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Abstract In this paper, we have investigated the holo-
graphic entanglement entropy for a linear subsystem in a
3 + 1-dimensional Lifshitz black hole. The entanglement
entropy has been analysed in both the infra-red and ultra-
violet limits, and has also been computed in the near horizon
approximation. The notion of a generalized temperature in
terms of the renormalized entanglement entropy has been
introduced. This also leads to a generalized thermodynamics
like law E = 1

2TgSREE . The generalized temperature has
been defined in such a way that it reduces to the Hawking
temperature in the infra-red limit. We find that the inverse of
the generalized temperature (βg = 1/Tg) attains a non-zero
value when the subsystem length becomes zero although it
is zero in case of the Schwarzschild-AdS black hole. We
have then computed the holographic subregion complexity.
We find that the subregion complexity has logarithmic diver-
gence which was absent in case of the 3 + 1-dimensional
Schwarzschild-AdS black hole. Then the Fisher information
metric and the fidelity susceptibility for the same linear sub-
system have also been computed using the bulk dual pre-
scriptions. It has been observed that the two metrics are not
related to each other.

1 Introduction

Gauge-gravity duality [1–4] has been one of the major areas
of research in theoretical physics in the last two decades. The
reason for this intense focus is for its success in explaining the
physics of strongly coupled field theories [5–12]. The duality
makes a connection between a strongly coupled gauge field
theory ind-dimensional spacetime and a classical gravity the-
ory in (d + 1)-dimensional spacetime, with the field theory
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living on the boundary of the (d+1)-dimensional spacetime.
The advantage of the connection is evident at once. Perturba-
tive calculations which could not be performed on the field
theory side due to the strong coupling, can now be carried
out in the gravitational side since the bulk theory is a weakly
coupled theory in a classical gravity background. The duality
then translates the information obtained on the gravity side
to a lot of valuable information about the strongly coupled
field theories.

The gravitational dual gives tractable prescriptions to
describe a wide range of properties of strongly coupled field
theories. For instance, a very neat and simple proposal was
put forward in [5,6], to compute the entanglement entropy
(EE) in field theories. In particular, the holographic descrip-
tion of quantum entanglement known as holographic EE
(HEE) have proven to be elegant in computing the EE of
quantum field theories with conformal symmetry [13,14].
The result for EE in two dimensional conformal field theories
is well known, however the result in higher dimensions would
be extremely difficult to compute. The holographic prescrip-
tion gives a handle to compute such quantities. The holo-
graphic calculation of EE starts with the Ryu–Takayanagi
(RT) proposal which states that the HEE of an asymptoti-
cally AdS(d+1) spacetime is equal to EE of a d- dimensional
CFT living on the boundary of the gravitational theory in
the bulk. The formula for the HEE reads [13,14]

SHEE = Area(γA)

4G(d+1)

(1)

where γA corresponds to the static minimal surface extending
from the subsystem A, at the boundary of the asymptotically
AdS spacetime to the bulk. Thereafter, HEE calculation in
various scenarios has been carried out extensively [15–21].

It has also been realized that EE is useful in studying sys-
tems away from equilibrium. An important question that can
be raised in this context is whether there exists a relation
analogous to the first law of thermodynamics. In [15,16],
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the question was answered in the affirmative. It was found
there that in the ultra-violet (UV) limit, the HEE gives a
thermodynamics like relation. It was named as entanglement
thermodynamics and a notion of entanglement temperature
came up with this observation. However, the entanglement
temperature definition arising in the UV limit is quite differ-
ent from the well known thermodynamic temperature. This
has lead to the investigation of finding a generalized temper-
ature that agrees with the entanglement temperature in the
UV limit and the Hawking temperature of the black hole in
the infra-red (IR) limit [22,23].

Quantum complexity is another important quantity in the
theory of quantum information. The quantity gives a mea-
sure of difficulty in performing a particular task. The pro-
posal with which computations are usually carried out is the
holographic subregion complexity proposal (HSC) [24]. It
states that for a subsystem A in the boundary, the HSC can
be calculated from the formula

CV = V (γA)

8πRG(d+1)

(2)

where V (γA) is the maximal volume enclosed by the RT
surface in the bulk, and R is the radius of curvature of the
spacetime.

There are other proposals as well to compute the complex-
ity holographically. The proposal was put forward in [25,26].
The prescription to obtain the complexity of a state is to cal-
culate the volume of the Einstein–Rosen bridge (ERB) and
is given by

CV (tL , tR) = V (tL , tR)

RG(d+1)

(3)

where V represents the spatial volume of the ERB. This vol-
ume is the maximum volume bounded by the CFT spatial
slices at times tL , tR on the two boundaries.

Then other proposal to calculate the holographic complex-
ity is that of the bulk action computed on the Wheeler–De
Witt patch [27]

CW = A(W )

π h̄
(4)

where A(W ) is the action calculated on the Wheeler–De Witt
patch W .

The majority of the analyses of the quantities described
above have been carried out for systems which are rela-
tivistic in nature [28–39]. Relatively few investigations has
been done for non-relativistic systems. In [40], the Lifshitz
system in 3 + 1- dimensions, which is a well known non-
relativistic system, was studied and thermodynamics like law
for entanglement entropy of perturbed Lifshitz spacetime was
obtained. In [41], the HSC of the perturbed Lifshitz space-
time was computed, and a relation analogous to entanglement
thermodynamics was obtained in the context of HSC.

In this paper, we set out to investigate the holographic
quantities for a Lifshitz black hole [42] in 3 + 1-dimensions
with the dynamical exponent z = 2. The motivation for look-
ing at this gravity solution with Lifshitz-type scale invariance
is the following. Indeed, several attempts have been made to
use the holographic principle to analyse condensed matter
systems near their critical points [43]. To study such critical
points, scale invariant theories which are not Lorentz invari-
ant are of primary importance. Time and space can scale
differently under dilations in such a theory. A Lifshitz theory
exhibits such a scale invariance. However, it is to be noted
that numerous analytic solutions of Lifshitz black hole are
present in the literature [44–48] other than that mentioned in
[42]. Despite this fact, we have chosen this particular back-
ground because this is a remarkably simple analytic solution
in 3 + 1-dimensions with z = 2. We first obtain the finite
part of the HEE of the Lifshitz black hole, and then study its
infrared (IR) and ultra-violet (UV) limits. We then proceed
to investigate the near horizon behavior of the HEE to study
the divergence structure. Next we obtain the change in HEE
between a Lifshitz black hole and a pure Lifshitz spacetime.
This we call the renormalized EE. Then we proceed to write
down a thermodynamic like relation involving the change in
HEE by introducing the notion of generalized temperature.
The generalized temperature is defined in such a way that it
gives the Hawking temperature of the Lifshitz black hole in
the IR limit. In the UV limit, it gives rise to the entanglement
temperature.

We then look into other information theoretic quanti-
ties holographically. We start by computing the HSC and
then look at its near horizon limit. Interestingly we see that
the HSC has a logarithmic divergence in addition to the
UV divergence. The logarithmic divergence is absent in the
Schwarzschild-AdS case in (3 + 1)-dimensions [49]. The
logarithmic divergence owes its origin to the power of the
blackening factor appearing in the spacetime metric. Then
we compute the Fisher information metric holographically
by following the prescription in [50]. Then we compute the
fidelity susceptibility from the fidelity expanded upto second
order in the perturbation. We observe that the fidelity suscep-
tibility can be related to the Fisher information metric upto
a dimensional dependent constant. Finally, we compute the
fidelity susceptibility by following the proposal in [51]. We
observe that this does not match with the Fisher information
metric computed holographically.

The organization of the paper is as follows. The basic
setup is discussed in Sect. 2. This contains a short descrip-
tion of Lifshitz black hole metric and integrals related to
computation of HEE and HSC. We have computed the HEE
for Lifshitz black hole in Sect. 3. Firstly, the HEE has been
computed analytically without any approximation then it has
been analyzed for IR and UV approximation. Then the near
horizon behavior of HEE has been checked in this section.
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The concept of generalized temperature has been introduced
in Sect. 3.1. In this section we have clearly shown that in
IR regime the generalized temperature is equal to the black
hole temperature plus some correction terms. Those correc-
tion terms becomes negligible when the subsystem length
becomes very large. The HSC has been computed in Sect.
4. The holographic Fisher information metric and fidelity
susceptibility has been discussed in Sect. 5.

2 Lifshitz black hole

We are interested in computing HEE and HC for Lifshitz
black hole which asymptotically approaches to Lifshitz
spacetime in near boundary limit. For Lifshitz black hole
one may consider the following 3 + 1-dimensional action
[42]

S = 1

2

∫
d4x

√−g(R − 2Λ)

−
∫

d4x
√−g

(
e−2� F2

4
+ m2

2
A2 + (e−2� − 1)

)
.

(5)

A solution to this action is given by

ds2 = − f (r)
dt2

r2z + dx2 + dy2

r2 + dr2

r2 f (r)

Λ = − z2 + z + 4

2
; � = −1

2
log(1 + r2

r2
h

);

A = f (r)

r2 dt (6)

with

f (r) = 1 − r2

r2
h

(7)

where rh is the horizon radius of the black hole. This solution
enjoys an anisotropic scaling with the space and time scaling
as (x, y) → (λx, λy) and t → λzt . As mentioned earlier,
z is called the dynamical exponent, and in the subsequent
discussion we shall work with z = 2. Such theories are non
relativistic as they do not obey Lorentz invariance and have
a lot of importance in the study of condensed matter systems
near the quantum critical point. The spacetime metric (6)
reduces to that of pure Lifshitz spacetime (vacuum solution)
in the near boundary limit (r → 0). Note that the solution (6)
with z = 2 in (3 + 1)-dimensions does not have the kinetic
term for the scalar, as the scalar is strongly coupled. However,
the solution is very simple and the scalar wave equation can
be solved exactly.

The Hawking temperature and entropy of the black hole are
given by

Th = 1

2πr2
h

; Sh = l L

4G(4)r2
h

. (8)

We now choose the shape of the subsystem to be strip like
for computing the HEE and subregion HC. The strip like
subsystem lies at the boundary of the Lifshitz black hole with
the specifications − l

2 ≤ x ≤ l
2 ; 0 ≤ y ≤ L . According to the

prescription in [13,14] the HEE is proportional to the static
minimal area of the hypersurface in the bulk whose boundary
coincides with the boundary of the subsystem at r = 0. To
evaluate that minimal area we parametrize the hypersurface
as r = r(x) and leave the y-direction independent. With this
parametrization we get the area of the hypersurface to be

A = L
∫ l/2

−l/2
dx

1

r2

√
1 + r ′(x)2

f (r)
(9)

where r ′(x) ≡ dr(x)
dx . Using the standard procedure of min-

imization, we obtain the minimal surface specified by the
following equation

dr(x)

dx
=

√
f (r)

(
r4
t

r4 − 1

)
(10)

where rt is the turning point of the minimal surface. This
condition for minimal surface can be used to get the minimal
surface area and the subsystem length as

A = 2L
∫ rt

rc
dr

1

r2
√

f (r)(1 − r4/r4
t )

;

l = 2
∫ rt

0
dr

(r/rt )2√
f (r)(1 − r4/r4

t )

(11)

where rc is the UV cutoff. The minimal volume under the
same hypersurface is given by

V = 2L
∫ rt

rc
dr

1

r3
√

f (r)
x(r)

= 2L
∫ rt

rc
dr

1

r3
√

f (r)

∫ rt

r
ds

(s/rt )2√
f (s)(1 − s4/r4

t )

. (12)

For the sake of simplicity we choose a new coordinate u =
r/rt . With this change of variables, the lapse function takes
the form f (u) = 1 − u2/u2

0, where u0 = rh/rt and the
scaled UV cutoff δ is defined as δ = rc/rt . Therefore, the
expressions for the subsystem length, minimal hypersurface
area, minimal volume takes the form

l = 2rt

∫ 1

0
du

u2√
(1 − u4) f (u)

(13)

A = 2L

rt

∫ 1

δ

du
1

u2
√

(1 − u4) f (u)
(14)
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V = 2L

rt

∫ 1

δ

du
1

u3
√

f (u)

∫ 1

u
ds

s2√
(1 − s4) f (s)

. (15)

In the rest of the paper we have used the above expressions
for computing different holographic quantities.

3 Holographic entanglement entropy

The integrals involved in the expressions for subsystem
length (13) and area (14) integrals contains a term 1/

√
f (u).

When f (u) = 1, the background geometry reduces to that
of (3 + 1)-dimensional pure Lifshitz spacetime [42,52]. The
computation of HEE for such a system is easy due to the
absence of 1/

√
f (u) term. In the case of the Lifshitz black

hole, the integrals become non-trivial, but can be done ana-
lytically. For that we have to expand 1/

√
f (u) binomially

as

1√
f (u)

=
∞∑
n=0

	(n + 1
2 )√

π	(n + 1)
un . (16)

Using the above expression we obtain the subsystem length
from Eq.(13), which reads

l

rt
=

∞∑
n=0

	(n + 1
2 )	( n2 + 3

4 )

2	(n + 1)	( n2 + 5
4 )

(
rt
rh

)2n

. (17)

When the subsystem length l is small, that is, l/rh � 1 with
rh kept fixed, we have rt � rh . The above sum can then
be terminated for some value of n as the higher order terms
can be neglected. However, in the rt → rh limit, one cannot
terminate the series unlike the previous case. We need to
check the behavior of l for large values of n. The expression

(17) goes as ∼ 1
n

(
rt
rh

)2n
for large values of n. The expression

for the subsystem length given in Eq. (17) can be written as

l

rt
=

√
π	(3/4)

2	(5/4)
+

∞∑
n=1

	(n + 1
2 )	( n2 + 3

4 )

2	(n + 1)	( n2 + 5
4 )

(
rt
rh

)2n

.

(18)

For large values of n the second term goes as ∼ 1
2
√

2 n
.

Therefore the comparison test for infinite series implies that
the series is divergent in rt → rh limit. We separate the
divergence part to rewrite the above expression as

l

rt
=

√
π	(3/4)

2	(5/4)

+
∞∑
n=1

	(n + 1
2 )	( n2 + 3

4 )

2	(n + 1)	( n2 + 5
4 )

(
1 − 1√

2n

)(
rt
rh

)2n

− 1√
2

log
(

1 − r2
t /r2

h

)
. (19)

In the above expression, the divergent piece 1√
2

log
(
1 − r2

t /r2
h

)
has been separated out. Now since the hypersurface cannot
penetrate the black hole horizon [18], we use the approxima-
tion rt 
 rh(1 − ε), where ε is very small, and obtain

l

rh
= k1 − 1√

2
log(2ε) + O(ε) (20)

with

k1 =
√

π	(3/4)

2	(5/4)

+
∞∑
n=1

	(n + 1
2 )	( n2 + 3

4 )

2	(n + 1)	( n2 + 5
4 )

(
1 − 1√

2n

)
. (21)

We now proceed to compute the area (14) using the same
expansion of the lapse factor (Eq. 16). This gives

A = 2L

rt

∞∑
n=0

	(n + 1
2 )√

π	(n + 1)u2n
0

∫ 1

δ

du
u2n−2

√
1 − u4

. (22)

Looking at the above expression one can see that the integral
is divergent for n = 0 in the δ → 0 limit. Performing the
computation for the n = 0 term separately, we get

An=0 = 2L

rt

(
1

δ
−

√
π	(3/4)

	(1/4)

)
. (23)

We observe that the first term in the above expression is diver-
gent. After computing the An≥1 terms, we combine them to
get the total area as

A = 2L

rt

(
1

δ
−

√
π	(3/4)

	(1/4)

+
∞∑
n=1

	(n + 1
2 )	( n2 − 1

4 )

4	(n + 1)	( n2 + 1
4 )(

1 − 4	( n2 + 1
4 )δ2n−1

√
π	( n2 − 1

4 )

) (
rt
rh

)2n
)

. (24)

The above expression shows that area has an UV divergence
going as ∼ 1

δ
. This UV divergence is exactly similar to that of

the (3+1)-dimensional AdS black brane. So this divergence
is universal irrespective of the underlying theory being rela-
tivistic or non-relativistic. Further, An=0 is the minimal area
of the hypersurface for the pure Lifshitz spacetime, which
expectedly has a UV divergent term. From Eqs. (23, 24),
we can now obtain the finite part of the minimal area of the
hypersurface to be

A f inite = 2L

rt

(
−

√
π	(3/4)

	(1/4)

+
∞∑
n=1

	(n + 1
2 )	( n2 − 1

4 )

4	(n + 1)	( n2 + 1
4 )

(
rt
rh

)2n
)

. (25)

where we have taken the δ → 0 limit and also subtracted the
divergent term proportional to 1/δ.
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We now use the gamma function identity 	(p+1) = p 	(p)
to rewrite the above result as

A f inite = 2L

rt

(
−

√
π	(3/4)

	(1/4)

+
∞∑
n=1

1

4

(
1 + 2

2n − 1

)
	(n + 1

2 )	( n2 + 3
4 )

	(n + 1)	( n2 + 5
4 )

(
rt
rh

)2n
)

= 2L

rt

(
−2

√
π	(3/4)

	(1/4)
+ l

2rt

+
∞∑
n=1

1

2(2n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

(
rt
rh

)2n
)

(26)

where in the second line of the equality we have used
the expression for subsystem length (17). The third term
in the above expression, for large values of n goes as ∼

1
2
√

2n2

(
rt
rh

)2n
. Using this fact, A f inite can be recast as

A f ini te = 2L

rt

(
− 2

√
π	(3/4)

	(1/4)
+ l

2rt

+
∞∑
n=1

(
1

2(2n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

− 1

2
√

2n2

)(
rt
rh

)2n

+
∞∑
n=1

1

2
√

2n2

(
rt
rh

)2n
)

= 2L

rt

(
− 2

√
π	(3/4)

	(1/4)
+ l

2rt

+
∞∑
n=1

(
1

2(2n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

− 1

2
√

2n2

)(
rt
rh

)2n

+ 1

2
√

2
Li2

[(
rt
rh

)2
])

. (27)

This leads to the finite EE

S f ini te = A f ini te

4G(4)

= L

2G(4)rt

(
− 2

√
π	(3/4)

	(1/4)
+ l

2rt

+
∞∑
n=1

(
1

2(2n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

− 1

2
√

2n2

)(
rt
rh

)2n

+ 1

2
√

2
Li2

[(
rt
rh

)2
])

. (28)

It is to be noted once again that the radius of the horizon
rh is kept fixed and the length of the subsystem (l) is varied
which in turn implies by Eq. (17) that the turning point of
the RT surface (rt ) also changes. If the subsystem length
is large (l/rh � 1), then the turning point will be near to
the horizon. This means that turning point lies in IR region.
Using the approximation rt = rh(1 − ε) (IR limit), we have

S(I R)
f ini te = Sh + L

2G(4)rh
(k2 + k3 ε + k4 ε log ε)


 Sh + L

2G(4)rh
k2 + O(ε) (29)

where

Sh = l L

4G(4)r2
h

(30)

is the Bekenstein–Hawking entropy of the Lifshitz black hole
and

k2 = −2
√

π	(3/4)

	(1/4)

+
∞∑
n=1

(
1

2(2n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

− 1

2
√

2n2

)

+ 1

2
√

2
ξ(2),

k3 = 2(log 2 − 1)

2
√

2
; k4 = 1√

2
(31)

with ξ(2) being the Riemann zeta function. Thus, we find
that the holographic entanglement entropy in the IR limit is
the thermal entropy plus correction terms. Since the black
hole temperature goes as Th ∼ 1/r2

h , so in terms of the black
hole temperature the finite part of HEE reads

S f ini te
A ∼ Th

(
1 + c1

1√
Th

)
(32)

with c1 being some numerical constant.
If on the other hand the subsystem length l is small
(l/rh << 1), then the bulk extension will be near the bound-
ary. Therefore, the turning point rt of the RT surface will be
far away from the black hole horizon rh . In this approxima-
tion rt/rh � 1, we need to take only first few terms of the
binomial expansion of 1/

√
f (u) in the expression (16). This

approximation may be called the UV limit. In the UV limit,
that is l → 0, the expression for finite part of HEE is given
by

S(UV )
f ini te = L

4G(4)l

(
−4π

(
	(3/4)

	(1/4)

)2

+ l2

r2
h

1

12

(
	(1/4)

	(3/4)

)2

+ l4

r4
h

3

80π

(
	(1/4)

	(3/4)

)2
(

1 − 5

432

(
	(1/4)

	(3/4)

)4
))

.

(33)

We would like to point out that the expressions for subsystem
length (17) and hypersurface area (24) are exact in the sense
that no approximations were made.
We now proceed to see the behaviour of the UV cutoff depen-
dent divergences in the near horizon approximation. The near
horizon approximation is important when we deal with high
temperature black holes. In this case the horizon approaches
the turning point of the hypersurface (rh → rt ). This approx-
imation therefore implies u0 ∼ 1. Hence the integrals in
Eqs. (13, 14) receives most of the contribution when u ∼ 1.
We therefore make a Taylor expansion of the lapse function
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around u ∼ u0 to get

f (u) = f (u0) + (u − u0) f
′(u0) + (u − u0)

2

2
f ′′(u0) + · · ·

≈ 2

(
1 − u

u0

)
(34)

where we have neglected the higher order terms as u−u0 �
1. With this approximation the subsystem length is as follows

l

rt
=

√
π

2
√

2

	(3/4)

	(5/4)
+

∞∑
n=1

	(n + 1
2 )	( n+3

4 )

2
√

2 	(n + 1)	( n+5
4 )

(
rt
rh

)n

.

(35)

For large values of n the second term in the above expression

goes as ∼ 1
n

(
rt
rh

)n
. The comparison test for infinite series

suggests that term is divergent in the limit rh → rt . We
separate out the divergent term and rewrite Eq. (35) in the
following form

l

rt
=

√
π

2
√

2

	(3/4)

	(5/4)

+
∞∑
n=1

(
	(n + 1

2 )	( n+3
4 )

2
√

2 	(n + 1)	( n+5
4 )

− 1√
2 n

)(
rt
rh

)n

− 1√
2

log

(
1 − rt

rh

)
. (36)

Once again we can use the approximation rt 
 rh(1 − ε),
as the hypersurface cannot penetrate the black hole horizon
[18], to have

l

rh
= c1 − 1√

2
log ε + O(ε) (37)

with

c1 =
√

π

2
√

2

	(3/4)

	(5/4)
+

∞∑
n=1

(
	(n + 1

2 )	( n+3
4 )

2
√

2 	(n + 1)	( n+5
4 )

− 1√
2 n

)
.

(38)

The area integral under the near horizon approximation is
given by

A = L

rt

∞∑
n=0

√
2	(n + 1

2 )√
π	(n + 1)

1

un0

∫ 1

δ

du
un−2

√
1 − u4

. (39)

The above expression contains integrals which are divergent
for n = 0, 1. We compute them separately now. These reads

An=0 =
√

2L

rt

(
1

δ
−

√
π	(3/4)

	(1/4)

)

An=1 = L√
2rh

[∫ 1

δ
du

1

u
+

∞∑
m=1

	(m + 1
2 )√

π	(m + 1)

∫ 1

δ
du u4m−1

]

= L√
2rh

(
− log δ + log 4

4

)
(40)

where we have used the expansion

1/
√

1 − u4 =
∞∑
n=0

	(n + 1
2 )√

π	(n + 1)
u4n . (41)

Now computing An≥2 terms and gathering all terms, we write
the expression for area in the near horizon approximation to
be

A =
√

2L

rt

(
1

δ
− rt

2rh
log δ −

√
π	(3/4)

	(1/4)
+ rt

8rh
log 4

+
∞∑
n=2

	(n + 1
2 )	( n−1

4 )

4	(n + 1)	( n+1
4 )

(
rt
rh

)n
)

. (42)

Interestingly, we observe that in the near horizon approxima-
tion, the expression for the area contains logarithmic diver-
gence term in addition to the usual 1/δ divergence term. It
has been reported earlier in [49] that spurious divergences
such as the logarithmic divergence in this case can arise in
the near horizon approximation and these divergences may
be artifacts of this approximation. Neglecting the UV diver-
gent part and using the formula 	(p+ 1) = p 	(p), we can
write the finite part of the area under RT hypersurface as

A f inite =
√

2L

rt

(
−

√
π	(3/4)

	(1/4)
+ rt

8rh
log 4

+
∞∑
n=2

(
1 + 2

n − 1

)
	(n + 1

2 )	( n−1
4 )

4	(n + 1)	( n+1
4 )

(
rt
rh

)n
)

=
√

2L

rt

(
l√
2rt

− 2
√

π	(3/4)

	(1/4)
− rt

8rh
(2 − log 4)

+
∞∑
n=2

	(n + 1
2 )	( n−1

4 )

2(n − 1)	(n + 1)	( n+1
4 )

(
rt
rh

)n
)

(43)

where in the last step we have used the relation (35). The last

term of the above equation goes as ∼ 1
n2

(
rt
rh

)n
. Using this

fact we recast the expression for the finite part of area as

A f inite = Ll

r2
t

+
√

2L

rt

[
−2

√
π	(3/4)

	(1/4)

−
(

5

4
− log 4

8

)
rt
rh

+ Li2

[(
rt
rh

)]

+
∞∑
n=2

(
	(n + 1

2 )	( n−1
4 )

2(n − 1)	(n + 1)	( n+1
4 )

− 1

n2

) (
rt
rh

)n
]

.

(44)

Now using the approximation rt 
 rh(1 − ε) and the defini-
tion of HEE, we get

S f ini te = A f inite

4G(4)

= Sh + L

2
√

2 G(4)rh
(c2 + c3ε + ε log ε) (45)
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where

Sh = l L

4G(4)r2
h

(46)

is the Bekenstein–Hawking entropy of the Lifshitz black hole
and

c2 = −2
√

π	(3/4)

	(1/4)
−

(
5

4
− log 4

8

)

+
∞∑
n=2

(
1

2(n − 1)

	(n + 1
2 )	( n2 + 3

4 )

	(n + 1)	( n2 + 5
4 )

− 1

n2

)
+ ξ(2),

c3 = 1

4
− log 4

8
. (47)

Note that the finite part of the HEE in the near horizon approx-
imation as shown in Eq. ((45)) has the same form as the finite
part part of the HEE in the IR limit. This is in turn implies that
the finite part of the HEE in the near horizon approximation
have similar temperature dependence as in Eq. (32).

3.1 Generalized temperature

The Lifshitz black hole as described in Sect. 2 satisfies the
first law of black hole thermodynamics [42]

dE = Th dSh (48)

leading to

E =
∫

Th dSh = ThSh/2 (49)

where the energy E is given by

E = l L

16πG(4)r4
h

. (50)

The relation is important since it relates the near boundary
quantity (E) to the near horizon quantities (Sh, Th). It can be
seen from Eq. (29) that in the IR limit (rt → rh) the leading
contribution to the HEE comes from the thermal entropy
Sh . As we depart from the IR limit, the HEE gets quantum
corrections due to microscopic properties of the underlying
quantum system. Keeping this point in mind we may ask for
a quantity called the generalized temperature (Tg) which is
different from the black hole temperature Th . We define the
generalized temperature in the following way

1

Tg
= SREE

2E
; SREE = SA − S(0)

A = 1

4G(4)

(
A − A(0)

)

(51)

where SREE is the HEE of the Lifshitz black hole and S(0)
A

is the HEE of the pure Lifshitz spacetime. The hypersur-
face area and subsystem length as obtained for pure Lifshitz

spacetime are given by [41]

A0 = 2L

δr (0)
t

− 4πL

l

(
	(3/4)

	(1/4)

)2

; l

r (0)
t

=
√

π	(3/4)

2 	(5/4)

(52)

Using this and Eq. ((50)), the generalized temperature reads

1

Tg
= 2πr2

h

l

(
4π

l

(
	(3/4)

	(1/4)

)2

− 2
√

π	(3/4)

rt 	(1/4)

+ 1

2rt

∞∑
n=1

	(n + 1
2 )	( n2 − 1

4 )

4	(n + 1)	( n2 + 1
4 )

(
rt
rh

)2n
)

. (53)

From the above expression we see that Tg is a function of
l and rt , but rt itself depends on the subsystem length l. So
we conclude that Tg is a function of l alone. Therefore the
generalized temperature depends on the subsystem size. We
now discuss the behavior of the generalized temperature in
extreme limits. In the IR limit (rt → rh), the generalized
temperature takes the form

1

Tg
= 1

Th
+ r3

h

l
α + r4

h

l2
β (54)

with

α = 2π

(
− 4

√
π	(3/4)

	(1/4)
+

∞∑
n=1

	(n + 1
2 )	( n2 + 3

4 )

(2n − 1)	(n + 1)	( n2 + 5
4 )

)

β = 8π2
(

	(3/4)

	(1/4)

)2
. (55)

It is evident from Eq. (54) that the generalized temperature
yields the thermodynamic temperature Th in the large sub-
system size limit (l/rh � 1). The sub-leading terms are due
to quantum entanglement. In the UV limit (l → 0, rt → 0),
the generalized temperature is given by

1

Tg
= πr2

h

6

(
	(1/4)

	(3/4)

)2
(

1 + l2

r2
h

γ

)
(56)

where

γ = 9

20π
− 1

192π

(
	(1/4)

	(3/4)

)4

. (57)

In the l/rh → 0 limit (that is the UV limit) with rh kept
fixed, the generalized temperature temperature behaves as
∼ c+ 1

l2
. Although the 1/ l2 dependence is similar as in [15]

but the constant term is not present in [15] which may be
due to the fact that the non-relativistic gravity dual consid-
ered there is the hyperscaling violating black brane geometry
which is different than the Lifshitz black hole. Further, we
observe that Tg �= 0 when l/rh = 0 (rh �= 0). It is a non-
relativistic phenomena in contrast to relativistic systems for
which the inverse of the generalized temperature becomes
zero when l/rh = 0 (rh �= 0) [22,23]). This is one of the
important findings in our paper. This non-zero generalized
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temperature (Tg) in l → 0 limit can be called “entanglement
temperature”(Tent ). The origin of this entanglement temper-
ature is solely microscopic (quantum entanglement) and has
nothing to do with the macroscopic properties of the sys-
tem. The expression for the entanglement temperature fol-
lows from eq.(56) and is given by

Tent = 6

πr2
h

(
	(3/4)

	(1/4)

)2

. (58)

Figure 1a and our analysis in the IR regime, it is evident
that the generalized temperature (Tg) becomes the Hawking
temperature (Th) for large subsystem length. To characterize
the thermal and quantum nature of the system we study the
flow of βg = 1/Tg . We study the flow of the generalized

temperature by studying the variation of dβg
d log l with l. This

has been shown in Fig. 1b. From the flow, we observe that it
has a maximum near a critical value lc

rh
= 4.91. Above this

value of the subsystem size, the system behave as a thermal
system and below this value the system behaves as a quantum
system.

4 Holographic subregion complexity

The subregion HC is proportional to the volume under the
minimal hypersurface whose boundary coincides with the
the boundary of the subsystem lying at the boundary at a
fixed time. Using the approximation (16) in the expression
for volume (15), we get

V = L

rt

∞∑
n=0

∞∑
m=0

(V1 + V2 + V3)

(
rt
rh

)2n+2m

(59)

where

V1 = 2	(n + 1
2 )	(m + 1

2 )

π (2n + 3)(2m + 2n + 1)	(n + 1)	(m + 1)
δ2m+2n+1

V2 = − 	(n + 1
2 )	(m + 1

2 )	( 2n+3
4 )

4
√

π(m − 1)	(n + 1)	(m + 1)	
(

2n+5
4

) δ2m−2

V3 =
	(n + 1

2 )	(m + 1
2 )	

(
2m+2n+1

4

)

4
√

π(m − 1)	(n + 1)	(m + 1)	
(

2m+2n+3
4

) . (60)

Now we should checkout for the divergences in the above
mentioned terms as the expression for volume contains dou-
ble sum which extends from m, n = 0 to ∞. Due to the

presence of the term
(
rt
rh

)2n+2m
, we expect the divergence

to occur near rt → rh . We start analyzing the V1 term. For
large values of (m, n), V1 varies as

V1 ∼ 1

n
3
2 m

1
2 (n + m)

<
1

n
3
2 m

3
2

. (61)

We can now argue that
∑∞

n,m=0 V1

(
rt
rh

)2n+2m
is conver-

gent. If p(m, n) and q(m, n) are two sequences of real num-
bers with m and n being positive integers, then the series∑∞

n,m=0 p(m, n) is convergent if for each values of (m, n) we

have |p(m, n)| ≤ |q(m, n)|. If we choose q(m, n) = 1

n
3
2 m

3
2

,

then
∑∞

n,m=0
1

n
3
2 m

3
2

= 1/(ξ(3/2))2, where ξ(3/2) is the Rie-

mann zeta function. Therefore the double sum over V1 term
converges absolutely. Moreover it is multiplied by δ2m+2n+1,
which tends to zero. So we can neglect the contribution from
V1. Let us now look at the V2 term which has a UV cutoff
dependent term δ2m−2. For m ≥ 2, this term will have negli-
gible contribution but form = 0, 1, this term is UV divergent.
To get the exact form of UV divergence we compute the vol-
ume form = 0 and 1 separately. It is expected that them = 1
term should give a logarithmic UV divergence. The volume
integral for m = 0 and m = 1 are given by

Vm=0 = L

rt

∞∑
n=0

(
rt
rh

)2n
(

	(n + 1
2 )	( 3

4 + n
2 )

4	(n + 1)	( 5
4 + n

2 )

1

δ2

− 	(n + 1
2 )√

π(2n + 3)	(n + 1)
δ2n+1

− 	(n + 1
2 )	( 1

4 + n
2 )

4	(n + 1)	( 3
4 + n

2 )

)

Vm=1 = L

rt

∞∑
n=0

(
rt
rh

)2n
(

− 	(n + 1
2 )	( 3

4 + n
2 )

4	(n + 1)	( 5
4 + n

2 )
log δ

+ 	(n + 1
2 )√

π(2n + 3)	(n + 1)
δ2n+3 log δ

+ 	(n + 1
2 )	( 3

4 + n
2 )

16	(n + 1)	( 5
4 + n

2 )

(
Hn

[
n

2
− 1

4

]

−Hn

[
n

2
+ 1

4

]))
. (62)

In the rt → rh limit, we use the expression for subsystem
length (17) to get

Vm=0 ∼ L

rh

(
l

2rh

1

δ2 + b1

)
;

Vm=1 ∼ L

rh

(
− l

2rh
log δ + b2

)
(63)

where b1 and b2 are numerical constants. Finally we look at
the V3 term. The analysis for V3 term is more complicated.
The detailed analysis is given in Appendix A. This term in
the rt → rh limit varies as

L

rt

∞∑
n=0

∞∑
m=0

(
rt
rh

)2n+2m

V3 ∼ L

rh

(
b3

l

rh
+ b4 + b5ε + b6ε log ε + b7 log ε

)
. (64)
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(a) (b)

Fig. 1 a Variation of βg

r2
h

= 1
Tgr2

h
with subsystem length, b variation of dβg

d log l with subsystem length (the dβg
d log l axis has been scaled five times for

visualization purpose)

Combining all these terms, we get the volume to be

V ∼ l L

(rh)2

(
1

2δ2 − log δ

2
+ b4

rh
l

+ b8

)

+ L

rh
(b5ε + b6ε log ε + b7 log ε) (65)

where bi for i = 3 to 8 are numerical constants. The above
expression clearly shows the presence of the UV cutoff δ and
the parameter ε arising in the IR limit from the relation rt =
rh(1 − ε) with rh being kept fixed. In terms of the black hole
temperature, the expression for the finite part of holographic
subregion complexity (which is the volume divided by the
factor of 8πRG) varies as

C f inite ∼ Th

(
b8 + b4

1√
Th

)
. (66)

Therefore, the holographic entanglement entropy (32) and
holographic subregion complexity (66) have the same kind
of temperature dependence.
We now proceed to evaluate the volume integral in the near
horizon limit. In this limit the volume becomes

V = L

rt

∞∑
n=0

∞∑
m=0

(V1 + V2 + V3)

(
rt
rh

)n+m

(67)

where

V1 = 	(n + 1
2 )	(m + 1

2 )

π (n + 3)(m + n + 1)	(n + 1)	(m + 1)
δm+n+1

V2 = − 	(n + 1
2 )	(m + 1

2 )	
( n+3

4

)
4
√

π(m − 2)	(n + 1)	(m + 1)	
(
n+5

4

)δm−2

V3 = 	(n + 1
2 )	(m + 1

2 )	
(m+n+1

4

)
4
√

π(m − 2)	(n + 1)	(m + 1)	
(m+n+3

4

) . (68)

The terms V1 and V3 have almost the same pattern as in the
previous case. So we can say that the term V1 is convergent
and have negligible contribution due to the UV cutoff δm+n+1

and the term V3 would have the same form as presented in Eq.

(64). On the other hand the term V2 is divergent for m ≤ 2,
so we compute the volume term for m = 0, 1, 2 separately
(see Appendix B). In the limit rh → rt , they behave as

Vm=0 ∼ l L

(rh)2

(
1

2
√

2

1

δ2 + d1

)

Vm=1 ∼ l L

(rh)2

(
1

2
√

2

1

δ
+ d2

)

Vm=2 ∼ l L

(rh)2

(
−3

√
2

16
log δ + d3

)
. (69)

Combining all the volume terms, we get

V ∼ l L

(rh)2

(
1

2
√

2δ2
+ 1

2
√

2δ
− 3

√
2 log δ

16
+ d4

rh
l

+ d5

)

+ L

rh
(d6ε + d7ε log ε + d8 log ε) (70)

where di for i = 1 to 8 are numerical constants. So the finite
part of the holographic subregion complexity varies with the
black hole temperature as

C f inite ∼ Th

(
d5 + d4

1√
Th

)
. (71)

5 Fisher information metric and fidelity susceptibility

In this section, we shall compute the Fisher information met-
ric and the fidelity susceptibility for the Lifshitz black hole
using holographic prescriptions [50,51,53]. In the context of
quantum information theory there exists two well notions of
distance between two quantum states. They are the Fisher
information metric [54] and the fidelity susceptibility [55]
(or called the Bures metric). From the literature [53], the
definition of the Fisher information metric is given by

GF,λλ = 〈δρ δρ〉(σ )
λλ = 1

2
tr

(
δρ

d

d(δλ)
log(σ + δλδρ)|δλ=0

)
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(72)

where δρ is a small deviation from the density matrix σ .
On the other hand the fidelity susceptibility is given by

Gλλ = ∂2
λF; F = tr

√√
σλρλ+δλ

√
σλ (73)

where ρ and σ are the final and initial density matrices, F is
called the fidelity between the two states.
The holographic computation of the Fisher information met-
ric from relative EE was put forward in [50]. The Fisher
information metric is given by

GF,mm = ∂2

∂m2 Srel(ρm ‖ ρ0);
Srel(ρm ‖ ρ0) = �〈Hρ0〉 − �S (74)

where m is a perturbation parameter, �S is the change in
entanglement entropy from the vacuum state and �〈Hρ0〉
is the change in modular Hamiltonian. With this basic back-
ground in place we first compute the Fisher information met-
ric for the Lifshitz black hole. It should be noted however that
the above formulations rely heavily on the symmetries of the
holographic conformal field theories, and the fact that they
can also be used in the non-relativistic case is the working
assumption in this paper. We consider that the background
is slightly perturbed from the pure Lifshitz spacetime but
the subsystem length l fixed. Then the inverse of the lapse
function 7 can be written as

1

f (r)
= 1

1 − r2

r2
h

= 1 + mr2 + m2r4. (75)

where m = 1
r2
h

, is the perturbation parameter in the bulk.

As the underlying geometry has been changed from Lifshitz
spacetime to asymptotic Lifshitz spacetime and we have not
changed the subsystem length the turning point of the bulk
extension will change as

rt = r (0)
t + m r (1)

t + m2 r (2)
t (76)

where r (0)
t is the turning point for pure Lifshitz spacetime

and r (1)
t , r (2)

t are first and second order corrections to the
turning point.On the other hand the subsystem length l can
be obtained from (13,17) upto second order in perturbation
as

l

rt
= a0 + m a1r

2
t + m2 a2r

4
t (77)

with

a0 =
√

π	
( 3

4

)
2 	

(
5
4

) ; a1 =
	

( 3
2

)
	

(
5
4

)

2 	
( 7

4

) ;

a2 =
	

(
5
2

)
	

( 7
4

)
4 	

( 9
4

) . (78)

Using the fact that the subsystem length is unchanged we
obtain from Eqs. (76, 77), expressions for r (0)

t , r (1)
t and r (2)

t
as given below

l

r (0)
t

= a0, r (1)
t = −a1

a0
(r (0)

t )3,

r (2)
t =

(
3
a2

1

a2
0

− a2

a0

)
(r (0)

t )5 . (79)

The expression for extremal area of the bulk extension upto
second order in perturbation parameter can be obtained from
Eqs. (14, 24) as

A = 2L

rc
− a0

L

rt
+ 3a1Lrtm + 5

3
a2Lr

3
t m

2. (80)

As we are interested in computing the change in area due to a
slight change in background we use (76) to recast the above
expression for area in the following form

A = A(0) + m A(1) + m2 A(2) (81)

where A(0), A(1) and A(2) are area for pure Lifshitz space-
time, first order and second order corrections to the area for
change in background. They have the following expressions

A(0) = 2L

rc
− a0

L

r (0)
t

, A(1) = 2a1Lr
(0)
t ,

A(2) =
(

2

3
a2 − a2

1

a0

)
L(r (0)

t )3. (82)

It has been shown in [50] that at first order in m the relative
entropy vanishes and in second order inm the relative entropy
is given by Srel = −�S. Hence,

Srel = −m2 A
(2)

4G
= m2 Ll

3

4G

(
3a2

1 − 2a0a2

3a4
0

)
. (83)

From Eq. (74), the Fisher information metric therefore reads

GF,mm = Ll3

2G

(
3a2

1 − 2a0a2

3a4
0

)
. (84)

In [53], a proposal for computing the above quantity was
given. The proposal is to consider the difference of two vol-
umes yielding a finite expression

F = Cd(V − V(0)) (85)

where V is evaluated for a second order perturbation around
pure Lifshitz spacetime . Cd is a dimensionless constant
which cannot be fixed from the first principles of the gravity
side. We shall now apply this proposal to compute the Fisher
information metric for the Lifshitz black hole. The change
in volume under Ryu–Takayanagi minimal surface at second
order in perturbation takes the form
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V = V (0) + mV (1) + m2V (2) (86)

with

V (0) = Ll

2r2
c

− a2
0L

2l
, V (1) = −mLl

(
a1

2a0
+ 6 − π

8

)
,

V (2) = m2 Ll
3

a3
0

(
a2

1

a0
− a2

2
+ 13 − 3π

12
a1

)
. (87)

The holographic dual of Fisher information metric is now
defined as

GF,mm = ∂2
mF; F = Cd

(
V − V(0)

)
(88)

with the constant Cd to be determined by requiring that the
holographic dual Fisher information metric from the above
equation must agree with that obtained from the relative
entropy (84). The constant Cd is therefore given by

Cd = 3a2
1 − 2a0a2

G(12a2
1 − 6a0a2 + (13 − 3π)a0a1)

. (89)

We now look forward to compute the fidelity susceptibility
holographically. If one assumes that the states depend on
a single parameter λ then for pure states the fidelity (73)
reduces to

〈�(λ)|�(λ + δλ)〉 = 1 − Gλλ(δλ)2 + · · · . (90)

The above expression immediately suggests that Gλλ is a
measure of distance between two quantum states called the
fidelity susceptibility . The holographic prescription for eval-
uating the fidelity susceptibility in (d + 1)-dimensional AdS
spacetime is given by [51]

Gλλ = nd−1
Vol(�max )

Rd
(91)

where �max is the maximum volume in the bulk that ends at
the boundary of the bulk at a fixed time slice. R is the radius
of curvature of AdS spacetime and nd−1 is a O(1) constant.
For our case the fidelity susceptibility reads

Gλλ = n2Ll
∫ rh

rc
dr

1

r3
√

1 − r2

r2
h

= n2Ll

r2
h

(
r2
h

2r2
c

+ B(−1,
1

2
)

)
. (92)

We see that the above expression for the fidelity suscep-
tibility does not agree with the Fisher information metric
obtained in Eq. (84). We end this section by making a few
observations. It is to be noted that the Fisher information
metric [54] and the fidelity susceptibility [55] (also known
as the Bures metric) are two well established notion of dis-
tance between two quantum states in quantum information
literature. In quantum information theory it is known that
both of the quantities are either same ([56–59]) or related

to each other [60]. The possible reason for the disagreement
in holographic theory may lie in the definitions of the two
quantities in holographic theory. The holographic definition
of fidelity susceptibility, as mentioned in [51], is exact in
the sense it depends on an integration from the boundary
upto the horizon of the black hole. Therefore, it contains
the information of the underlying geometry from UV to IR
region. On the other hand, the definition of the Fisher infor-
mation metric as prescribed in [53], depends upon the integra-
tion from the boundary upto the turning point of RT surface.
This computation is carried out perturbatively upto second
order in the perturbation parameter. Hence, it contains the
information of the UV structure of the underlying geometry
only.

6 Conclusion

In this paper, we have computed different information the-
oretic quantities holographically in the context of a non-
relativistic (3 + 1)-dimensional Lifshitz black hole with z =
2. Our main focus has been the following. To begin with we
have looked at the Ryu–Takayanagi area which is related to
the holographic entanglement entropy and second is the min-
imal volume under the Ryu–Takayanagi area which is related
to holographic subregion complexity. The finite part of the
holographic entanglement entropy approaches the black hole
entropy in the infrared regime. This clearly depicts that the
entanglement entropy becomes thermal entropy in the high
temperature limit even in the non-relativistic background. In
the ultra-violet limit, the finite part of holographic entangle-
ment entropy goes as S(UV )

f ini te ∼ 1
l

(
constant + O(l2)

)
. This

result departs with respect to the subleading terms from the
relativistic counterpart comprising the (3 + 1)-dimensional
SAdS black hole where S(UV )

f ini te ∼ 1
l

(
constant + O(l3)

)
.

Further, the holographic entanglement entropy has a loga-
rithmic divergence in addition to the usual 1/δ divergence in
the near horizon approximation. We have then introduced the
notion of a generalized temperature in terms of the renormal-
ized holographic entanglement entropy. The variation of the
generalized temperature with the subsystem length l shows
that the generalized temperature reduces to the black hole
temperature, that is the Hawking temperature, at large sub-
system length (infrared limit). This therefore implies that
our choice of the definition for the generalized temperature
is correct. It has been observed that the generalized temper-
ature leads to a thermodynamics like law E = 1

2TgSREE .
It is also interesting to note that the generalized temperature
does not reduces to zero when l/rh = 0 (rh �= 0). This is a
new result which does not have any counterpart in the rela-
tivistic background, namely, the (3 + 1)-dimensional SAdS
black hole. We have then observed departures from relativis-
tic results in case of the holographic subregion complexity.
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Both in the 3+1-dimensional relativistic and non-relativistic
(Lifshitz black hole with z = 2) cases, the holographic sub-
region complexity suffers 1/δ2 divergences, but in the non-
relativistic case we have log δ divergence which was absent
in the relativistic case [49]. The logarithmic divergence may
be spurious in nature as pointed out earlier in [49]. If it is
not spurious, then it would require an interpretation from the
field theory side. At present it is not clear what this diver-
gence mean in the field theory side but one may speculate
that it may correspond to some power law like behaviour
for a correlation function of some physical quantity. The
near horizon approximation have the same type of diver-
gences in both the cases. The holographic Fisher information
metric has been computed next from the concept of relative
entropy [50]. We have also computed the holographic sub-
region complexity in the ultra-violet limit upto second order
in the perturbation parameter. Using the proposal in [53], we
have used this result to obtain an expression for the Fisher
information metric upto an undetermined constant. We have
equated this result of the Fisher information metric with that
obtained from the relative entropy to determine the unde-
termined constant. The constant is found to be a number.
The holographic fidelity susceptibility has also been com-
puted. We find that there is a mismatch between the expres-
sions for the Fisher information metric and the holographic
fidelity susceptibility. These two quantities are related in the
context of quantum information. A similar observation has
already been made in the relativistic background in [39]. It
would be therefore be interesting to find a reason for this
mismatch.
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Appendix

A Analysis of V3 term in the expression of volume

The V3 term as given in equation (60) for large (m, n) goes
as

V3 ∼ 1

m3/2
√
n(m + n)

. (93)

So the sum over n is divergent by comparison test. We
perform the sum over m of the expression

∑∞
n=0∑∞

m=0

(
rt
rh

)2n+2m
V3 to get

∞∑
n=0

(
rt
rh

)2n 	(n + 1
2 )

	(n + 1)

(
5	( 2n+7

4 )

128	( 2n+9
4 )

(
rt
rh

)6

p Fq

[{
1, 1,

7

4
,

9

4
,

9

4
+ n

2

}
,

{
2, 2,

5

2
,

9

4
+ n

2

}
,

(
rt
rh

)4
]

− 	( 2n+1
4 )

4	( 2n+3
4 )

p Fq

[{
− 1

2
,

1

2
,

3

4
,

1

4
+ n

2

}
,

{
1

2
,

1

2
,

3

4
+ n

2

}
,

(
rt
rh

)4
])

(94)

where pFq is the hypergeometric function. To see the leading
divergent behavior, we take the large n limit of the hyperge-
omefunction. In large n limit the hypergeometric functions
behave as

pFq

[{
1, 1,

7

4
,

9

4
,

9

4
+ n

2

}
,

{
2, 2,

5

2
,

9

4
+ n

2

}
,

(
rt
rh

)4
]

≈ exp[
(
rt
rh

)4

] (95)

pFq

[{
−1

2
,

1

2
,

3

4
,

1

4
+ n

2

}
,

{
1

2
,

1

2
,

3

4
+ n

2

}
,

(
rt
rh

)4
]

≈ exp

[(
rt
rh

)4
]

. (96)

For large values of n, the nth term can be recast as

(
rt
rh

)2n
[

5	(n + 1
2 )	( 2n+7

4 )

128	(n + 1)	( 2n+9
4 )

(
rt
rh

)6

− 	(n + 1
2 )	( 2n+1

4 )

4	(n + 1)	( 2n+3
4 )

]
exp[

(
rt
rh

)4
]

=
(
rt
rh

)2n
[

5

128

(
1 − 2

2n + 5

)
	(n + 1

2 )	( 2n+3
4 )

	(n + 1)	( 2n+5
4 )

(
rt
rh

)6

− 	(n + 1
2 )	( 2n+1

4 )

4	(n + 1)	( 2n+3
4 )

]
exp[

(
rt
rh

)4
] (97)

where we have used 	(p + 1) = p 	(p) in the last line.
There are three terms present in the above equation. The first

term for large n varies as ∼ 1
n

(
rt
rh

)2n
, which is similar to the
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limiting behavior of
(

l
rt

)
as presented in (17). Similarly the

second term have the form ∼ 1
n2

(
rt
rh

)2n
and the third have the

form ∼ 1
n

(
rt
rh

)2n
for large n. Therefore, in rt → rh limit, if

we take the approximation rt = rh(1 − ε), our analysis from
Sect. 3 suggests that

∞∑
n=0

∞∑
m=0

(
rt
rh

)2n+2m

V3 ∼
(
a1

l

rh
+ a2 + a3ε + a4ε log ε + a5 log ε

)
(98)

where a1, a2, a3, a4, a5 are numerical constants.

B Exact computation of volume for m = 0, 1, 2 in the
near horizon limit

Vm=0 = L

rt

∞∑
n=0

(
rt
rh

)n 	(n + 1
2 )√

π	(n + 1)

(∫ 1

0
du

un+2

√
1 − u4

∫ 1

δ

du
1

u3

−
∫ 1

δ

du
1

u3

∫ u

0
ds

sn+2

√
1 − u4

)

= L

rt

( ∞∑
n=0

(
rt
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)n 	(n + 1
2 )	( n+3

4 )

8 	(n + 1)	( n+5
4 )

1

δ2

−
∞∑
n=0

(
rt
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)n 	(n + 1
2 )	( n+1

4 )

8 	(n + 1)	( n+3
4 )

)

= L

rt

(
l

2
√

2 rt

1

δ2 −
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n=0

(
rt
rh

)n 	(n + 1
2 )	( n+1

4 )

8 	(n + 1)	( n+3
4 )

)

(99)

where in the last line we have used the expression for sub-
system length in the near horizon limit (35).

Vm=1 = L

rt

∞∑
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rt
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δ
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(
rt
rh

)n+1 	(n + 1
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4 )
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(
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2 )	( n+2

4 )
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1
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(100)

and

Vm=2 = L

rt

∞∑
n=0

(
rt
rh

)n+2 3 	(n + 1
2 )

8
√
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4
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2 l

16 rt
log δ
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)n+2 3 	(n + 1
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4
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n + 1

4
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.

(101)
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