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Abstract The role of an exponential function of the scalar
curvature in the modified gravity is analyzed. Two models are
proposed. A toy model that complies with local and cosmo-
logical constraints and gives appropriate qualitative descrip-
tion of the cosmic evolution. This model contains a saddle
matter-dominant critical point that can evolve towards a late
time de Sitter attractor. Initial conditions have been proposed,
showing that this toy model has an acceptable matter era and
gives an approximate qualitative behavior of cosmic evolu-
tion. A second viable model, behaves very close to �CDM
at early times and can satisfy local and cosmological con-
straints. It behaves as R−2� at R → ∞ and tends to zero at
R → 0, containing flat spacetime solution. The model gives
viable cosmological trajectories that, as the first model, con-
nect the matter dominated point with a late time de Sitter
attractor. The cosmic evolution of the main density parame-
ters in this model is consistent with current observations with
an equation of state very close to −1.

1 Introduction

So far the most successful dark energy model is the cos-
mological constant (for review see [1–4]), despite its main
fine-tuning problem, that motivates the seek for alternative
models of dynamical nature. Among these models, the modi-
fication of gravity that involves a general function f (R), rep-
resents an appealing alternative that has been under intense
study last years. The function f (R) generalizes the Einstein–
Hilbert Lagrangian by adding corrections that are non-linear
functions of the curvature, subject to local (solar system)
and cosmological (high redshifts) constraints that determine
its viability (see [5–10] for reviews). These corrections may
become relevant in a late universe and many types of modifi-
cations to the Einstein–Hilbert action have been proposed so
far [5,11–30]. Among the first and most studied corrections
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to the Einstein–Hilbert Lagrangian are the corrections of the
form Rn , but it is well known that corrections with n > 1 that
are relevant at early times like in the case of n = 2 leading
to de Sitter expansion [31], are negligible small compared to
R at the present epoch and not suitable to explain the current
accelerated expansion. Models with n < 0 contain instabil-
ities that prevent them from having a matter dominated era
[26,32,33] and are also inconsistent with solar system tests.
There are also models that attempt to unify early time infla-
tion with late time acceleration [34–37]. Modified gravity
with arbitrary function of the 4-dimensional Gauss–Bonnet
invariant has been introduced in [38–40]. Any viable model
of modified gravity should pass not only the Solar-system
tests, that are perhaps the more reliable and challenging,
where the average density of matter is high compared with
that of the universe, but also should satisfy the cosmologi-
cal restrictions from high redshift observations. The so called
chameleon mechanism is used to pass solar system tests. The
purpose of this mechanism is to give a large enough mass to
the scalar field (that appears after the conformal transforma-
tion in the metric to convert f (R) to the Einstein frame) to
avoid measurable corrections to the local gravity phenomena
[30,41,42]. A number of works have been devoted to f (R)

models that can satisfy both cosmological and local gravity
constraints [30,43–47]. Exact cosmological solutions have
been studied in [48–54]. The theory of dynamical systems is
a very useful tool to study models with highly non-linear
field equations and have been widely applied in cosmol-
ogy (see [55] for revision). The dynamical systems encode
many important features of the models, where in the case of
cosmology, the critical points and their stability properties
describe the different phases of evolution of the universe.
Different cosmological aspects of modified gravity models,
using dynamical system techniques, have been studied in
[7,56–73].

In the present paper we consider an exponential function of
the curvature in modified gravity and study its cosmological
consequences. It is shown that the two proposed models can
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satisfy both, local and large scale cosmological constraints.
As the criterium to analyze the outcomes of the models we
used the (m, r ) diagram which shows that the models are
viable and contain the matter era followed by a late time
solution with accelerated expansion. The first model gives
an approximate qualitative description of the cosmic evo-
lution while the second second model is more realistic and
behaves very close to the �CDM with disappearing cos-
mological constant at R → 0. A simple modified gravity
model with exponential gravity, that realize early and late
time accelerated expansion, was proposed in [74] and obser-
vational constraints on this model were studied in [75]. A
more general model with exponential and logarithmic cor-
rections was considered in [76] and constant roll inflation
with exponential modified gravity was studied in [77].

This paper is organized as follows. In Sect. 2 we present
the general features of the f (R) models, including the
dynamical system and the relevant critical points for our
study in terms of the (r,m) parameters. In Sect. 3 we present
the models, showing the conditions for viability and its tra-
jectories in the (r,m)-plane, and some numerical cases of
cosmic evolution. In Sect. 4 we present some discussion.

2 Field equations

Let us start with the following action for modified gravity

S =
∫

d4x
√−g

[
1

2κ2 f (R) + Lm

]
(2.1)

where κ2 = 8πG and Lm is the Lagrangian density for
the matter component which satisfies the usual conservation
equation. Variation with respect to the metric gives the equa-
tion of motion

f,R(R)Rμν − 1

2
gμν f (R)

+ (
gμν� − ∇μ∇ν

)
f,R(R) = κ2T (m)

μν (2.2)

where T (m)
μν is the matter energy–momentum tensor assumed

as

Tm
μν = (ρ + p) uμuν + pgμν

and f,R ≡ d f
dR . The trace of Eq. (2.2) gives

R f,R(R) − 2 f (R) + 3� f,R(R) = κ2T (m) = κ2 (3p − ρ)

(2.3)

The time and spatial components of the Eq. (2.2) are given
by the following expressions

3H2 f,R = 1

2

(
R f,R − f

) − 3H ḟ,R + κ2ρ (2.4)

and

− 2Ḣ f,R = f̈,R − H ḟ,R + κ2 (ρ + p) (2.5)

where dot represents derivative with respect to cosmic time.
The field equation (2.4) can be written in more compact form
by defining the effective energy density as follows

H2 = κ2

3
ρe f f , (2.6)

where

ρe f f = 1

f,R

[
1

2κ2

(
R f,R − f − 6H ḟ,R

) + ρ

]
(2.7)

The Eqs. (2.4) and (2.5) lead to the following effective equa-
tion of state (EoS)

we f f = −1 − 2Ḣ

3H2

= −1 + f̈,R − H ḟ,R + κ2 (ρ + p)
1
2

(
R f,R − f

) − 3H ḟ,R + κ2ρ
, (2.8)

where ρ and p include both matter and radiation components,
i.e. ρ = ρm +ρr and p = pm + pr . In order to be viable, the
function f (R) must satisfy the observational evidence both
at the local level and at cosmological distances. The first
general restrictions can be summarized as follows. Firstly
the condition f,R > 0 is necessary to avoid negative effective
Newtonian coupling. On the other hand, the scalar particle
associated with f (R), dubbed scalar on with mass (in matter
epoch or in the regime M2 >> R)

M2 � 1

3 f,RR
, (2.9)

requires f,RR > 0 in order to avoid ghosts and is also a
condition of stability under perturbations.

To study the viability of modified gravity as cosmological
model it is useful to consider the dynamical system with the
following dimensionless variables that can be obtained from
Eq. (2.4)) [7,56,57] (in what follows we will use indistinctly
f,R or F = f,R)

x = − Ḟ

H F
, y = − f

6H2F
, z = R

6H2 = Ḣ

H2 + 2,

w = κ2ρr

3H2F
, �m = κ2ρm

3H2F
(2.10)

which yield the following dynamical system

x + y + z + w + �m = 1 (2.11)
dx

dN
= x2 − xz − 3y − z + w − 1 (2.12)

dy

dN
= xy + xz

m
− 2y(z − 2) (2.13)

dz

dN
= − xz

m
− 2z(z − 2) (2.14)
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dw

dN
= xw − 2zw (2.15)

where N = ln a, w = �r is the density parameter of the
radiation component, and the following quantities help to
understand the viability of f (R) models

m = R f,RR
f,R

, r = − R f,R
f

. (2.16)

In terms of these variables the effective EoS (2.8) is written
as

we f f = −1

3
(2z − 1) , (2.17)

while the dark energy equation of state from (2.4) and (2.5)
can be written as [7,56,57]

wDE = −1

3

2z − 1 + (F/F0)w

1 − (F/F0)(1 − x − y − z)
, (2.18)

where F0 is the current value of f,R .
The critical points of the above dynamical system, in

absence of radiation (w = 0), for the model (2.1) can be
written in terms of m and there are three important fixed
points [7,56,57] that we will consider to analyze the viabil-
ity of our model: the critical point that gives rise to scaling
solutions including the matter dominated era given by

PS = (xc, yc, zc) =
(

3m

1 + m
,− 1 + 4m

2(1 + m)2 ,
1 + 4m

2(1 + m)

)
,

(2.19)

with the following main parameters

�m = 1 − m(7 + 10m)

2(1 + m)2 , we f f = − m

1 + m
, (2.20)

and eigenvalues

EV (PS) :
(

3(1 + m′), −3m ± √
m(256m3 + 160m2 − 31m − 16)

4m(m + 1)

)
,

(2.21)

where prime represents derivative with respect to r . And the
other two stable fixed points that lead to de Sitter and accel-
erated solutions

PdeS = (xc, yc, zc) = (0,−1, 2), �m = 0, we f f = −1

(2.22)

with eigenvalues

EV (PdeS) :
(

−3,−3

2
±

√
25 − 16/m(r = −2)

2

)
, (2.23)

and

PC = (xc, yc, zc)

=
(

2(1 − m)

1 + 2m
,

1 − 4m

m(1 + 2m)
,− (1 − 4m)(1 + m)

m(1 + 2m)

)
,

(2.24)

with the main parameters

�m = 0, we f f = 2 − 5m − 6m2

3m(1 + 2m)
, (2.25)

and the corresponding eigenvalues

EV (PC ) :
(

−4 + 1

m
,

2 − 3m − 8m2

m(1 + 2m)
,− 2(m2 − 1)(1 + m′)

m(1 + 2m)

)
. (2.26)

From the coordinates y and z for the points PS and PC it can
be seen that they are connected by the line m(r) = −1 − r ,
where the relation r = z/y is used.

From (2.19) follows that the matter dominated point cor-
responds to (r,m)=(−1, 0). The existence of a viable saddle
matter era requires m(r → −1) > 0 and −1 < dm/dr(r →
−1) ≤ 0. This last condition implies that all the m(r) trajec-
tories must be between the lines m = 0 and m = −r − 1.

In order to be viable, the trajectory of a given f (R) model
in the (r,m) plane should be such that it contains the mat-
ter dominated point PM = (−1, 0) and starting from PM
intersects the line r = −2 in the region 0 < m ≤ 1 [56].
The �CDM model, for instance, connect the points PM =
(−1, 0) and PdS = (−2, 0). There are also viable trajectories
connecting the saddle matter point PM = PS(m → 0) with
the curvature dominated point that leads to stable accelerated
expansion PC , whenever m′ > −1.

3 The models

3.1 Model 1

Firstly we discuss a toy model that satisfies all above dis-
cussed requirements, given by the following function

f (R) = Re
−

(
μ2

R

)η

, (3.1)

where η > 0. This function is well defined everywhere in the
interval 0 ≤ R < ∞ and can be expanded as

f (R) = R

(
1 −

(
μ2

R

)η

+ 1

2

(
μ2

R

)2η

− · · ·
)

= R − μ2ηR1−η + 1

2
μ4ηR1−2η − · · · , (3.2)

as follows from above expression the correction to R is
encoded in a convergent series that may contain positive
(finite number in the case 0 < η < 1) and infinite num-
ber of negative powers of curvature. Power-law corrections
(with finite number of terms) have been considered in vari-
ous works to tackle the dark energy problem, but have been
shown to lead to non-viable cosmologies [26,32,33]. The
property that the exponential function grows faster than any
power leads to the fact that any derivative of f (R), due to
the exponential function as given in (3.1), is always well
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defined both when R → 0 and when R → ∞ which is
useful when analyzing certain types of singularities [47].
Particularly since f,R → 1 and fRR, fRRR, . . . → 0 at
R → ∞, then, in absence of matter contribution, ρe f f in
Eq. (2.7) for the model (3.1) becomes finite on singular solu-
tions with R → ∞, avoiding in this way type I and type III
singularities.

The coefficient of R in (3.1) has the limits

lim
R→0

e
−

(
μ2

R

)η

= 0, lim
R→∞ e

−
(

μ2

R

)η

= 1. (3.3)

The first limit allows the existence of flat spacetime solutions
and the second facilitates the consistency with high redshift
CMB observations. This function can also be written as

f (R) = R + f̃ (R), f̃ (R) = R

⎛
⎝e

−
(

μ2

R

)η

− 1

⎞
⎠ , (3.4)

where the correction f̃ (R) and its derivative satisfy the
condition (given η > 0) limR→∞ f̃ (R)/R = 0 and
limR→∞ f̃ ′(R) = 0, which are important to recover the Gen-
eral Relativity at early times to satisfy the restrictions from
Big Bang nucleosynthesis and CMB, and at at high curvature
regime for local system tests. Taking the derivatives of f (R)

we find

f,R = e
−

(
μ2

R

)η (
1 + ημ2η

Rη

)
> 0, (3.5)

indicating that the model satisfies automatically the condition
f,R > 0, necessary to avoid antigravity regime. The second
derivative gives

f,RR = e
−

(
μ2

R

)η (
η(1 − η)μ2η

Rη+1 + η2μ4η

R2η+1

)
, (3.6)

which satisfies the condition f,RR > 0 whenever

1 − η + η2μ2η

Rη
> 0. (3.7)

This last inequality is always satisfied for 0 < η ≤ 1, but
given the fact that the last term is positive, it also allows
1 ≤ η < 1 + ημ2η/Rη. For 0 < η < 1, the correction to
the general relativity from the model (3.1) contains a finite
number of positive powers of R, Rγi (0 < γi < 1) and an
infinite number of negative powers of R, while for η > 1
the correction contains only negative powers of R, but in
both cases the correction is a regular function at R → 0 and
R → ∞.

To continue the analysis we use the parameters m and r
for this model, which are given by

Fig. 1 Trajectories in the (r,m) for three different scenarios with η =
1/8 (dotted), η = 1/2 (dashed) and η = 1 (dot-dashed). The horizontal
green line corresponds to �CDM, and the points correspond to the
intersections with r = −2 which are de Sitter attractors. All trajectories
connect the matter dominated saddle point PM with the late time stable
de Sitter solutions at r = −2 with 0 < m < 1

m =
η

(
μ2

R

)η [
1 − η + η

(
μ2

R

)η]

1 + η
(

μ2

R

)η , r = −1 − η

(
μ2

R

)η

,

(3.8)

which gives the following relationship

m(r) = − (r + 1)(r + η)

r
. (3.9)

As follows from this expression the model contains the matter
dominated point PM = (−1, 0). According to (2.23), the de
Sitter PdeS point is stable if 0 < m(r = −2) ≤ 1. Applying
this condition on (3.9) leads to 0 ≤ η < 2 which after the
interception with the condition f,RR > 0 leads to the allowed
values for η

0 < η ≤ 1 (3.10)

On the other hand, as follows from the expression (3.8) for
r , the physically allowed values of r satisfy the inequality
r < −1, which imply that r can approach −1 only form the
left, i.e. r → −1−. This implies at the same time, according
to (3.8) and (3.10), that m approaches 0 only form positive
values, i.e. m → 0+ and the point becomes saddle spiral
provided that m′(−1) ≥ −1. The Fig. 1 shows the possible
trajectories in the (r,m) plane for the model (3.1)

Taking the derivative of m(r) at r → −1 for the cases of
Fig. 1 we find that for η = 1, m′(−1) = 0, which according
to (2.21), gives large eigenvalue 3(1+m′) = 3 and the system
is repelled from PM in a time shorted than the one necessary
to retain the matter era [56]. For values of η < 1 one finds
that −1 < m′(−1) < 0, allowing the possibility of matter
era as shown in the numerical example bellow. So, the power
η is fundamental in defining the viability of the model.
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Fig. 2 The cosmic evolution for the matter density �m , dark energy
density �DE and radiation density �rad parameters for the model (3.1)
with η = 0.68 and initial conditions x(−9.0) = 0, y(−9.0) = −7.3 ×
10−4, z(−9.0) = 7.300007 × 10−4 and w(−9.0) = 0.7. The matter
era lasts an adequate time and the energy fraction of the radiation at
the present is �m0 � 10−4. The model gives qualitative description of
the cosmic evolution, showing the transition from matter to dark energy
dominated era, the current accelerated expansion and future vacuum-
dominance

Let us check the consistency conditions f,R > 0 and
f,RR > 0 with respect to the de Sitter point at r = −2.
Using the expression for r from (3.8), the de Sitter point at
R1 leads to

R1

μ2 = η1/η, (3.11)

and for m(r = −2) we obtain

m = 1 − η

2
. (3.12)

Then the stability condition of de sitter point at R = R1,
0 < m(r = −2) ≤ 1 is satisfied by 0 ≤ η < 2, which is
consistent with the restriction discussed above. On he other
hand, the restriction onη given by (3.10), imply the restriction

0 < η1/η ≤ 1, (3.13)

which leads to the following inequality between Ricci scalar
at de Sitter point and the curvature scale μ2

R1 ≤ μ2 (3.14)

In Fig. 2 the cosmic evolution for the model is shown in terms
of the e-folding variable N = ln a = − ln(1 + z).

The equation of state corresponding to the scenario of
Fig. 2 is shown in Fig. 3.

As can be seen from Figs. 2 and 3 the expansion rate is a
bit slower compared to the �CDM model.

Fig. 3 The evolution of the effective EoS for the model (3.1) with
η = 0.68 and initial conditions x(−9.0) = 0, y(−9.0) = −7.3×10−4,
z(−9.0) = 7.300007 × 10−4 and w(−9.0) = 0.7. The bottom curve
describes wDE , where the approximation F ∼ F0 was used. Though
the current wDE ∼ −0.8, the equation of state evolves towards the de
Sitter phase

3.2 Local gravity constraints

The effective mass of the modified gravity f (R) model is
given by

M2 = R

3

(
f,R

R f,RR
− 1

)
= R

3m
(1 − m) , (3.15)

which under the condition m << 1, can be reduced to

M2 � R

3m
� 1

3 f,RR
. (3.16)

The local gravity constraints are satisfied if M
 >> 1, where

 is the typical scale at which the gravity is measured. From
(3.16) this constraint can be expressed in terms of m as

m(Rs) << 
2Rs, (3.17)

where Rs is the curvature of the local structure, and we
assumed fRs � 1. Making use of the relationship R ∼
H2 ∼ 8πGρ applied to the current universe (R0, ρ0) and
to the local structure (Rs, ρs), we can write Rs ∼ H2

0 ρs/ρ0

and the above constraint becomes [57]

m(Rs) <<
ρs

ρ0

(



H−1
0

)2

. (3.18)

Applied to the current universe with 
 ∼ H−1
0 , it leads to

m(R0) << 1. For a local structure with 
 << H−1
0 one

expects that m is even much smaller than the previous case.
Thus, for the solar system with ρs ∼ 10−23 g/cm3 and 
 ∼
1013 cm one finds that m << 10−24, where we used H−1

0 ∼
1028 cm. In order to find which value of μ2 can satisfy this
restriction we use the expression (3.8) for m in terms of the
curvature. In general, for 0 < η < 1 and b << 1, one has
for m << b from (3.8) that
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μ2

R
<<

(
b

η

)1/η

. (3.19)

Applied to the solar system with b = 10−24, we find

μ2 <<

(
10−24

η

)1/η

106H2
0 , (3.20)

Taking, for instance η = 0.6, one finds that μ << 10−17H0,
which is much smaller than the Hubble scale today, but in
terms of the f (R) mass M gives M >> 1015H0 ∼ 10−18

ev, which is the expected bound. So, with an adequate choice
of the parameter μ the model passes local system tests.

3.3 Einstein frame potential

In the Einstein frame, in terms of the equivalent scalar field
[78,79]

f,R = exp

[
−

√
2

3

φ

Mp

]
, (3.21)

the potential is given by the following expression

V (R(φ)) = M2
p

2

R f (R),R − f (R)(
f,R

)2 . (3.22)

From (3.1) and (3.21) one finds the scalar curvature as

R = μ2
[
−1

η
− W

[
−1

η
e
− 1

η
−

√
2
3

φ
Mp

]]−1/η

, (3.23)

which gives, from (3.22), the explicit expression for the scalar
field potential

V = μ2M2
p

2

⎡
⎢⎣e

−
√

2
3

φ
Mp − e

1
η
+W

[
− 1

η
e
− 1

η −
√

2
3

φ
Mp

]⎤
⎥⎦ e

2
√

2
3

φ
Mp

[
− 1

η
− W

[
− 1

η
e
− 1

η
−

√
2
3

φ
Mp

]]1/η
.

(3.24)

Note that the argument of the W -function is well defined for
0 ≤ φ < ∞ (0 < η ≤ 1). The shape of the potential in the
interval 0 ≤ φ ≤ 2 is shown in Fig. 4.

3.4 Model 2

A second, viable model, has the following form

f (R) = R − 2λμ2e
−

(
μ2

R

)η

(3.25)

where λ is positive dimensionless and η is real positive. This
model satisfies the limits

lim
R→∞ f (R) = R − 2λμ2, lim

R→0
f (R) = 0. (3.26)

Fig. 4 The behavior of the potential in the Einstein frame for the model
(3.1) with η = 3/5. The potential is represented in units of μ2M2

p

where the first limit leads to consistency with �CDM at high
redshift, and the limit R → 0 leads to disappearing of the cos-
mological constant and asymptotical flat spacetime, allowing
the possibility of pure geometrical explanation of the dark
energy problem. This model encodes the correction to the
Einstein gravity in the form of convergent series of nega-
tive powers of curvature. The limiting case of �CDM can
be reached not only at high curvature but also at η → 0
with cosmological constant � → e−1λμ2. Notice that at
R → 0, the power η, if η << 1, has the effect of slowing

the trend to zero of e−(
μ2/R

)η
which makes the exponential

term relevant, even at current epoch, to maintain the net value
of the correction to R in (3.25) between the same order of
magnitude over an extended cosmological period, which is
important to reproduce the �CDM cosmology. As in the case
of the first model, taking the derivatives of (3.25) it can be
seen that f,R → 1 and fRR, fRRR, . . . → 0 at R → ∞
showing that the model can avoid type I and type III singu-
larities [47].

To check the viability of this model we analyze the param-
eters m and r to prove the existence of saddle matter era, i.e.
m(r → −1−) > 0 and −1 < m′(r → −1−) ≤ 0.

r =
2ηλμ2

(
μ2

R

)η − Re

(
μ2

R

)η

Re

(
μ2
R

)η

− 2λμ2

(3.27)

m =
2ηλμ2

(
μ2

R

)η [
1 + η

(
1 −

(
μ2

R

)η)]

e

(
μ2
R

)η

R − 2ηλμ2
(

μ2

R

)η
(3.28)

In order to analyze the stability conditions, f,R > 0, f,RR >

0, we first determine the value of λ by fixing the de Sitter
point r = −2 at R = R1. From (3.27) it is found
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λ = R1e

(
μ2

R1

)η

2μ2
[
2 − η

(
μ2

R1

)η] . (3.29)

The restriction λ > 0 can be solved by imposing
(

μ2

R1

)η

<
2

η
(3.30)

Using the above expression for λ in (3.28) we find the con-
dition of stability at de Sitter point, 0 < m(r = −2) ≤ 1,
as

0 <

(
μ2

R1

)η

≤ η + 3

2η
− 1

2η

√
η2 + 6η + 1 (3.31)

or

η + 1

η
<

(
μ2

R1

)η

≤ η + 3

2η
+ 1

2η

√
η2 + 6η + 1, (3.32)

where η > 0.
Analyzing the condition f,R > 0 for R > R1 we find,

using (3.29)

f,R = 1 +
η R1

R

(
μ2

R

)η

e

(
μ2

R1

)η

−
(

μ2

R

)η

η
(

μ2

R1

)η − 2
> 0, (3.33)

which is equivalent to

ηe−xη

xη+1 < x1
(
2 − ηxη

1

)
e−xη

1 (3.34)

where x = μ2/R and x1 = μ2/R1. Due to the difficult to
solve this inequality with exponentials, we first use the fact
that x < x1, which allows to change the above inequality by
the following

ηe−xη

xη <
(
2 − ηxη

1

)
e−xη

1 . (3.35)

Since ηxη
1 < 2 (see (3.30)), then we can set

xη
1 = 2

pη
, p > 1 (3.36)

and write the inequality as

e−xη

xη <
1

η

(
2 − 2

p

)
e−2/(pη). (3.37)

Note that the function e−xη
xη is well defined in the real

axis and has its maximum value e−1 at x = 1. Therefore,
is enough to prove that e−1 < 1

η

(
2 − 2

p

)
e−2/(pη). Given

0 < η ≤ 1, this can always be accomplished for pη � 1. On
the other hand, the value of x1 proposed in (3.36) is consistent
with the first inequality in (3.31) since

2

pη
<

η + 3

2η
− 1

2η

√
η2 + 6η + 1 (3.38)

whenever

p > 2 + √
2, and 0 < η ≤ 1. (3.39)

The general stability condition f,RR > 0, using (3.29) leads
to

f,RR = ηe−xη+xη
1 x1xη+2 [1 + η (1 − xη)]

μ2
(
2 − ηxη

1

) > 0 (3.40)

The denominator is positive according to (3.30) and (3.36).
Then, in order to satisfy this inequality we need to prove that
1 + η (1 − xη) > 0, which leads to

xη < 1 + 1

η
. (3.41)

Using the fact that x < x1 and assuming the expression (3.36)
for x1, this inequality can be satisfied if

p >
2

η + 1
, (3.42)

which takes place as follows from the restriction (3.39).
Hence the model satisfies the stability conditions f,R > 0
and f,RR > 0 for R ≥ R1.

Concerning the viability of the model, since m cannot be
expressed analytically in terms of r , we resort to the paramet-
ric plot of some trajectories in the (r,m)-plane, using (3.27)
and (3.28). To this end, we use the variable y = 1/x = R/μ2

with de Sitter value y1 = 1/x1 = R1/μ
2 and will consider

the representation for x1 given by (3.36), i.e.

y1 = (pη/2)1/η. (3.43)

The corresponding expressions for r and m become

r = −21+1/η(p − 1)ye1/yη − (pη)1+1/ηe
2
pη 1

yη

21+1/η(p − 1)ye1/yη − p(pη)1/ηe
2
pη

, (3.44)

m =
η(pη)1/ηe

2
pη 1

yη

[
1 + η

(
1 − 1

yη

)]

21/η
(

2 − 2
p

)
ye1/yη − η(pη)1/ηe

2
pη 1

yη

, (3.45)

where we used the expression for λ from (3.29). It can be
checked that, at y = (pη/2)1/η, r takes the value r = −2.
In Fig. 5 we present some trajectories in the (r,m)-plane

The local gravity constraints can be addressed using
the representation for m given by (3.45). Considering, for
instance, the solar system one has ys = Rs/μ

2, where
Rs � 106H2

0 . As discussed before, the solar system con-
straints demand m << 10−24. For the parameters η and p
as used in Fig. 5, we find that if we set μ2 = 10−16H2

0 , then
ys = 1022 and

(η = 0.1, p = 20) ⇒ m = 9.8 × 10−26

(η = 0.05, p = 40) ⇒ m = 5.3 × 10−25

(η = 0.02, p = 100) ⇒ m = 7 × 10−25

(η = 0.01, p = 200) ⇒ m = 4.5 × 10−25
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Fig. 5 Trajectories in the (r,m)-plane for four different scenarios with
(η, p) = (0.1, 20), (0.05, 40), (0.02, 100), (0.01, 200). In all cases
pη = 2, but for smaller η and larger p the trajectories become closer
to �CDM. All trajectories connect the matter dominated saddle point
PM with the late time de Sitter attractor at r = −2 with 0 < m < 1

Hence, the model (3.25) can pass solar system tests, assuming
μ ∼ 10−8H0 for the viable trajectories depicted in Fig. 5. If
we consider larger values, for instance η = 0.5 and p = 4,
then taking μ = 10−6H0 we find m = 1.3 × 10−27 and
μ = 10−7H0 gives m = 1.3 × 10−30, which improves the
results for local systems tests.

In order to analyze the cosmic evolution of the main
density parameters �m , �DE and �r for the model (3.25)
one needs to solve the dynamical system (2.11)–(2.15) with
appropriate initial conditions. Since there is no explicit
expression for m(r), we resort to an approximation, by mak-
ing a polynomial fit to the paths depicted in Fig. 5. Tak-
ing, for instance, the cosmological scenario with μ = 0.01
and p = 200, the corresponding trajectory in Fig. 5 can be
approximated by the following function of the dynamical
variables y[t] and z[t] (t = − ln(1 + z))

m = c0 + c1

√
− z[t]
y[t] + c2

z[t]
y[t] (3.46)

with

c0 = −0.0361869‘, c1 = 0.0533559‘, c2 = 0.0171674‘

where (‘) represents more digits taken into account for the
numerical calculations. In Fig. 6 we show the evolution of
the main density parameters for this case.

The evolution of the effective and (geometry) dark energy
equations of state for this numerical sample is shown in Fig. 7,
where the late time similarity with the �CDM model is evi-
dent.

Turning to the Einstein frame we can write the scalar field
and the potential, using (3.21) and (3.22), in terms of y =
R/μ2 as

Fig. 6 The cosmic evolution of the density parameters for matter, radi-
ation and dark energy for the model (3.25). In this example we take the
path of Fig. 5 for the parameters η = 0.01 and p = 200 and used the
numerical fit for m(r) given by the Eq. (3.46), with initial conditions
x(−5) = 0, y(−5) = −0.5, z(−5) = 0.5000016 and w(−5) = 0.05.
The behavior is compatible with the current cosmic observations on
the evolution of density parameters. The obtained current densities are
�m � 0.3, �DE � 0.7 and �r � 10−4

Fig. 7 The effective equation of state we f f and the equation of state
associated with the geometric dark energy wDE for the cosmological
evolution of the density parameters described in Fig. 6. The initial con-
ditions lead to a scenario very close to the �CDM

φ = −
√

3

2
ln

[
1 − 2−1/η(ηp)1+1/ηe

2
pη e−1/yη

(2p − 2)yη

]
(3.47)

V =
21/η(pη)1/ηe

2
pη e1/yη

(p − 1)py2
(

1 − η
yη

)
(
(p − 1)21+1/ηe1/yη y − e

2
pη (pη)1+1/η − 1

yη

)2

(3.48)

where we used (3.29) and (3.43). The behavior of the poten-
tial for the trajectories depicted in Fig. 5 is shown in Fig. 8.
It is worth noticing that the trajectories in Fig. 5 correspond
to the Jordan frame, which is related to the Einstein frame
by conformal transformation with conformal factor

√
f,R

(affecting time and length scales). Therefore we can conclude
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Fig. 8 The potential for the four scenarios with different (η, p)
depicted in Fig. 5. The arrows indicate the direction in which the mat-
ter point PM and de Sitter point PdS are reached in the JF. This form
of the potential shows slow-roll behavior, necessary for dark energy
dominance, as the scalar field evolves towards de Sitter phase

that the behavior of the potential depicted in Fig. 8 shows
that the parametrization we used in the Jordan frame gives
also consistent results for the potential in the Einstein frame
(namely, the runaway behavior of the potential which leads
to the dark energy dominance at late times). Since for cos-
mologically viable models f,R ≈ 1, which is accomplished
in our numerical case, the results in the Einstein frame are
closely related to the corresponding physical magnitudes in
the Jordan frame.

4 Discussion

The role of an exponential function of de form exp
[
−

(
μ2

R

)η]
in the modified gravity is studied. Two models are proposed.
An f (R) model that can satisfy cosmological and local grav-
ity constraints is proposed. In this model the scalar curvature
is multiplied by an exponential factor of the inverse curvature.
The factor e−(μ2/R)η (η > 0), which tends to 1 as R → ∞,
implying that f (R) → R, i.e. the regular General Relativ-
ity is recovered at early times which is important to satisfy
the tight constraints from Big Bang nucleosynthesis and the
CMB. This is also important for the high curvature typical
of local systems tests. On the other hand at R → 0, f (R)

satisfies the condition f (0) = 0 i.e. the model contains the
flat space-time solution without cosmological constant. This
model also satisfies the general conditions of evading anti-
gravity regime, f,R > 0 which is valid for any η > 0, and
stability, f,RR > 0 which is satisfied for 0 < η ≤ 1. This last
condition implies that the flat space-time solution is stable.
An important aspect of the model is that these last conditions
are valid for any curvature regime, without compromising
the mass (curvature) parameter μ2. The cosmological viabil-
ity of the model follows form the analysis shown in Fig. 1
in which an early mater dominant era at m = 0, r = −1

(corresponding to a saddle point with m′(−1) > −1) that
lasts enough to allow structure formation (see Figs. 2, 4) and
evolves towards a late time accelerated universe correspond-
ing to a de Sitter attractor at r = −2. The trajectories in
the (r,m) plane and the cosmological evolution depicted in
Figs. 2 and 4 are independent of the curvature scale μ2, that
can be used to satisfy the local system tests.

The solar system restriction for this model can be sat-
isfied if μ2 << (10−24/η)1/η106H2

0 , giving for instance,
μ << 10−17H0 for η = 0.6. This result is consistent with
the behavior of r and m at the matter dominated point PM ,
where according to the expressions (3.8) at high redshift,
when μ2 << R, r becomes very close to -1 (r → −1−) and
m becomes very close to zero (m → 0+). We performed a
numerical study of the density parameters for the cosmologi-
cal scenario with η = 0.68, showing that the matter era in this
model lasts enough time to allow structure formation, giving
qualitatively correct description of the cosmological evolu-
tion. However, the dark energy equation of state does not
reach the current expected value, close to that of the cosmo-
logical constant, at least for the proposed initial conditions.
This model can be considered as a simple toy model that sat-
isfies viability conditions and gives qualitatively appropriate
description of the cosmological evolution since the radiation
and matter dominated eras.

The second model is more realistic since it describes the
cosmological evolution consistent with the current observa-
tional data, behaving very close to the �CDM. This model
considers a correction to the Einstein term that disappears
in the limit R → 0, containing flat spacetime solution and
allowing the possibility of pure geometrical explanation of
the dark energy phenomenon. It gives viable trajectories in
the (r,m) plane that connect the matter dominated critical
point at (−1, 0) with the de Sitter attractor at r = −2 and
0 < m ≤ 1. With the parametrization used for the de Sitter
point (with parameters p and η), it was shown that the condi-
tions of stability can be satisfied whenever p > 2 + √

2 and
0 < η ≤ 1. On the other hand, the local gravity constraints
depend on three parameters, μ2, η and p. For the case of the
solar system it was shown that for small values of η and large
p such that pη � 1, the model can satisfy local gravity con-
straints with less stringent constraints on μ2 compared to the
firs model. The model also predicts a consistent with obser-
vations evolution of the main cosmological parameters, with
we f f showing the transition to the accelerated phase at the
currently observed zt ∼ 0.5, and wDE � −1. The shape of
the potential in the Einstein frame favors the slow-roll behav-
ior of the scalar field necessary for the late time dominance
of dark energy.

A viable model has been proposed that can explain the
current epoch of cosmic acceleration through purely grav-
itational effects and passes local system tests, eliminating
the need for dark energy. The modification to the Einstein
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gravity is a regular function f (R) satisfying the condition
limR→0 f (R) = 0 and approaching the limit f (R) →
R − 2� at high curvature, recovering the �CDM. This geo-
metrical approach to the DE problem leads to results con-
sistent with current cosmological data and could represent
an appealing alternative to the �CDM model, where the
fine tuning is replaced by adequate initial conditions. Fur-
ther detailed analysis of local gravity constrains is needed,
and it will be also interesting to study (ongoing work) the
constraints on the model coming from the background and
matter density perturbations.
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