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Abstract Recently a sequence of inequalities relating the
black hole horizon, photon sphere, shadow were proposed
for spherically symmetric and static black holes, providing
the upper bound for given mass. In this paper, we extend
the discussion to include rotating black holes. When viewed
from the north pole direction, the shadow remains a round
disk, but the image is skewed when viewed from the equato-
rial plane. After properly implementing the “size” parameters
for the rotating black holes, we verify that the sequence of
inequalities remain valid for a variety of solutions, includ-
ing Kerr, Kerr–Newman, Kerr–Sen and Kerr–Cvetič–Youm
black holes. The upshot is that rotation makes both the actual
and apparent sizes of a black hole smaller.
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1 Introduction

Since Sir Author Eddington’s eclipse experiment one hun-
dred years ago, there have been continuing efforts in under-
standing and observing the null geodesics around gravita-
tionally intense massive objects including black holes. Since
the earlier work on the null geodesics of the Schwarzschild
black hole [1,2], a general picture emerges. Massless parti-
cles like photons can form an unstable surface outside the
the black hole event horizon. Photons inside whose orbits do
not cross the surface will be trapped,1 whilst those outside
whose orbits do not cross the surface will escape to infinity,
surrounding a shadow of the black hole [3–39]. This area of
research was further boosted recently by an actual photo of
such a shadow [39].

The subject is significantly simpler for spherically sym-
metric black holes, for which the horizons, photon spheres
and shadow disks are all round, whose sizes can be charac-
terized by their radii. The simplicity allows one to establish
some universal relations among these geometric surfaces.
Based on the weak energy condition, together with the neg-
ative trace of the energy momentum tensor, Hod proved an
upper bound for photon sphere radius Rph for a black hole
of mass M , namely [12]

Rph ≤ 3M. (1.1)

Based on the same energy condition, Cvetič, Gibbons and
Pope found an inequality relation between the radii of photon

1 Trapped photons are generally expected to spiral into the black hole
horizon; however, recently new black holes satisfying the dominant
energy condition was constructed [32], for which trapped photons could
also form a stable photon shield outside the black hole horizon [32,37].
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sphere and the shadow disk [20]

Rph ≤ Rsh√
3

. (1.2)

While the radii Rph and Rsh of the photon sphere and shadow
disk measure the apparent sizes of a spherically symmetric
black hole, the actual size is determined by the horizon radius
R+. Penrose’s conjecture [40] of the black hole entropy upper
bound is equivalent to the Riemannian Penrose inequality

R+ ≤ 2M, (1.3)

which is largely considered as been proven under the domi-
nant energy condition, see e.g. [41]. Recently a sequence of
inequalities relating all these size parameters of spherically
symmetric black holes was proposed, namely [37]

3

2
R+ ≤ Rph ≤ Rsh√

3
≤ 3M. (1.4)

In [37], many different types of black holes satisfying at least
the null energy condition were examined to verify this set of
inequalities and no counterexample was found. To be precise,
Hod’s theorem involves only the innermost photon sphere.
In many spherically symmetric and static black holes, there
is only one photon sphere. However, black holes satisfying
the dominant energy condition with multiple photon spheres
do exist [32]. For the purpose of observations, the outermost
photon spheres and their shadows are more relevant, and the
inequalities (1.4) was proposed in [37] for the outermost pho-
ton spheres. It was recently proved with a few energy con-
ditions that the series of inequalities (1.4) are indeed valid
[42]. In particular, the Hod’s inequality (1.1) requires only
the null energy condition [42].

However, a gravitationally intense massive object or a
black hole in our Universe, formed from gravitational col-
lapse, typically have large angular momentum and they are
not spherically symmetric, but axially symmetric. We shall
use the mean radius R+ = √A+/(4π) to characterize the
horizon size, where A+ is the area of the horizon. This def-
inition of R+ continues to be relevant in Penrose’s entropy
conjecture for rotating black holes.

The size of the black hole shadow is more subtle to charac-
terize. The shape changes depending on the latitude angle θ0

of the observer at the asymptotic infinity, with respect to the
north pole direction of the rotating black hole. When viewed
from the north pole (θ0 = 0), the shadow is round regardless
of the angular momentum. The shape will be skewed as we
increase the angle θ0 and become most distorted at the equa-
torial plane (θ0 = π/2). It is thus tricky to find a parameter
to characterize the size of such a shadow. One possibility is
to consider the area of the shadow, which we present some
results in Appendix 1. In this paper, we shall focus on a

simpler alternative measure. As we can see from the shadow
graphs in Appendix 1, the boundary of the shadow is a closed
convex loop. For any given point in the loop, there exists a
longest (or more precisely local extremal) diagonal line join-
ing a point at the other side of the loop. Among these diagonal
lines, we find that there exists a shortest one and we define
Rsh as its half length. In general Rsh depends on the viewing
angle θ0. When θ0 = 0, the shadow is round and Rsh becomes
simply the radius of the disk.

The exact shape of the photon surfaces is also hard to
determine in general. In fact they form a thick region instead
of a thin shell when the black hole is rotating [13]. However,
we note that the photons appearing in the boundary of the
shadows come from some specific photon orbits that depend
also on the viewing angle θ0. We thus consider a definition of
Rph based on gθθ (rph, θ0), where rph is the radial coordinate
of the relevant photon orbit.

The purpose of this paper is to establish Rph and Rsh for
the general metric ansatz of rotating black holes and verify
the validity of the conjecture (1.4) using explicit examples of
black holes. The paper is organized as follows. In Sect. 2, we
set up the general formalism to compute the photon orbits and
resulting photon shadows. We consider two classes of metric
Ansätze for rotating black holes and obtain their geodesic
motions. We obtain the formulae for both photon orbits and
black hole shadows. We then argue and present the defini-
tions of Rph and Rsh that are dependent on not only the black
hole parameters, but also the viewing angle θ0 of the asymp-
totic observer. In Sects. 3,4,5 and 6, we consider Kerr, Kerr–
Newman, Kerr–Sen and Kerr–Cverič–Youm black holes and
verify the validity of the conjecture (1.4). We conclude the
paper in Sect. 7. In Appendix 1, we present a few numerical
plots of Kerr black hole shadows, which help to illustrate the
logic of our definitions of the size parameters. In Appendix
2, we give the solutions to the general quartic polynomial
equation, which appears in a few black hole examples in
determining the photon orbits.

2 Photon orbits and black hole shadows

2.1 Photon orbits

Unlike spherically symmetric and static black holes, the met-
ric ansatz for the stationary rotating black holes is much more
complicated. For our purpose, it is clearly advantageous to
consider analytical solutions. Even if two metric Ansätze
are equivalent via coordinate transformation, they may not
be both analytical in closed form. On the other hand, it can
be tedious to discuss the null geodesic motion repetitively
for each black hole solution. In this section, we present two
classes of metric Ansätze for rotating black holes. Both are in
the Boyer–Linquiste coordinates, asymptotically to the flat
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non-rotating Minkoski spacetime with

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (2.1)

The form of the class-one metrics was already in literature.
We introduce the class-two metric to cope with more general
solutions that cannot be cast into the class-one metric ansatz.

It is worth mentioning that rotating black holes, with
axial symmetry, are of cohomogeneity two, depending on
the radial r and latitude angle θ only. We choose a coordi-
nate gauge where the cross terms in the metric involve only
the time t and the longitudinal angle φ. The constant time
and radial slices are two-dimensional spheres that are gener-
ally not round. In this paper, the quantity gθθ (r, θ) plays an
important rôle in deciding the size of the orbits.

2.1.1 Class-one metric ansatz

The class-one metric ansatz was introduced in [31], and it
takes the form

ds2 = −Fdt2 − 2a sin2 θ

(√
F
G − F

)
dtdφ

+ H

GH + a2 sin2 θ
dr2 + Hdθ2

+ sin2 θ

(
H + a2 sin2 θ(2

√
F
G − F)

)
dφ2. (2.2)

The functions F,G and H depend on both the radial r and
latitude θ . However, they are subject to the constraints

�(r) = G(r, θ)H(r, θ) + a2 sin2 θ ,

X (r) =
√

G(r,θ)
F(r,θ)

H(r, θ) + a2 sin2 θ . (2.3)

In other words, the specific combinations (�, X) are func-
tions of r only. One disadvantage of this metric ansatz, how-
ever, is that without additional input of the metric functions,
the horizon geometry cannot be abstractly analysed. In fact,
we have F = G in all the explicit examples we present in
this paper that can be written in the form of (2.2). In these
examples, the metrics are thus specified completely by the
r -dependent functions (�, X), the functions F = G, H and
hence the whole metric can be determined from (2.3). In this
F = G case, the entropy of the black hole is simply given
by

S = πX (r+), (2.4)

where r+ is the largest root of �(r). It follows from the
discussion in the introduction, the mean radius of the horizon
is

R+ = √X (r+). (2.5)

It is curious to note that we have the following equality and
inequality relations

S = πgθθ (r = r+, θ = 0) ≥ πgθθ (r+, θ). (2.6)

We shall comment on the significance of this inequality later.
The null geodesic equations associated with the class one

metric (2.2) can be obtained from the Hamilton–Jacobi equa-
tion. These give rise to three integration constants and four
first-order differential equations

F

G
�(r)

dt

dτ
= E

(
H + a2 sin2 θ(2

√
F
G − F)

)

−aL

(√
F
G − F

)
,

F

G
�(r)

dφ

dτ
= Ea

(√
F
G − F

)
+ LF

sin2 θ
,

H
dr

dτ
= ±√R(r),

H
dθ

dτ
= ±√�(θ), (2.7)

where τ is the affine parameter and

R(r) = (EX − aL)2 − �(Q + (L − aE)2),

�(θ) = Q + E2a2 cos2 θ − L2 cot2 θ. (2.8)

Here (E, L , Q > 0) are three integration constants speci-
fying the null geodesics. It is of interest to note that unless
the rotating parameter a vanishes, there can be no orbit with
constant longitudinal angle φ. Orbits with constant latitude
angle θ is possible with appropriate integration constant Q.

The radial location rph of the unstable photon orbit is deter-
mined by

R(rph) = 0 , R′(rph) = 0 , R′′(rph) ≥ 0 , (2.9)

where a prime denotes a derivative with respect to r . The first
two conditions yield

L

E
≡ ξ = X�′ − 2�X ′

a�′
∣∣∣
r=rph

,

Q

E2 ≡ η = 4a2X ′2� − ((X − a2)�′ − 2X ′�)2

a2�′2
∣∣∣
r=rph

.(2.10)

One constraint for the value of the photons circular orbit
radius is � ≥ 0; furthermore, the requirement that Q ≥ 0
restricts the range of rph. In other words, for some specific
choice of integration constant ratios (ξ, η), the null geodesics
can form close orbits, giving rise to photon surfaces. In Ein-
stein gravity satisfying at least null energy condition, the
photon orbits are typically unstable. Black holes with stable
photon orbits are extremely rare [20]. The only example of
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black holes that admit stable photon orbits was recently con-
structed satisfying the dominant energy condition [32]. All
the examples we present in this paper have no stable photon
orbit outside the event horizon.

2.1.2 Class-two metric ansatz

In this paper, we also propose an alternative description of
rotating black holes. The metric ansatz takes the new form

ds2 = − ρ2

√
W

(dt + Adφ)2

+√
W

(
dr2

�
+ dθ2 + � sin2 θ

ρ2 dφ2
)

, (2.11)

where

� = r2 + a2 − 2mr , ρ2 = r2 + a2 cos2 θ − 2mr ,

A = a sin2 θ

ρ2 B(r) ,

W = B(r)2 + ρ2(U (r) + a2 cos2 θ), (2.12)

It is important to emphasize that �, B and U are functions
of the radial variable r only. The ansatz can tolerate a con-
stant shift of the radial coordinate, where � and ρ2 acquire a
constant. In presenting the above, we have chosen the radial
coordinate such that � and ρ2 are bare minimum. The met-
ric is then completely specified by the B and U functions.
It is worth pointing out that the horizon geometry can be
abstractly analysed. The horizon r+ is the larger root of �

and the entropy is given by

S = πB(r+). (2.13)

leading to the mean radius of the horizon

R+ = √B(r+). (2.14)

Note that the inequality (2.6) is also satisfied by our class-two
metrics.

We now compare the two metric Ansätze (2.2) and (2.11).
In the special case with

U = � + 2B − a2, (2.15)

the metric can be reduced to the previous one, with

H = r2 − 2mr + B + a2 cos2 θ,

F = G = ρ2

H
, X = � + B. (2.16)

Note that the two entropy formulae (2.4) and (2.13) yield
the same result in this case since � = 0 on the horizon.
Conversely, when F = G and the constraints in (2.3) are
satisfied, then the metric (2.2) can be put in the form of (2.11).

However, if F �= G, then the metric (2.2) cannot be put into
the form of (2.11). Likewise, if the functionsU and B are not
related by (2.15), then the metric (2.11) cannot be put into
the form of (2.11). In this paper, all the explicit examples we
consider can be put into the form of (2.11), but not necessarily
of the form of (2.2).

The equations of the null geodesic motions are

√
W

dt

dτ
= E(U + a2 cos2 θ) + B

�
(EB − aL) ,

√
W

dφ

dτ
= a(EB − aL)

�
+ L

sin2 θ
,

√
W

dr

dτ
= ±√R(r) , R(r) = (EB − aL)2

−�(Q + L2 − E2U ),
√
W

dθ

dτ
= ±√�(θ) ,

�(θ) = Q + Ea2 cos2 θ + L2 cot2 θ . (2.17)

The photon orbits are again determined by (2.9) and therefore
we have

ξ = B�′ − �(B′ + √B′2 + �′U ′)
a�′

∣∣∣
r=rph

,

η = �U − 2aBξ − (� − a2)ξ2

�

∣∣∣
r=rph

. (2.18)

The existence of a square root in the above expression makes
it much more difficult to analyse the photon orbits and the
black hole shadows. For special case (2.15), the determinant
becomes a total square, namely

B′2 + �′U ′ = 1
4 (U ′ + �′)2. (2.19)

However, in this case, as mentioned earlier, the metric can
be cast into the form of (2.2). Nevertheless, as we shall see
Sect. 6 that black holes in the class-two form do exist and we
have to cope with the Eq. (2.18) in order to study the photon
orbits and shadows.

2.2 Black hole shadows

Having obtained the condition for unstable photon orbits, we
are in the position to study the photon shadows surrounded by
photons escaped from the unstable orbits. For the asymptot-
ically flat spacetime, the observer’s sky is the celestial plane
perpendicular to the line joining the observer at infinity and
the center of the black hole. The celestial coordinates x and
y are defined by [6]

x = lim
r0→∞

(
−r2

0 sin θ0
dφ

dr

∣∣∣
(r0,θ0)

)
, (2.20)

y = lim
r0→∞

(
r2

0
dθ

dr

∣∣∣
(r0,θ0)

)
, (2.21)
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where (r0, θ0) are the position coordinates of the observer.
To be specific, θ0 is the angle between the line and the black
hole angular momentum vector, with θ0 = 0 corresponding
to the north pole direction. Making use of the geodesic Eqs.
(2.7) or (2.17), we have

x = −ξ csc θ0 , y = ±
√

η + a2 cos2 θ0 − ξ2 cot2 θ0.

(2.22)

In other words, the photon observed in the celestial coordi-
nates is determined by the integration constant ratios (ξ, η)

of the null geodesic motion. In particular, we have

x2 + y2 = L2 + Q

E2 + a2 cos2 θ0. (2.23)

For the given integration constants (E, L , Q), the photons
form a circle in the sky’s plane, and its radius depends also
on the viewer’s angle.

However, we are considering a collection of photons with
all allowed (E, L , Q). It is clear that the unstable circular
photon orbits form the boundary of a shadow, since those
inside the photon surfaces will be trapped and cannot escape
to infinity. The integration constant ratios (ξ, η) of the unsta-
ble photon orbits are determined by the radial variable rph

by (2.10) for class-one metrics (2.2) and by (2.18) for class-
two metrics (2.11). Thus the boundary of the shadow in the
observer’s sky is determined by the parametric functions in
terms of the parameter rph, namely

x = x(rph) , y = y(rph). (2.24)

The allowed range of rph is restricted by requiring that Q ≥ 0.
We can then determine the shape of the shadow by eliminat-
ing the parameter rph and obtain the function of the closed
loop f (x, y) = 0, in the sky’s plane.

It is worth pointing out here that the black hole shadow,
for an observer at infinity, is the cumulative effect of all the
photon orbits that do not cross the photon sphere, and we
assume that there is no outpointing light source inside the
photon sphere which could light up the shadow. The dis-
tribution of the light sources will only affect the brightness
outside the shadow, but not the shape of the shadow. How-
ever, the shape does depend on the observer’s viewing angle
θ0. When viewed from north pole θ = 0 (or equivalent south
pole θ = π ,) the shadow remains a round disk. The photons
that form the shadow boundary, a round circle, satisfy

ξ(r0
ph) = 0, (2.25)

and the shadow radius is

Rsh =
√
a2 + η(r0

ph). (2.26)

When θ �= 0 or π , the shadows are no longer round, but dis-
torted. For given angle θ0, the maximum distortion occurs
when the black hole has the maximum allowed angular
momentum. For given mass and angular momentum, the dis-
tortion is largest when viewed from the θ0 = 1

2π equatorial
plane. Roughly speaking, the vertical y-direction is elongated
while the horizontal x-direction is squeezed, but the shadows
remain convex. For y = 0, there are two real solutions

η(r±
ph) = 0 , with r+

ph ≥ r−
ph (2.27)

We define the size of the shadow by

Rsh = 1
2

(
x(r+

ph) − x(r−
ph)
)

. (2.28)

It is worth noting that typically the photons at x+ and x−
come from the orbits in the opposite or the same rotating
direction of the black hole respectively. To understand this
Rsh definition, it is instructive to examine the shadow plots
presented in Appendix 1. We note that the boundary of the
shadow is a closed convex loop. For any given point on the
loop, we can find another point in the loop so that the line
joining them is longest (in the Euclidean sense.) To be pre-
cise, for any given point, there is a diagonal line with local
extremum length. It can be argued based on the the symmetry
that the Rsh defined above is the shortest of all these diagonal
lines. For this reason, we choose Rsh to characterize the size
of the photon shadow.

For general θ0, we determine r±
ph by requiring

y(r, θ0)

∣∣∣
r=r±

ph

= 0. (2.29)

where y is given by (2.22). It is important that the roots of the
above equation r±

ph must be chosen that both are outside of

the horizon. When r−
ph is inside of the horizon, then we need

to define r−
ph = r+. When r±

ph coincide, the shadow becomes
round sphere. The shadow size is then again formally given
by (2.28). When θ0 = 0, the quantity (2.28) reduces to (2.26).
All the results reduce to the same radius of the round disk,
independent of the view angle θ0, when the black hole is
spherically symmetric. The photon shadows of the extremal
Kerr black hole, viewed from θ0 = 0, θ0 = π/4 and θ0 =
π/2, are presented in Fig. 1 in Appendix 1. While we studied
a large number of black holes, we present only the shadow
plots for the Kerr metrics since the shadow shapes are all
similar.

The characterization of the size of the whole photon sur-
faces is much less obvious, since they form regions instead
of just a thin shell [13]. We note that the shadows observed at
infinity are associated with specific photon orbits and hence
it is only natural to consider the the size of these relevant
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photon orbits. In other words, the photon orbits associated
with the photons around the edge of the shadow also depends
on the observer’s angle θ0. In particular, the photons seen at
(x, y) = (x±, 0) in the sky’s plane are related to the photon
orbits r±

ph. Therefore, we propose

Rph = 1

2

(√
gθθ (r

+
ph, θ0) +

√
gθθ (r

−
ph, θ0)

)
, (2.30)

to characterize the size of this specific photon orbit.
As was already calculated earlier, the effective mean

radius of the black hole horizon on the other hand is inde-
pendent of the location of the observation, and it is given by

R+ =
√

S

π
=
{√

X (r+), class one with F = G,√B(r+), class two.
(2.31)

We choose this to measure the size of the horizon also because
it is relevant to the Penrose’s black hole entropy bound.
One may argue that the θ0-dependent radius,

√
gθθ (r+, θ0),

should be the relevant horizon size. It follows from the
inequality (2.6) that we have

R+ ≥ √gθθ (r+, θ0). (2.32)

Our main conclusion of (1.4) will thus remain even if we
choose

√
gθθ (r+, θ0). In this paper we opt to choose the

entropy related mean radius as our R+, to arrive at the
stronger inequality bound.

When the black hole is spherically symmetric, the black
hole horizon, photon sphere and shadow disk are all round,
and the above quantity R+, Rph and Rsh become the stan-
dard radii of these respective geometric shapes. A sequence
of inequalities (1.4) was proposed and validated with large
number of explicit examples. In this paper, with our general-
izations of those variables to incorporate stationary rotating
black holes, we conjecture that they continue to be valid. In
order to verify the inequalities, we define

X = 3
√

3M

Rsh
, Y = Rsh√

3Rph
, Z = 2Rph

3R+
, (2.33)

and verify that X ≥ 1, Y ≥ 1 and Z ≥ 1. In other words, for
given mass M , the bigger the (X ,Y,Z), the smaller is the
black hole. The general proof appears to be formidable, and
we shall verify them with explicit examples in the subsequent
sections. We shall focus on two viewing angles: θ0 = 0, for
which the shadow is a round disk, and θ0 = 1

2π , for which
the shadow is maximally distorted from a round disk.

3 Kerr black hole

We first consider the simplest case, namely the Kerr black
hole [43]. The metric can be put into (2.2) with

F = G = 1 − 2mr

ρ2 , H = r2 + a2 cos2 θ = ρ2. (3.1)

Indeed, the functions X and � depend on r only, given by

X = r2 + a2, � = r2 − 2mr + a2. (3.2)

It can also be put into the form of (2.11), with

U = r2 + 2mr , B = 2mr. (3.3)

The solution has mass M = m and when m ≥ a, the metric
describes a black hole and the horizons are determined by
� = 0, which admits two roots, corresponding to the inner
and outer horizons. The event horizon, i.e. the outer horizon,
is located at r+ = m + √

m2 − a2. The black hole entropy
and the mean horizon radius are

S = πX (r+) = π(r2+ + a2), R+ =
√
r2+ + a2. (3.4)

The geodesic motions around the Kerr black hole were first
discussed in [3]. Following from the general discussion in
Sect. 2, we have

ξ = (3m − rph)r2
ph − a2(m + rph)

a(rph − m)
, (3.5)

η = r3
ph(4a

2m − rph(3m − rph)
2)

a2(rph − m)2 . (3.6)

There is clearly an upper bound of rph since we must have
η ≥ 0. The shape of the shadow depends on the angle θ0 of
the observer. We shall focus on two cases, namely θ0 = 0,
corresponding to the viewing from the north pole, or θ =
π/2, corresponding to the viewing from the equatorial plane.
We also present some discussions on the shadows of general
θ0.

3.1 θ0 = 0

In this case, an observer sees a round disk shadow surrounded
by photons originated from the round unstable photon orbits.
The radius of the photon orbits is determined by ξ(rph) = 0,
namely

a2(m + rph) + r2
ph(rph − 3m) = 0. (3.7)
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It admits in general three real solutions for applicable (m, a).
The root outside the horizon is the largest and it is given by

rph = m + 2

√

m2 − a2

3
cos

(
1

3
cos−1

(
3
√

3m
(
m2 − a2

)

(
3m2 − a2

)3/2

))

. (3.8)

Following from the discussion in Sect. 2, we have

Rsh =
√

2m(3r2
ph − a2)

rph − m
, Rph =

√
r2

ph + a2 . (3.9)

The functions (X ,Y,Z)defined by (2.33) in this case depend
only on the dimensionless quantity λ = a/m, given by

X 2 =
27
√

1 − λ2

3 cos

(
1
3 cos−1

(
3
√

3
(
1−λ2

)

(3−λ2)
3/2

))

1
3

(
2
√

9 − 3λ2 cos

(
1
3 cos−1

(
3
√

3(1−λ2)

(3−λ2)
3/2

))
+ 3

)2

− λ2

,

Y2 =

(
1
3

(
2
√

9 − 3λ2 cos

(
1
3 cos−1

(
3
√

3
(
1−λ2

)

(3−λ2)
3/2

))
+ 3

)2

− λ2

)

3
√

1 − λ2

3

(

λ2 +
(

2
√

1 − λ2

3 cos

(
1
3 cos−1

(
3
√

3(1−λ2)

(3−λ2)
3/2

))
+ 1

)2
)

× sec

(
1

3
cos−1

(
3
√

3
(
1 − λ2

)

(
3 − λ2

)3/2

))

,

Z2 =
2

(

λ2 +
(

2
√

1 − λ2

3 cos

(
1
3 cos−1

(
3
√

3
(
1−λ2

)

(3−λ2)
3/2

))
+ 1

)2
)

9
(√

1 − λ2 + 1
) . (3.10)

Here the dimensionless constant λ lies in region [0, 1], with
λ = 0, 1 corresponding to the Schwarzschild black hole and
the extremal rotating black hole respectively. We find that
(X ,Y,Z) are all monotonically increasing function as the
parameter λ runs from 0 to 1. We do not have a clever ana-
lytical way to demonstrate this, but it can be easily seen by
numerical plots. For small λ, we have

{X ,Y,Z} = {1 + 1
18λ2, 1 + 1

27λ2, 1 + 7
216λ2} + O(λ4).

(3.11)

Near λ = 1, we have

X = 3
√

3

2

(√
2 − 1

)
+ 3

√
3

4

(
2
√

2 − 3
)

(1 − λ)

+O
(
(1 − λ)2

)
,

Y =
√

1
3

(
2 + √

2
)

− 1

4

√
1
3

(
2 + √

2
)
(1 − λ)

+O
(
(1 − λ)2

)
,

Z = 2

3

√
2 + √

2 − 1

3

√

2
(

2 + √
2
)√

1 − λ + O (1 − λ) .

(3.12)

Thus we have X ≥ 1, Y ≥ 1 and Z ≥ 1.
Since all (X ,Y,Z) functions are monotonically increas-

ing with respect to λ, it follows that for given mass, the
Schwarzschild is the biggest and the bigger the angular
momentum, all the size parameters (R+, Rph, Rsh) becomes
smaller. When the black hole becomes extremal, all size
parameters become the minima, with X = 1.0762, Y =
1.0668 and Z = 1.2318. We also see that while the distor-
tion of the horizon is significant in the extremal limit, the size
of the photon shadow is largely unchanged.

3.2 θ0 = π/2

The shadow is skewed most when viewed from the equatorial
plane at θ0 = 1

2π . For example, in the extremal limit, the
shape of the shadow resembles a filled letter D. The circular
orbit radii of the photons on the equatorial plane is given by
η = 0

r±
ph = 2m

[
1 + cos

(
2

3
arccos

(
± a

m

))]
(3.13)

x± = −ξ |r=r±
ph

. (3.14)

We follow the discussion in Sect. 2 and define

Rph = 1
2 (r+

ph + r−
ph), Rsh = 1

2 (x+ − x−). (3.15)

We can now again evaluate the functions (X ,Y,Z) defined
by (2.33). They are again functions of the dimensionless
parameter λ and the explicit expressions are

X = 3
√

3λ (2C− + 1) (2C+ + 1)

2 (C+ − C−)
(
2C2+ + 3C+ + C2− (4C+ + 2) + C−

(
4C2+ + 8C+ + 3

)− λ2 + 2
) ,

Y = 2 (C+ − C−)
(
2C2+ + 3C+ + C2− (4C+ + 2) + C−

(
4C2+ + 8C+ + 3

)− λ2 + 2
)

√
3λ (2C− + 1) (2C+ + 1) (C− + C+ + 2)

,

Z =
√

2 (C− + C+ + 2)

3
√√

1 − λ2 + 1
, (3.16)
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where

C± = cos

(
2

3
cos−1(±λ)

)
. (3.17)

It is easy to verify using numerical plots that (X ,Y,Z) are
also all monotonically increasing function of the dimension-
less parameter λ ∈ [0, 1]. In other words, for given mass,
the larger the angular momentum, the smaller are the size
parameters. Near λ = 0, we have

{X ,Y,Z} =
{

1 + λ2

18
, 1 + λ2

54
, 1 + 11λ2

216

}
+ O(λ4).

(3.18)

Near λ = 1, we have

{X ,Y,Z} =
{

2√
3

− 2

9

√
2
√

1 − λ,
3
√

3

5

− 1

25

√
2
√

1 − λ,
5

3
√

2

+
(

2

3
√

3
− 5

6

)√
1 − λ

}

+O(1 − λ). (3.19)

Thus we have X ≥ 1, Y ≥ 1 and Z ≥ 1 again.

3.3 General θ0

For general angle θ0, the equation y = 0 that determines
r±

ph becomes a polynomial of six order in terms of the radial

coordinate r and hence an analytic solution for r±
ph are no

longer possible. For small a, we can obtain r±
ph as the Taylor

expansion:

r±
ph

m
= 3 ± 2√

3
sin θ0 λ − 1

9
(3 + cos 2θ0)λ

2

±13 sin θ0 + 3 sin 3θ0

54
√

3
λ3 + O(λ4), (3.20)

with λ = a/m. This allows us to calculate Rph and Rsh and
eventually (X ,Y,Z) defined in (2.33). We find that for small
a

{X ,Y,Z} = {
1 + 1

18λ2, 1 + 1
108 (3 + cos 2θ0)λ

2, 1

+ 1
216 (9 − 2 cos 2θ0)λ

2}+ O(λ3). (3.21)

When θ0 = 0 and θ0 = π/2, these quantities reduce to those
in the previous subsections. Note that we have to obtain r±

ph
up to and including the cubic order of λ in order to obtain
the expressions for X ,Y and Z at the quadratic order. In
the extremal limit with λ = 1, the y(rph) = 0 equation
is an quartic polynomial of rph and hence it can be solved
analytically. A numerical plot indicates that all (X ,Y,Z) are

again bigger than 1 in this case. The subtlety in the extremal
limit is that when θ0 approaches the equatorial plane, r−

ph
solved from y = 0 can be smaller than the horizon radius
and hence it should be replaced by r+. For general θ0 and
λ, we verified the inequalities for an incomplete but large
number of numerical data.

4 Kerr–Newman black hole

The Kerr–Newman black hole [44,45] can be cast in the
forms of both the class-one (2.2) and class-two (2.11) met-
rics. In this section, we shall use the class-one metric. The
metric functions are given by

F = G = 1 − 2mr

ρ2 + q2

ρ2 , H = r2 + a2 cos2 θ = ρ2.

(4.1)

Indeed, both X and � are functions of r only, given by

X = r2 + a2, � = r2 − 2mr + a2 + q2. (4.2)

The horizon mean radius is

R+ =
√
r2+ + a2, r+ = m +

√
m2 − a2 − q2. (4.3)

It follows from the discussion in Sect. 2 that the unstable
photon orbits satisfy

ξ = 2rph(2mrph − q2) − (rph + m)(r2
ph + a2)

a(rph − m)
,

η = 4a2r2
ph(mrph − q2) − r2

ph(rph(rph − 3m) + 2q2)2

a2(rph − m)2 .

(4.4)

We can now determine the photon shadows. We shall focus
only on the θ0 = 0 and θ0 = π/2 cases.

4.1 θ0 = 0

The radius of the relevant photon orbits Rph =
√
r2

ph + a2 is

determined by the largest root of the cubic polynomial

r3
ph − 3mr2

ph + (a2 + 2q2)rph + a2m = 0. (4.5)

The largest root is

rph = m + 2
√
m2 − 1

3 (a2 + 2q2) cos

(
1

3
cos−1

×
(

3
√

3m
(
m2 − a2 − q2

)

(
3m2 − a2 − 2q2

)3/2

))

. (4.6)
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The shadow remains a round disk, and the radius is

Rsh =
√

6mr2
ph − 4q2rph − 2a2m

rph − m
. (4.7)

We are now in the position to write the (X ,Y,Z) functions.
We introduce the dimensionless parameters (λ, σ ) by

a

m
= λ

√
1 − σ 2,

q

m
= λσ. (4.8)

Both parameters lie in the region [0, 1]. We find

X 2 = 27
√

9 − 3λ2
(
σ 2 + 1

)
(4C + C−1) − 4λ2σ 2 + 12

,

Y2 =
√

9 − 3λ2
(
σ 2 + 1

)
(4C + C−1) − 4λ2σ 2 + 12

4C2
(
3 − λ2

(
σ 2 + 1

))+ 4C
√

9 − 3λ2
(
σ 2 + 1

)+ 3λ2
(
1 − σ 2

)+ 3
,

Z2 =
4

((
2
3C
√

9 − 3λ2
(
σ 2 + 1

)+ 1
)2

+ λ2
(
1 − σ 2

))

9
(

2 − λ2σ 2 + 2
√

1 − λ2
) . (4.9)

where

C ≡ cos

(
1

3
cos−1

(
3
√

3
(
1 − λ2

)

(
3 − λ2

(
σ 2 + 1

))3/2

))

. (4.10)

The expression becomes much simpler in the extremal λ = 1
limit, in which case, we have

X 2 = 27

12 − 4σ 2 + 8
√

2 − σ 2
, Y2 = 2

3

(
1 + 1√

2 − σ 2

)
,

Z2 = 8

9

(
1 + 1√

2 − σ 2

)
. (4.11)

Note that σ = 0 leads to the Kerr result. σ = 1 leads to
the RN black hole. Our numerical contour plots indicate that
X ≥ 1, Y ≥ 1 and Z ≥ 1 for all λ, σ ∈ [0, 1]. We also
notice that for fixed mass m = 1 and charge q = λσ , the
bigger than angular momentum, the smaller is the black hole
size.

4.2 θ = 1
2π

In this case, we have to deal with a quartic equation to obtain
rph

r4
ph − 6mr3 + (9m2 + 4q2)r2

ph − 4m(a2 + 3q2)

rph + 4q2(a2 + q2) = 0. (4.12)

The equation can be solved exactly and the subtlety is to select
the right roots that are outside the horizon. The general for-
mula is presented in Appendix 2. The quantities (X ,Y,Z)

are again functions of dimensionless parameters (λ, σ ) only.
The expressions are too messy to present; however, we
can perform exhaustive numerical plots for the parameters

(λ, σ ) ∈ [0, 1]. Our contour plots indicate that quantities
(X ,Y,Z) are again no smaller than 1.

In the extremal limit λ = 1, the situation is much simpler
and we have

r+
ph

m
= 2

(
1 +

√
1 − σ 2

)
,

r−
ph

m
=
{

1, 0 ≤ σ ≤
√

3
2 ,

2
(

1 − √
1 − σ 2

)
,

√
3

2 ≤ σ < 1.
(4.13)

We can then obtain the shadow size parameter:

Rsh

m
=
{

2 + 5−4σ 2

2
√

1−σ 2 , 0 ≤ σ ≤
√

3
2

4,
√

3
2 < σ ≤ 1.

(4.14)

We therefore have explicit analytical expressions for
(X ,Y,Z), namely

X =
{

6
√

3−3σ 2

−4σ 2+4
√

1−σ 2+5
, 0 ≤ σ ≤

√
3

2
3
√

3
4 ,

√
3

2 < σ ≤ 1.
,

Y =

⎧
⎪⎨

⎪⎩

√
3
(
−4σ 2+4

√
1−σ 2+5

)

−6σ 2+9
√

1−σ 2+6
, 0 ≤ σ ≤

√
3

2
2√
3
,

√
3

2 < σ ≤ 1.

Z =
⎧
⎨

⎩

2
√

1−σ 2+3
3
√

2−σ 2 , 0 ≤ σ ≤
√

3
2

4
3
√

2−σ 2 ,
√

3
2 < σ ≤ 1.

(4.15)

These are all manifestly no smaller than 1 for σ = [0, 1]. In
terms of the variable σ , the above functions are continuous
at σ = √

3/2, but not their derivatives with respect to σ .

5 Kerr–Sen black hole

The Kerr–Sen black hole [46] can also be written in both (2.2)
and (2.11) coordinates. We shall use the coordinate system
of (2.2) here and the metric functions are

F = G = ρ2 − r1r

ρ2 + r2r
, H = ρ2+r2r, ρ2 = r2+a2 cos2 θ.

(5.1)

Consequently we have X (r) and �(r), given by

X = r2 + r2r + a2, � = r2 − r1r + a2, (5.2)

where r1 and r2 are related to the mass M and electric charge
Qe by

r1 + r2 = 2M, r2 = Q2
e

M
. (5.3)
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The entropy is S = πX (r+), where r+ is the location of the
outer horizon. Thus the mean radius of the horizon is

R+ =
√

M

√

2 (2M − r2)
(√

(2M − r2) 2 − 4a2 + 2M − r2

)
− 4a2.

(5.4)

The radial coordinate of the photon orbits are determined by

ξ = a2(2M + 2rph + r2) + rph(2r2
ph + 3r2rph + r2

2 − 2M(3rph + r2))

a(2M − 2rph − r2)
,

η = − r2
ph(−8a2M(2rph + r2) + (2r2

ph + 3r2rph + r2
2 − 2M(3rph + r2))

2)

a2(2M − 2rph − r2)2 .

(5.5)

For simplicity, we shall study the shadows viewed only from
two angles, namely θ0 = 0 and π/2.

5.1 θ0 = 0

In this case, the size parameter of the relevant photon orbits
is

Rph =
√
r2

ph + a2 + r2rph, (5.6)

where rph is the largest roots of the cubic equation

r3
ph − 3

2r
2
ph(2M − r2)

+ 1
2rph(2a

2 − 2Mr2 + r2
2 ) + 1

2a
2(2M + r2) = 0.(5.7)

The solution is

rph = M − r2

2
+ 1√

3

√
12M2 − 4a2 − 8Mr2 + r2

2

× cos

(
1

3
cos−1

(
6
√

3M
(
(r2 − 2M) 2 − 4a2

)

(
12M2 − 4a2 − 8Mr2 + r2

2

)
3/2

))

.

(5.8)

The radius of the round photon shadow is

Rsh =

√
M
(
−2a2 (M + r2) + rph

(−4a2 + 2Mr2 − r2
2

)+ 2r2
ph (3M − r2)

)

+2rph + r2 − 2M
.

(5.9)

It is convenient to introduce two dimensionless parameters
(λ, σ ), defined by

a = Mλσ , r2 = 2M(1 − σ), λ, σ ∈ [0, 1], (5.10)

for which � = (r −Mσ)2 −M2σ 2(1−λ2). We find that the
quantities (X ,Y,Z) of (2.33) are functions of (λ, σ ) only
and the analytical expressions are

X 2 =
27C2

(
σ λ̃2 + 2

)

4C2(2σ + 1)
(
σ λ̃2 + 2

)
+ 4

√
3C

√
σ
(
σ λ̃2 + 2

)3/2 + 9σ λ̃2
,

Y2 =
4C2(2σ + 1)

(
σ λ̃2 + 2

)
+ 4

√
3C

√
σ
(
σ λ̃2 + 2

)3/2 + 9σ λ̃2

C2
(
σ λ̃2 + 2

) ((
8C2 + 6

)
σ + (4C2 − 3

)
σ 2λ̃2 + 4

√
3C

√
σ
√

σ λ̃2 + 2
) ,

Z2 =
2
((

8C2 + 6
)
σ + (4C2 − 3

)
σ 2λ̃2 + 4

√
3C

√
σ
√

σ λ̃2 + 2
)

27
√

σ
√

σ + σ λ̃2 + 2σ λ̃
. (5.11)

where λ̃ = √
1 − λ2 and

C = cos

⎛

⎜
⎝

1

3
cos−1

⎛

⎜
⎝

3
√

3λ̃2σ 2

(
λ̃2σ 2 + 2σ

)3/2

⎞

⎟
⎠

⎞

⎟
⎠ . (5.12)

These analytical expressions allow us to perform contour
plots for all the parameters (λ, σ ) ∈ [0, 1] exhaustively and
demonstrate numerically that (X ,Y,Z) are no less than 1.
In the extremal limit, λ = 1, the ratios all become much
simpler, given by

{X ,Y,Z} =
⎧
⎨

⎩

3
√

3
2

2
√

σ + √
2
,

√ √
2

3
√

σ
+ 2

3
,

2

3

√√
2√
σ

+ 2

⎫
⎬

⎭
> 1.

(5.13)

5.2 θ0 = 1
2π

The case of θ0 = π/2 is more complicated, but simpler than
the generic θ0. The relevant r±

ph satisfy the quartic equation

4r4
ph + 12(r2 − 2M)r3

ph

+(36M2 − 44Mr2 + 13r2
2 )r2

ph

−(16a2M − 6r0(r2 − 2M)2)rph

−(8a2M − r2(r2 − 2M)2)r2 = 0. (5.14)

Using the formula in Appendix 2, we can obtain the correct
roots and then determine both Rph and Rsh, following the
description in Sect. 2. The quantities (X ,Y,Z) are again
functions of the dimensionless parameters (λ, σ ). The for-
mulae in this case are all messy and we shall not present them
but simply report the conclusion. We can contour plot these
quantities and verify that they are indeed no less than 1.

The inequalities can be manifestly established in the
extremal λ = 1 limit, in which case, we have

r+
ph = 2M(σ + √

σ), r−
ph = Mσ = r+. (5.15)
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We can then read off the Rph and Rsh and hence we have

X = 6
√

3
(√

σ + 2
)2 , Y =

(√
σ + 2

)2

4
√

9σ
(√

2 − σ 4
√

σ + 2
√

σ + 2
) ,

Z =
√

2 − σ 4
√

σ + 2
√

σ + 2

3 4
√

4σ
. (5.16)

Thus we see analytically that these quantities are greater than
1 for the extremal black holes.

6 Kerr–Cvetič–Youm black hole

The 4-charge rotating black holes in the STU supergravity
model [47] was constructed by Cvetič and Youm in [48].
The typos were later corrected in [49]. We shall adopt the
notations of [49] in this paper. It should be emphasized that
rotating black holes discussed in the previous sections are
all special case of this general solutions. The general metric
cannot be cast into the form of (2.2) analytically. We present
the solution instead in the class-two metric (2.11), with the
metric functions

B = 2m (rc1234 − (r − 2m)s1234) ,

U = r2 + 2mr(1 + s2
1 + s2

2 + s2
3 + s2

4 )

+8m2(c1234 − s1234)s1234

−4m2(s2
123 + s2

124 + s2
134 + s2

234), (6.1)

with

ci1···in = cosh δi1 . . . cosh δin , si1...in = sinh δi1 . . . sinh δin .

(6.2)

The mass of the solution is

M = m
(

1 + 1
2 (s2

1 + s2
2 + s2

3 + s2
4 )
)

. (6.3)

The four charges of the STU model are parameterized by m
and four dimensionless parameters δi . The solution describes
a black hole when m ≥ a, with the entropy given by

S+ = π(r2+ + a2)

(

c1234 + a2

r2+
s1234

)

, R+ =
√

S

π
,

(6.4)

where r+ = m + √
m2 − a2.

6.1 Pairwise equal charges

We first consider the case with pairwise equal charges, by
setting δ3 = δ1 and δ4 = δ2. The metric can be put in both

class-one and class-two Ansätze. The photon orbits are deter-
mined by

ξ = 1

a(m − r)

(
r3 − 3mr2 + r

(
a2 − 2m2

((
2s2

2 + 1
)
s2

1 + s2
2

))

+a2m
(
2s2

1 + 2s2
2 + 1

)+ 4m3s2
1 s

2
2

)∣∣∣
r=rph

,

η = 1

a2(r − m)2

[
− r6 + 6mr5

+m2 ((8s2
2 + 4

)
s2

1 + 4s2
2 − 9

)
r4

+ (4a2m
(
s2

1 + s2
2 + 1

)− 4m3 ((8s2
2 + 3

)
s2

1 + 3s2
2

))
r3

+4m2
(
a2 (s4

1 + (6s2
2 + 1

)
s2

1 + s4
2 + s2

2

)

−m2
((

2s2
2 + 1

)2
s4

1 + 4s2
2

(
s2

2 − 1
)
s2

1 + s4
2

) )
r2

+ (16a2m3s2
1 s

2
2

(
s2

1 + s2
2 − 1

)

+16m5s2
1 s

2
2

((
2s2

2 + 1
)
s2

1 + s2
2

))
r

−16a2m4s2
1 s

2
2

(
s2

1 + s2
2

)− 16m6s4
1s

4
2

]∣∣∣
r=rph

. (6.5)

Note that the numerator of η is now a sextic polynomial of
r , which makes it difficult to study the situation analytically.

However, for θ0 = 0, the shadow remains a round disk
and the relevant photon orbits are determined by ξ(rph) = 0,
which is a cubic equation. We thus have

rph

m
= 1 + 2γC ,

γ =
√

1
3 (3 − λ2 + 2s2

1 + 2s2
2 + 4s2

1s
2
2 ),

λ = a

m
,

C = cos

(
1

3
cos−1

(
3
√

3
(
1 − λ2

) (
s2

1 + s2
2 + 1

)

(
3 − λ2 + 2s2

1 + 2s2
2 + 4s2

1s
2
2

)3/2

))

, (6.6)

Following the discussion in Sect. 2, we find that the size
factors are given by

R2
ph = a2 + 4m2s2

1 s
2
2 + 2m

(
s2

1 + s2
2

)
rph + r2

ph ,

R2
sh = 2

(rph − m)2

(
r4

ph + 4m
(
s2

1 + s2
2

)
r3

ph

+
(
a2 + m2

(
2s4

1 + 8s2
2 s

2
1

−6s2
1 + 2s4

2 − 6s2
2 − 3

))
r2

ph

+2m
(
a2
(
s2

1 + s2
2

)
+ m2

(
−2s4

1 − 8s2
2 s

2
1

−s2
1 − 2s4

2 − s2
2

))
rph

+m2
(
a2
(

2s4
1 + 4s2

2 s
2
1 + 2s2

1 + 2s4
2 + 2s2

2 + 1
)

+4m2s2
1 s

2
2

) )
. (6.7)
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We now find that

X−2 = 1

27γ 2C2
(
s2

1 + s2
2 + 1

)2

(
12γ 3C

(
s2

1 + s2
2 + 1

)
+ γ 2

(
4C2

(
s4

1 +
(

6s2
2 + 4

)
s2

1 + s4
2 + 4s2

2 + 3
)

+9
(
s2

1 + s2
2 + 1

)2
)

− 6
(
s2

1 + s2
2 + 1

)2 ((
2s2

2 + 1
)
s2

1 + s2
2 + 1

) )
,

Y2 = 1

3γ 2C2
(
4γ 2C2 − 3γ 2 + 4γC

(
s2

1 + s2
2 + 1

)+ 4
((

2s2
2 + 1

)
s2

1 + s2
2 + 1

))

(
4γ 2C2

(
s4

1 +
(

6s2
2 + 4

)
s2

1 + s4
2 + 4s2

2 + 3
)

+ 12γ 3C
(
s2

1 + s2
2 + 1

)

+9γ 2
(
s2

1 + s2
2 + 1

)2 − 6
(
s2

1 + s2
2 + 1

)2 ((
2s2

2 + 1
)
s2

1 + s2
2 + 1

) )
,

Z2 = 6
(−3γ 2 + 4γ 2C2 + 4γC + 4s2

2 (γC + 1) + 4s2
1

(
γC + 2s2

2 + 1
)+ 4

)

27
(√

1 − λ2
(
s2

1 + s2
2 + 1

)+ (2s2
2 + 1

)
s2

1 + s2
2 + 1

) . (6.8)

Note that we giveX−2 here instead ofX 2 for the presentation
purpose. In general we can perform numerical plots and see
that (X ,Y,Z) are all no less than 1. In the extremal λ = 1
limit, the expressions are much simpler and we have

X 2 = 27/4

1 +
2

(√
2
√(

2s2
2 +1

)
s2
1 +s2

2 +1
(
s2
1 +s2

2 +1
)+(2s2

2 +1
)(
s2
1 +s2

2 +1
)−2

(
s4
2 +s2

2

))

(
s2
1 +s2

2 +1
)2

,

Y2 =
√

2s2
1 + 2

√(
2s2

2 + 1
)
s2

1 + s2
2 + 1 + √

2
(
s2

2 + 1
)

3
√(

2s2
2 + 1

)
s2

1 + s2
2 + 1

,

Z2 =
4
√

2s2
1 + 8

√(
2s2

2 + 1
)
s2

1 + s2
2 + 1 + 4

√
2
(
s2

2 + 1
)

9
√(

2s2
2 + 1

)
s2

1 + s2
2 + 1

. (6.9)

Keeping in mind that both s2
1 and s2

2 run from 0 to infinity, it
is easy to demonstrate analytically that these quantities are
no less than 1.

For θ0 �= 0, the relevant r±
ph are determined by the sextic

polynomial associated with y(r±
rp) = 0. We do not have a

clever procedure; instead we can randomly choose specific
numerical numbers for the parameters (m, a ≤ m, s1, s2) and
then numerically solve for r±

ph from y = 0. This allows us to
evaluate the associated Rph and Rsh and validate the conjec-
ture (1.4). We find no counter example with this incomplete
numerical approach.

In the extremal limitm = a, we find that r±
ph can be solved

exactly for θ0 = π/2, given by

r+
ph = 2m(1 + c1c2),

r−
ph =

{
2ms1s2, 2ms1s2 ≥ a,

a, 2ms2s2 ≤ a.
(6.10)

When 2ms1s2 ≥ a, we have

X = 3
√

3
(
s2

1 + s2
2 + 1

)

2
(
c1c2 + s2

1 + s2s1 + s2
2 + 1

) ,

Y = 2
(
c1c2 + s2

1 + s2s1 + s2
2 + 1

)

√
3c1c2 (c1 + c2) + √

3s1s2 (s1 + s2)
,

Z =
√

2c1c2 (c1 + c2) + √
2s1s2 (s1 + s2)

3
√

2s2
2s

2
1 + s2

1 + s2
2 + 1

. (6.11)

When 2ms1s2 ≤ a, we have

X = 6
√

3
(
s2

1 + s2
2 + 1

)

4c1c2 + 4
(
s2

2 + 1
)
s2

1 + 4s2
2 + 5

,

Y = 4c1c2 + 4
(
s2

2 + 1
)
s2

1 + 4s2
2 + 5

2
√

3c1c2 (c1 + c2) +
√

3
(
2s2

1 + 1
) (

2s2
2 + 1

) ,

Z =
2
√
c1c2 (c1 + c2) +

√(
2s2

1 + 1
) (

2s2
2 + 1

)

3
√

2(1 + s2
1 + s2

2 + 2s2
1s

2
2 )

. (6.12)

The above two sets of quantities become the same when
2ms1s2 = a. In this extremal case, it is not hard to demon-
strate analytically that (X ,Y,Z) are all greater than 1.

6.2 General charges

The situation becomes more much complicated for the four
generic charges. We find that the photon surfaces are deter-
mined by

ξ = 1

a2(m − r)

[
am
(
c1234

(
a2 − r2

)

+s1234

(
(r − 2m)2 − a2

) )

+a�
(
r2 + m(r − m)

∑

i

s2
i + m2((c1234
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−s1234)
2 − 1)

) 1
2
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s2
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((c1234 − s1234)
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) 1
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rph

. (6.13)

We have to employ numerical technique to determine the
size factors Rph and Rsh, even though the procedure was well
specified in Sect. 2. An exhaustive analysis of all parameters
is beyond our current numerical skill; however, for a large
number of randomly selected mass and charges, we have
found no counterexample to our conjecture.

7 Conclusions

In this paper, we studied the photon surfaces and shadows
for asymptotically flat rotating black holes in four dimen-
sions. Our key motivation was to characterize the size of
these geometries. For spherically symmetric black holes, the
radii are the noncontroversial parameters, but the choice is
non-unique when the black hole is rotating, since the shapes
of the shadow can be distorted by rotations and they are also
dependent on the angular position of the observer.

We used the area for measuring the size of the horizon,
but continued to use linear length to measure the size of
both shadow and the relevant photon orbits. The reason for
the former is the curious inequality (2.6). Furthermore, the

series inequality would then include the Penrose conjecture.
The reason for the latter is because there exists a shortest
diagonal line across a shadow and therefore it is natural to
use its half length as the measure of the shadow. Our choice
of the parameter measuring the size of the photon orbits may
appear to ad hoc, but we believe that our choice captures
the relevant photon orbits that is responsible to create the
boundary of the shadow.

After having determined the parameters, we then veri-
fied the conjecture (1.4), established for static black holes
in [37], with a variety of rotating black holes. These are
the Kerr, Kerr–Newman, Kerr–Sen and Kerr–Cvetič–Youm
black holes. For some examples, we could validate the con-
jecture analytically or by numerical plots for all range of
parameters. For more complicated examples, we checked a
large number of data, albeit incomplete, and we found no
counterexample.

The number of known rotating black holes is much less
than static ones; nevertheless, the success of our verification
does validate our choice of the size parameters and it also
indicates some deep underlying principle behind the conjec-
ture (1.4). Nevertheless, the procedure depends heavily on the
coordinate choice, despite of our effort to remove the ambi-
guity with our strict gauge choice. It is thus of great interest
to examine the conjecture (1.4) using the areas, not only of
the horizon, but also the shadow. Our preliminary investi-
gation in Appendix 1 indicates that the shadow areas Ash

are also consistent with the conjecture (1.4). To be precise,
we expect that the shadow areas of black holes in Einstein
gravity satisfy both the lower and upper bounds

S

4π
≤ Ash

27π
≤ M2. (7.1)

The Schwarzschild black hole saturates both.
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Fig. 1 Shadows of the extremal Kerr black hole of m = 1 = a, corre-
sponding to M = 1 and R+ = √

2. The left one is the shadow viewed

from the north pole with rph = 1 + √
2 and hence Rph =

√
2(2 + √

2)

and Rsh = 2(1+√
2). The middle plot is viewed from angle θ0 = π/4,

we have r−
ph = 1.0583 and r+

ph = 3.5549, giving x− = −2.824 and

x+ = 6.403, and hence we have Rph = 2.449 and Rsh = 4.613. The

right plot is the shadow viewed from θ0 = π/2 and we have x− = −2
at r−

ph = 1 and x+ = 7 at r−
ph = 4; therefore, we have Rph = 5/2

and Rsh = 9/2. In all the three cases, we have X > 1,Y > 1 and
Z > 1, for (X ,Y,Z) defined in (2.33). As a comparison, for the M = 1
Schwarzschild black hole, we have R+ = 2, Rph = 3 and Rsh = 3

√
3.

Thus rotation makes the black hole to appear “smaller”

included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Shadows of extremal Kerr black hole

In this appendix, we present a few numerical plots of the
black hole shadows, which can help to illustrate our definition
of size factors discussed in both introduction and Sect. 2.
The shapes of the shadows are analogous for various black
holes, we therefore use the Kerr black hole as an illustrative
example. The purpose of drawing these shadows is to help
us to characterize their size.

In Fig. 1, we present the shape of the shadows of the
extremal Kerr black hole viewed from the north pole θ0 =
0, θ = π/4 and the equatorial plane θ0 = π/2. From the
north pole, the shadow is round, but smaller than that of the
Schwarzschild black hole of equal mass. The image becomes
most skewed when θ0 = π/2. To understand the skewing
effect, we note that for our coordinate convention, the angular
momentum vector pointing to the north pole direction for
positive a. It follows from the geodesic equations that, for
the two orbits r+

ph > r−
ph, we have

dφ

dτ
< 0 , rph = r+

ph,

dφ

dτ
> 0 , rph = r−

ph. (A.1)

In other words, the photon orbiting in the opposite direction
of the black hole rotation has bigger r+

ph and bigger |x+|.
For all the cases, the inequalities we propose in this paper

are all satisfied, with

{X ,Y,Z} =
⎧
⎨

⎩

{1.0762, 1.0668, 1.2318}, θ0 = 0
{1.1264, 1.0877, 1.1543}, θ0 = π

4{1.1547, 1.0392, 1.1785}, θ0 = π
2

(A.2)

for the left, middle and right plots respectively.
It is also instructive to calculate the area of the three shad-

ows presented in Fig. 1. The general formula is given by

A =
∫ r+

ph

r−
ph

drph yx ′. (A.3)

where a prime denotes a derivative with respect to rph. We
find that for the extremal Kerr black hole with m = a = 1,
the shadow areas are given by

θ0 = 0 : Ash

27π
= 2

27 (
√

2 + 2)2 ∼ 0.8635 ,

θ1 = 1
4π : Ash

27π
∼ 0.8766,

θ2 = 1
2π : Ash

27π
= 1

27 (15
√

3 + 16π) ∼ 0.8989. (A.4)

The results indicate that the area of the photon shadow is
a monotonically increasing function of θ0. If we define the
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Fig. 2 The shadow of non-extremal Kerr black hole with m = 1 and
a = 29/30, viewed from the equatorial plane (θ0 = π/2). Note the
similarity between this and the middle plot of Fig. 1 which is the shadow
of the extremal black hole but viewed from angle θ0 = π/4

mean radius of the shadow radius by Rsh = √Ash/π , then
the values are also consistent with our main conjecture (1.4),
yielding the area conjecture (7.1).

We also present the shadow plot in Fig. 2 for the non-
extremal Kerr black hole with mass m = 1 and a = 19/20,
viewed from the equatorial plane. There is a strong similarity
between this shadow and the one of the extremal black hole
viewed from the angle θ0 = π/4, shown in the middle plot
of Fig. 1. It is thus difficult to distinguish these situations
without precision measurement. Nevertheless, our conjecture
(1.4) appears to be valid in all these cases.

B Roots of quartic equation

In a few of our black hole examples, we are required to solve
the quartic polynomial equation

ar4 + br3 + cr2 + dr + e = 0 , with a �= 0, (B.1)

where (a, b, c, d, e) are constants specified by the black
hole mass, angular momentum and charges. We follow the
wikipedia entry and the general solutions is

x1,2 = − b

4a
− S ± 1

2

√
−4S2 − 2p + q

S
, (B.2)

x3,4 = − b

4a
+ S ± 1

2

√
−4S2 − 2p − q

S
, (B.3)

where

p = 8ac − 3b2

8a2 , q = b3 − 4abc + 8a2d

8a3 ,

S = 1

2

√

−2

3
p + 1

3a

(
Q + �0

Q

)
,

Q = 3

√
1

2

(
�1 +

√
�2

1 − 4�3
0

)
,

�0 = c2 − 3bd + 12ae ,

�1 = 2c3 − 9bcd + 27b2e + 27ad2 − 72ace.

(B.4)

For charged rotating black holes, we have either two real
roots and two conjugate complex roots or four real roots.
We require that the photon sphere is located outside of the
horizon, which implies that

r±
ph = − b

4a
+ S ± 1

2

√
−4S2 − 2p − q

S
. (B.5)
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