little investigated, with the exception of references
[48,49] where a detailed analysis of the transition redshift
for different non-flat models.

Motivated by all these recent results, in the present work,
we study observational constraints on the transition redshift

2 It is interesting to mention that the application of gravitational waves
in cosmology as a method to determine the Hubble constant begins with
Schutz’s proposal, [40].
3 The statistics of gravitational lenses as a cosmological test and its
relationship with the curvature parameter were developed by Park and
Gott [41] and by Helbig [42].
4 In the second reference they use the weighted mean and median statis-
tics techniques.

in the non-flat �CDM model using two geometric tests:
SNIa data and Hubble parameter measurements.

Considering that the transition redshift in the non-flat
�CDM model has an analytical expression, we can rewrite
the Hubble parameter directly as a function of the transition
redshift and the curvature parameter. In this way we avoid an
extra propagation of errors. Additionally, it is important to
note that we get quite general results, because to construct the
confidence contours, we do not fix the values of the param-
eters, but use a marginalization process in a given range of
values for the parameters.

Also, using the concept of transition redshift, we propose
a new null test, which for the non-flat �CDM model explic-
itly depends on the Hubble parameter, the Hubble constant
and the matter density parameter today. We use observational
data from the Hubble parameter to reconstruct the expres-
sion of this test. In this we used as a statistical method the
non-parametric method of Gaussian processes. We demon-
strate that this test is strongly sensitive to the values of the
parameters cosmological: (�m0, H0). It is important to note
that this test is only valid to compare the flat and non-flat
�CDM models. But in principle following the same idea
similar tests can be built for other cosmological models.

Our paper is organized as follows. In Sect. 2 we summarize
the cosmological dynamics of the non-flat �CDM model. In
Sect. 3 we present a new null test using the transition redshift
in Sect. 5 we present our data and in the Sect. 6 we present
our result and conclusions.

2 The �CDM model in the background

Considering the cosmological principle, the FLRW metric
can be written as [50–53],

ds2 = −dt2 + a(t)2
[

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
]

,

(1)

where a(t) is the scale factor and k is the spatial curvature
which can be k = +1 for a closed universe, k = 0 for a
flat Universe and k = −1 for an open universe. In addi-
tion, if we consider Einstein’s equations and a tensor energy-
momentum of perfect fluid, then we can derive the funda-
mental equation of cosmology [54],

H2 =
(
ȧ

a

)2

= 8πGρ

3
+ �

3
− k

a2 . (2)

This equation can be rewritten using the redshift as:

H = H0

√
�m0(1 + z)3 + �k0(1 + z)2 + ��0, (3)
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where we use the definitions:

�m0 = 8πGρm0

3H2
0

, ��0 = �

3H2
0

and �k0 = −k
a2H2 . (4)

Additionally, we have the restriction:

�m0 + ��0 + �k0 = 1. (5)

To calculate the transition redshift, zt , of a decelerated to
accelerated universe we use the definition of the deceleration
parameter,

q(z) = − ä

aH2 = d

dt

(
1

H

)
− 1. (6)

Thus, using the definition of H(z) and the condition for
the transition redshift q(zt ) = 0. We can determine that [55],

zt (�m0,�k0) =
(

2��0

�m0

)1/3

− 1 (7)

=
(

2 (1 − �m0 − �k0)

�m0

)1/3

− 1, (8)

where we can observe that the transition redshift for a non-flat
universe �CDM is a analytical function of the parameters of
relative densities [55]. Using Eqs. (5) and (7) we can explic-
itly rewrite the hubble parameter using the variables, (�k0 e
zt ) as,

H = H0

√√√√ (1 − �k0)(1 + z)3

1
2 (1 + zt ) + 1

+ �k0(1 + z)2 + (1 − �k0)(1 + zt )3

2( 1
2 (1 + zt ) + 1)

.

(9)

We can also use the variables (�m0, zt ) to write:

H = H0

√
�m0(1 + z)3 + (1 − �m0(1 + (1 + zt )3

2
))(1 + z)2 + �m0

2
(1 + zt )3.

(10)

This expression of the Hubble parameter is important
because the statistics of the χ2 constructed will explicitly

Fig. 1 The blue surface represents the transition redshift as a func-
tion of matter and curvature parameters in the non-flat model �CDM
and the intersection of this curve with the yellow curve represents the
transition redshift of the flat �CDM model

depend on these parameters avoiding a extra propagation of
errors. The importance of the curvature parameter in deter-
mining the transition redshift can best be observed by means
of Fig. 1. where we show the function zt (�m0,�k0). This
function is a well-behaved three-dimensional surface, except
for extreme values of curvature and very low values of mat-
ter. But these regions are excluded by observational data. In
the figure the intersection of the planes corresponds to the
case where the curvature is zero. A quick inspection allows
us to observe that if we consider curvature, then there are
different ways to accommodate the measures on the surface
of zt . In particular if we consider that the observations vari-
ous determine zt preferably in the range (0.5–1.00), then the
inclusion of the curvature allows that the value of zt can eas-
ily be accommodated outside of the line for a flat universe. In
this work we study the constraints associated with this degen-
eracy using SNIa and Hubble parameter measurements.

3 Null test for �CDM

We can define a new null test to distinguish between flat and
non-flat �CDM models using the redshift transition. To do
this we put in evidence the zt of the expression for the Hubble
parameter given by the Eq. (10) obtaining,

zt,non− f lat =
⎛
⎜⎝

(
H
H0

)2 − �m0(1 + z)3 − (1 − �m0) (1 + z)2

�m0
(
1 − (1 + z)2

)
⎞
⎟⎠

1/3

− 1,

(11)

In an analogous way we can determine for flat transition
redshift, so the null test can be formulated as:

ζ = zt, f lat − zt,non f lat , (12)

where we can see that if ζ = 0, then the flat model is pre-
ferred, otherwise the model with curvature is preferred. It
is important to note that this test definition is only valid for
flat and non-flat �CDM model. However, this same idea
can be extrapolated to other models with their appropriate
definitions. In an explicit way we can write this null test as,

ζ =
(

( H
H0

)2 − �m0(1 + z)3

�m0

)1/3

−
(

( H
H0

)2 − �m0(1 + z)3 − (1 − �m0)(1 + z)2

�m0(1 − (1 + z)2)

)1/3

.

(13)

Interestingly, our test includes the reconstructed data of
the Hubble parameter and does not include derivatives of
data such as other tests, for example [56]. Data derivatives in
general are difficult to obtain and spread the error remarkably.
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However, our test explicitly includes the Hubble constant,
H0, and the matter density parameter today �m0.

To reconstruct the observable, H(z), we use only data
from the Hubble parameter and as a statistical method we
use the non-parametric method of Gaussian processes. This
method is suitable for this case, since it does not assume a
specific model to reconstruct the function H(z). Once the
H(z) function is obtained, the null test can be reconstructed.
As a first approximation to determine the errors of the ζ

function we can use the theory of error propagation,

σζ =
√

∂ζ

∂H
δH + ∂ζ

∂H0
δH0 + ∂ζ

∂�m0
δ�m0. (14)

To perform the reconstruction of Gaussian processes we
use the popular public package GaPP , which has been
applied to a large number of cosmological studies. For pack-
age details you can see the references [57]. For a recent use
of this package to see the reference [58].

4 Observational constraints

For determine observational constraints on the non-flat
�CDM model it is essential to define the comoving distance
as,

r(z) = c

H0

∫ z

0

dz′

E(z′)
. (15)

To determine the luminosity distance including curvature is
necessary to distinguish three cases, for this we define the
transversal comoving distance, rt ,5

rt =

⎧⎪⎪⎨
⎪⎪⎩

c
H0

1√
�k0

sinh
[√

�k0
H0
c r(z)

]
for �k0 > 0

r(z) for �k0 = 0
c
H0

1√|�k0| sin
[√|�k0| H0

c r(z)
]

for �k0 < 0

(16)

using the above definitions we can determine the luminosity
distance as,

dL = (1 + z)rt (17)

4.1 Supernovae Ia

In this study we use the data from Supernovas Ia called “Pan-
theon” sample [59] which is the largest combined sample of
SNIa and consists of 1048 data with redshifts in the range
0.01 < z < 2.3. It is a collection of SNe Ia discovered by
the Pan-STARRS1 (PS1) Medium Deep Survey and SNe Ia
from Low-z, SDSS, SNLS and HST surveys. This supernova

5 Here we follow the notation of the article by D. Hogg see reference
arXiv:astro-ph/9905116v4.

Ia compilation uses The SALT 2 program to transform light
curves into distances using a modified version of the Tripp
formula [60],

μ = mB − M + αx1 − βc + �M + �B, (18)

where μ is the distance modulus, �M is a distance correction
based on the host-galaxy mass of the SNIa and �B is the dis-
tance correction based on predicted bias from simulations.
Also α is the coefficient of the relation between luminosity
and stretch, β is the coefficient of the relation between lumi-
nosity and color and M is the absolute B-band magnitude of
a fiducial SNIa with x1 = 0 and c = 0. Also c is the color
and x1 is the light-curve shape parameter and mB is the log
of the overall flux normalization. An uncertainty matrix C is
defined such that,

χ2
SN Ia = �μT .C−1.�μ, (19)

where �μ = μobs−μmodel and μmodel is a vector of distance
modulus from a given cosmological model and μobs is a
vector of observational distance modulus. The μ = m− M ,
where M is the absolute magnitude and m is the apparent
magnitude, which is given by

mmodel = M + 5Log10(DL) + 5Log10(
c/H0

1Mpc
) + 25

= M̄ + 25 + 5Log(DL). (20)

where DL = H0
c dL and M̄ = M + 5Log

(
c/H0
1Mpc

)
is an

nuisance parameter, which depends on the Hubble constant
H0 and the absolute magnitude M . To minimize with respect
to the nuisance parameter we follow a process similar at the
references [61,62]. Therefore the χ2

M̄marg
is,

χ2
M̄marg

= a + log
e

2π
− b2

e
, (21)

where,

a = �mT .C−1.�m, (22)

b = �mT .C−1.I, (23)

e = I
T .C−1.I (24)

where �m = mobs − mmodel and I is the identity matrix.

4.2 Hubble parameter measurements

There are two efficient and widely used forms to obtain Hub-
ble parameters measurements:
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Fig. 2 Observational constraint using Hubble parameters measurements (left) and SNIa (middle). A joint analysis is shown on the right side. In
all case we marginalized 50 < H0 < 80). The blue line represents the universe with flat curvature

Fig. 3 In the figure on the left we show a strong degenerescence
between the curvature parameter and the matter density parameter. In
the central figure we show observational constraints updated for the

parameter space studied in the reference [65] and on the right we show
the joint data observational constraints. The green dashed line represents
the universe with flat curvature

• Cosmic chronometers (CC): this method is based on the
expression of the differential age of the universe as a
function of redshift,

H(z) = − 1

1 + z

dz

dt
. (25)

This method was proposed by directly measuring the
amount dz/dt and, consequently, the Hubble parameter.
The most used data to measure this amount have been
passively evolving galaxies with high-resolution spec-
troscopic data along with synthetic catalogs to limit the
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Fig. 4 In the figure on the left we show constraints on the Hubble constant using data from the Hubble parameter and on the left side we add data
from Supernovas Ia. In all cases we marginalize the matter density parameter in the interval 0.07 < �m0 < 0.6

age of the oldest stars in the galaxy. A complete descrip-
tion of this methodology can be reviewed for the SDSS
in the reference [63].

• The radial BAO size method: this method is based on
measurements of the scale of BAO . This method is more
accurate with respect toCC . This accuracy is understand-
able because BAO mainly depends on a spatial measure-
ment compared to the first method where a time measure
is required which increases systematic errors. However,
this method of BAO requires assuming a prior in the
radius of the sound horizon,r(z), so that

H(z) = − rbao(z)

rcmb(z)
H f iducial(z). (26)

This method depends on the fiducial model, usually the
model associated with CMB is the �CDM model.

In the literature there are different compilations of samples of
the Hubble parameters data, we use the sample presented by
[64] what includes data of CC and BAO . From this sample
the data at z = 2.34 and at z = 0.4497 are excluded. The
first point is a measurement using the BAO technique and we
have verified that it has a strong influence on the parameter
estimation. As this measurement is very restrictive we have
excluded this data. We believe that more data are required
at high redshift using BAO and other techniques, such as
the Sandage–Loeb effect, to have confidence in including
high redshift data. On the other hand, the measurement in
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Fig. 5 In the figure we show the PDFs for all the observables involved in the �CDM background model

the redshift z = 0.4497, overlaps with another data and has
a negligible effect on the results. Therefore, our sample has
34 points. With these considerations we have verified that
our data approximate to more recent samples such as [26].
Our data cover a range 0.2 < z < 2.00 in redshift. We can
construct the statistics χ2

H as,

χ2
H (�m0,��, H0)

=
34∑
i=1

(Hobs,i − Hmodel(zi ,�m0,��, H0))
2

σ 2
obs,i

, (27)

where Hobs,i are the observational data and Hmodel are the
theoretical values determined by Eq. (2) and the σobs,i are
the errors of the observational data.

4.3 Combining data

We combine the data by adding the χ2 of each dataset, so we
get

χ2
total(�m0,��0, H0) = χ2

SN Ia,marg + χ2
H . (28)

We can construct the probability contours through the
marginalization process, thus, for example, for the case of
(�m0,��0) we integrate on the likelihood with respect H0,

L(�m0,��0) = −2Log10

[∫ 80

50
e− χ2

total (�m0,��0,H0)

2 dH0

]
.

(29)

For other sets of parameters we proceed analogously.
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Table 1 Best-fitting parameters 1σ confidence intervals

Parameters Best-fitting Marginalization range

�m0 0.325 ± 0.0750 0.07 < �m0 < 0.600

H0 70.06 ± 1.99 50 < H0 < 80

zt 0.69 ± 0.25 0.400 < zt < 1.00

�k0 −0.195 ± 0.210 −0.50 < �k0 < 0.50

Fig. 6 The 1σ - 2σ confidence contour of the parameters space
(zt , �k0, H0) using the joint analysis

5 Results and discuss

We investigate the observational constraints on the differ-
ent combinations of cosmological parameters. In Fig. 2, we
show the observational constraints using SNIa and the Hub-
ble parameter data. In all cases we use a marginalization over
the Hubble parameter in the range 50 < H0 < 80. The fig-
ure on the right side show the constraints due to the sum of
the data. It is worth mentioning the lower right figure, which
shows the dependence between the curvature parameter and
the transition redshift. But it is also evident that the flat model
is within 1σ . The Fig. 3, on the left side, we show the strong
degenerescence between the matter density parameter and
the parameter of curvature for SNIa data, in the middle fig-
ure we show the confidence contours for the matter versus the
transition redshift. This result updates the calculation shown
in the reference [65]. The discontinuous curve represents the
flat universe.

In Fig. 4 we show the dependence of the parameters with
respect to the Hubble constant, H0. For all cases we use a
marginalization interval on the matter density parameter of

Fig. 7 The results for the reconstruction of the null test for the non-flat
�CDM using Hubble parameters measurements with 1σ , 2σ and 3σ

of C.L. In the figure above we can see the reconstruction of the null
test using GP and the best-fit of PLANCK/2018. In the middle figure
we show the reconstruction using the H0 = 74.03 ± 1.42 of RIESS
et al./2018. In the figure below we maintain the value of the Hubble
constant of RIESS et al. and use �m0 = 0.28 ± 0.01. The dashed line
represents the flat �CDM model and the solid blue line represents the
average value of the ζ test
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0.07 < �m0 < 0.6. On the right side we show the con-
straints of the sum SN Ia + H . We can see that the variation
range of, zt , corresponds to 0.4 < zt < 1.00 and of the
curvature parameter for −0.2 < �k0 < 0.2. In Fig. 5, we
show the PDFs for all the parameters studied. The best-fitting
values are shown in Table 1 with 1σ . In Fig. 6, we show
the three-dimensional constraints for the parameter space
(�k0, zt , H0). In this figure we shown that the geometric
tests can restrict the parameters values on a closed surface
for the non-flat �CDM model, but the flat model �CDM
cannot be ruled out.

In Fig. 7 we shown the result of the null test using the
Gaussian process method. In the figure on the left side we
use the best-fitting values of the PLANCK /2018 [6],6 H0 =
67.4 ± 0.5 and �m0 = 0.315 ± 0.007. We can see that the
flat �CDM model adjusts the null test very well. However,
if we use the local value of the Hubble constant of RI ESS et
al./ 2018[17]7 H0 = 74.03 ± 1.42 and keep the same value
of �m0 the null test at 2σ does not correspond to the flat
�CDM model. On the other hand, if we use a smaller value
of the parameter of matter, maintaining the value of H0 of
RI ESS et al., we can reconcile the flat �CDM model in
1σ . Combining this result with the results of table one, we
can see that the results of the null test show that a high value
of H0 statistically favors a universe with closed curvature.

6 Conclusion

In the present work we have investigated the observational
constraints on the non-flat �CDM model using as observa-
tional data the SNIa and Hubble data. We have emphasized
the study on the transition redshift, which can be used to con-
struct a null test. This test is sensitive to the values of H(z),
H0 and �m0, but does not include derivatives of cosmological
observables, which prevents excessive propagation of errors.

In general, we have shown a strong dependence between
the constraints of the curvature parameter and all other
parameters. Our results, without considering our null test,
are quite general, because we do not use fixed values of the
parameters, but we have used a marginalization process inte-

6 Evidence for low values of H0 has been published by different groups
for some time, for example, to see the references [66] and [67], they have
used the statistical technique of the median statistics and the Huchra’s
compilation of 553 measurements of the Hubble constant, the authors
determined a H0 = 68±5km/s/Mpc. Other groups more recently have
also determined results compatible with Planck’s results, see references
[68–75].
7 Other research groups have also made local measurements of the Hub-
ble parameter and have determined values compatible with the results
of RIESS et al. For example, see [76–83]. Which measurement of H0
is correct? This constitutes H0 tension and is one of the topics under
discussion in cosmology today. See, for example, the reference [84] and
references therein.

grating in a large interval to allow considerable changes of
the parameters. In all case the flat �CDM model cannot be
excluded. A subsequent study may include other observables
such as BAO , QSO and structure growth data to constraints
the transition redshift with curvature, i.e., the (zt ,�k0) plane.

On the other hand, the null test is quite sensitive to the val-
ues of the parameters, for the best-fitting of Planck/2018 the
flat �CDMmodel is preferred, but if use the Hubble constant
value local of Riess et al. 2018 our null test excludes the flat
model with 2σ . If we consider values less for the matter con-
tent, for example, �m0 = 0.28, we can alleviate the rejection
of the flat model at 1σ . To reconstruct the null test we only
use data from the Hubble parameter measurements and the
non-parametric method of Gaussian processes. We do not
include SN Ia, since it would imply reconstruct derivatives
and would spread the error excessively. Our null test may
be interesting to study other cosmological models, such as a
quintessence model or interaction between dark energy and
dark matter models.
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