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Abstract We derive and analyze the conformal Ward iden-
tities (CWI’s) of a tensor 4-point function of a generic CFT in
momentum space. The correlator involves the stress–energy
tensor T and three scalar operators O (T OOO). We extend
the reconstruction method for tensor correlators from 3- to 4-
point functions, starting from the transverse traceless sector
of the T OOO . We derive the structure of the corresponding
CWI’s in two different sets of variables, relevant for the anal-
ysis of the 1–3 (1 graviton → 3 scalars) and 2–2 (graviton +
scalar → two scalars) scattering processes. The equations are
all expressed in terms of a single form factor. In both cases
we discuss the structure of the equations and their possible
behaviors in various asymptotic limits of the external invari-
ants. A comparative analysis of the systems of equations for
the T OOO and those for the OOOO , both in the general
(conformal) and dual-conformal/conformal (dcc) cases, is
presented. We show that in all the cases the Lauricella func-
tions are homogeneous solutions of such systems of equa-
tions, also described as parametric 4K integrals of modified
Bessel functions.

1 Introduction

The analysis of the conformal constraints in general confor-
mal field theories (CFT’s) in momentum space provides new
insight into the structure of the corresponding correlators. It
allows a direct comparison between general CFT predictions
and those derived within the traditional S-matrix approach –
based on the study of scattering amplitudes – widely inves-
tigated in a perturbative context.

Up to 3-point functions, the conformal Ward identities
(CWI) are sufficient to fix all the correlators in terms only
of the conformal data, which amount to a set of constants. A
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similar analysis of higher point functions is far more demand-
ing, since it requires the use of the operator product expansion
and the study of conformal partial waves (conformal blocks)
associated to a given CFT [1,2].

By turning to momentum space, even the analysis of 3-
point functions becomes nontrivial, and one has to proceed
with a substantial reformulation of the action of the con-
formal generators in these new variables, which show the
hypergeometric nature of the solutions of the CWI’s [3–9].
These can all be reformulated as systems of partial differ-
ential equations (pde’s), whose solutions are linear combi-
nations of Appell functions (F4), which are hypergeometric
functions of 2 variables.

In tensor correlators, by appropriate shifts of the parame-
ters of such solutions, it is possible to solve for all the form
factors [7,8] of a given tensorial parameterization. Equiva-
lently, one can map such solutions to parametric integrals
(3K integrals) of Bessel functions [4], which allow to handle
the symmetries of a certain correlator quite efficiently.

There are four fundamental solutions of a hypergeometric
system of pde’s generated by the CWI’s of a scalar 3-point
function, as discussed in [3]. Any other solution, obtained by
requiring specific symmetries of the correlation function, is
built around such a basis [7,8]. This holds also for inhomo-
geneous systems, as illustrated for nontrivial correlators such
as the T J J , T T T , and so on, where the several form factors
appearing in the tensor decomposition can all be determined
explicitly in terms of few constants [4].

As we move to 4-point functions, CWI’s cease to pro-
vide sufficient information for the complete identification of
the corresponding correlators, and it is necessary to define
a bootstrap program in momentum space which is consis-
tent with the same CWI’s, in analogy with coordinate space.
There is hope that, in the near future, also these missing links
will soon be solved, allowing for equally valuable, comple-
mentary approaches both in momentum and in coordinate
space.
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1.1 CFT’s and anomalies

Several parallel studies have widened the goal of this activ-
ity, addressing issues such as the use of conformal blocks/CP
symmetric blocks (Polyakov blocks) [10–13] as well as light-
cone blocks [14–16], analytic continuations to Lorentzian
spacetimes [17] and spinning correlators, just to mention a
few, all in momentum space. Related analysis have explored
the link to Witten diagrams within the AdS/CFT correspon-
dence [18,19]. At the same time, the extension of these inves-
tigations to de Sitter space has laid the foundations for new
applications in cosmology [20–26] and in gravitational waves
[27]. Finally, investigations of such correlators in Mellin
space [28–31] offer a new perspective on the bootstrap pro-
gram both in flat and in curved space [32,33], providing fur-
ther insight into the operatorial structure of a given CFT,
and connecting in a new way momentum space and Mellin
variables.

Undoubtedly, CWI’s play a crucial role in this effort, with
widespread applications both at zero and at finite tempera-
ture [34]. Among all the possible correlators that one may
investigate, those containing stress–energy tensors (T ) play
a special role, due to the presence of the conformal anomaly
[35]. Analysis of 4-point functions have so far been limited
to scalar correlators in flat [5,9] and curved backgrounds
[20,21]. The level of complexity increases drastically for
3-point functions as soon as one considers correlators con-
taining multiple insertions of stress–energy tensors. Their
CWI’s, in this case, have to reproduce the correct expres-
sion of the conformal anomaly. This introduces significant
complications respect to coordinate space where, in general,
the issues of the ultraviolet behaviour at coincident space-
time points of the corresponding operators is not addressed.
In coordinate space, the problem has been investigated in
few cases – for instance in the T T T case – quite directly,
by solving the CWI’s separately in their homogeneous and
inhomogeneous (anomalous) forms, by adding to the homo-
geneous solution one extra contribution [36].

Such additional contribution amounts to an ultralocal term
in the corresponding correlation function, generated when all
the coordinates of the operators coalesce [36,37] and repro-
duced by a variation of the anomaly functional.

In this context, studies of such correlators in momentum
space find significant guidance from free field theory realiza-
tions. For example, direct one-loop computations in classi-
cal conformal invariant theories (such as massless QED and
QCD) indicate that the anomalous breaking of conformal
symmetry is associated with the exchange of massless poles
[7,38,39]. This special feature unifies both conformal and
chiral anomalies, as found in supersymmetric studies [40],
and it has been shown to be consistent with the solutions of
the CWI’s of three point functions, such as the T J J [39,41]
and the T T T [7].

1.2 Moving to 4-point functions

The investigation of the CWI’s in momentum space that we
are going to present is based on the reconstruction method of
a tensor correlator starting from its transverse/traceless (tt)
sector, formulated for 3-point functions [4,6,42], that here
we are going to extend to 4-point functions.

In particular, in [4] a complete approach for the analysis
of 3-point functions, up to the T T T case, with three stress–
energy tensors, valid for tensor correlators, has been formu-
lated. The reconstruction of the entire correlator from its t t
projection involves the identification of a minimal set of form
factors in this sector, and it is accompanied by a set of tech-
nical steps for re-assembling it in a systematic way.

This approach allows to identify primary and secondary
CWI’s of a tensorial 3-point function, with the former corre-
sponding to second order partial differential equations (pde’s)
which can be solved independently in terms of a set of arbi-
trary constants.

Primary CWI’s are equations involving only form factors
of the tt sector and generate, for tensor correlators, inhomoge-
nous systems of pde’s of hypergeometric type. Secondary
CWI’s, on the other end, connect the same form factors to 3-
point functions via the corresponding canonical WI’s, which
impose extra constraints on the constants appearing in the
solution of the primary equations.

The results that we present extend a previous analysis
devoted to the scalar case, involving the OOOO correlator
[9]. We will re-investigate the scalar case, by taking a closer
look at the structure of the equations and at their asymptotic
behaviour. We will remark few additional properties of such
correlators and highlight some properties of the asymptotic
solutions of such equations, which have not been addressed
before. This will allow us to gain a more general perspective
both on the scalar and the tensor cases, especially in view
of possible future extensions of our work to correlators of
higher rank.

Scalar correlators are characterised only by primary
CWI’s and are therefore simpler to handle, differently from
the T OOO case where both primary and secondary equa-
tions are present.

In the scalar case the analysis of the conformal constraints
will be performed by focusing on a special class of solutions
of such equations which are conformal and dual conformal at
the same time, derived in [9]. These are obtained by imposing
a specific condition on the scaling dimensions of the scalar
operators, which allow to reduce the CWI’s to a hypergeo-
metric system, as in the case of 3-point functions. We have
summarised their construction in a nutshell in appendix E.

As we move from 3- to 4-point functions, all the equa-
tions, primary and secondary, are expressed in terms of 6
invariants, which are the external invariant masses p2

i and
the two Mandelstam invariants s and t . As far as we keep
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the external lines off-shell, and stay away from kinematical
points where an invariant is exactly zero, the equations are
well-defined and it is possible to investigate their structure.
As we are going to show, the selection of a set of specific
invariants, compared to others, is particularly beneficial if
we intend to uncover the symmetries of the equations and
their redundancies under the permutations of the external
momenta.

A crucial goal of our study is the identification of the
asymptotic behaviour of the solutions of such constraints
in specific kinematical limits. This may allow, in the near
future, to relate results from ordinary perturbation theory –
in ordinary Lagrangian realizations, at one loop level – to
those derived from CFT’s in the same limits. For instance,
in [7,8] it is shown how to match the general solutions of
the CWI’s for the T T T and T J J correlators, to free field
theories with a specific content of fermions, scalars and spin
1 fields. The matching allows to re-express the solutions of
such equations in terms of simple one-loop master integrals
in full generality, for any CFT.

1.3 The search for asymptotic solutions

For this reason, the search for asymptotic solutions of the
CWI’s, which acquire a simpler form in such limits, is par-
ticularly interesting. It may allow to establish a link with
the classical factorization theorems proven in gauge the-
ory amplitudes [43], especially if such CFT methods can
be extended to multi-point functions.

We will investigate the structure of the equations in two
specific limits. The first case that we will address will be the
1 → 3, where the graviton line of the T is assumed to acquire
a large invariant mass (p2

1) and decays into three scalar
lines with small invariants (p2

2, p
2
3, p2

4), while the remain-
ing invariants s and t are large. We are going to derive some
approximate asymptotic solutions of the equations which are
separable in the (p2

2, p2
3, p2

4) and (s, t, u)dependence. A sim-
ilar analysis will be presented in the 2 → 2 process, where
one of the lines of the scalar operators is selected in the initial
state together with the graviton line and the remaining scalar
lines are in the final state.

Our work is organized as follows.
After a brief discussion of the conformal and canonical

WI’s in momentum space, we investigate the structure of the
tt sector of the T OOO , identifying the symmetry constraints
under the permutation of the momenta of the single form
factor appearing in this correlator.

We then turn to a derivation of the primary and secondary
CWI’s of this correlator, written in a form which will be use-
ful for the derivation of their asymptotic limits. We describe
the orbits of such equations under the symmetry permuta-
tions, which allows to identify a subset of independent equa-
tions.

The analysis is repeated from scratch in the 2 → 2 case
and it is followed by a discussion of the asymptotic limits of
such equations, after a brief overview of the approach in the
scalar case.

We start from the scalar case, discuss the system of scalar
equations and discuss its reduction to the dcc case, which can
be solved exactly. The asymptotic behaviour of the dcc solu-
tions provides an example and a guidance for a more general
analysis first of the scalar case, and then of the tensor case,
the T OOO . In our conclusions we present some perspective
for further future extensions of our work.

2 Ward identities for the T OOO in coordinate and in
momentum space

In this section we briefly review the structure of the CWI’s
in coordinates and momentum space before turning to an
analysis of the tensor case.

We recall that for scalar correlators of individual scaling
dimensions �i

�(x1, x2, . . . , xn) = 〈O1(x1)O2(x2) · · · On(xn)〉 (2.1)

with primary scalar operators Oi , the special CWI’s are given
by first order differential equations

Kκ
scalar (xi )�(x1, x2, . . . , xn) = 0, (2.2)

with

Kκ
scalar (xi ) ≡

n∑

j=1

(
2� j x

κ
j − x2

j
∂

∂x j,κ
+ 2xκ

j x
α
j

∂

∂xα
j

)

(2.3)

being the corresponding generator in coordinate space.
Denoting with

�(p1, . . . pn−1, p̄n) = 〈O1(p1) · · · On( p̄n)〉 (2.4)

and

Kκ
scalar (pi ) ≡

n−1∑

j=1

(
2(� j − d)

∂

∂p j,κ
+ pκ

j
∂2

∂pα
j ∂p

α
j

− 2pα
j

∂2

∂p j,κ ∂pα
j

)

(2.5)

the Fourier transform of (2.1) and of (2.3) respectively, the
form of second order differential equations is given by

Kκ
scalar (pi )�(p1, . . . pn−1, p̄n) = 0, (2.6)
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where we have chosen p̄μ
n = −∑n−1

i=1 pμ
i the nth momen-

tum, to be the linearly dependent one. These constraints are
accompanied by the corresponding dilatation WI’s

φ(λxi ) = λ−�φ(xi ), (2.7)

which reduce to the form

D(xi )�(x1, . . . xn) = 0, (2.8)

with the (Euler) operator D(xi ) given by

D(xi ) ≡
n∑

i=1

(
xα
i

∂

∂xα
i

+ �i

)
. (2.9)

In momentum space, the dilatation WI is then given by

D(pi )�(p1 . . . p̄n) = 0, (2.10)

where

D(pi ) ≡
n−1∑

i=1

pα
i

∂

∂pα
i

+ �′, (2.11)

with the overall scaling in momentum space being given by
[8]

�′ ≡
(

−
n∑

i=1

�i + (n − 1)d

)
= −�t + (n − 1)d. (2.12)

In the expression above, �t = ∑4
i=1 �i denotes the total

scaling in coordinate space, while the same scaling in
momentum space is associated with �′ as

φ(λp1 . . . λ p̄n) = λ−�′
φ(p1 . . . p̄n). (2.13)

Coming to the tensor case, we recall that the infinitesimal
conformal transformation xμ → xμ + vμ(x) for the stress–
energy tensor with

vμ(x) = bμx
2 − 2xμb · x, (2.14)

defined in terms of a generic parameter bμ, and a scaling
factor

	 = 1 − σ + . . . (2.15)

with σ = −2b · x , can be expressed as a local rotation times
a rescaling 	

Rμ
α = 	

∂x ′μ

∂xα
, (2.16)

and the action on the stress–energy tensor is simply given by

T ′μν(x ′) = 	�T Rμ
α Rν

βT
αβ(x). (2.17)

R can be expanded around the identity as

R = 1 + [ε] + . . . (2.18)

with an antisymmetric matrix [ε], which we can re-express
in terms of antisymmetric parameters (τρσ ) and 1/2 d (d−1)

generators �ρσ of SO(d) as

[ε]μα = 1

2
τρσ

(
�ρσ

)
μα

(
�ρσ

)
μα

= δρμδσα − δραδσμ (2.19)

Rμα = δμα + τμα = δμα + 1

2
∂[αvμ], (2.20)

where ∂[αvμ] ≡ ∂αvμ − ∂μvα .
One derives from (2.17) the infinitesimal transformation

δTμν(x) = −(bαx2 − 2xαb · x) ∂αT
μν(x) − �T σTμν(x)

+2(bμxα − bαxμ)T αν

+2(bνxα − bαxν) T
μα(x). (2.21)

It is then quite straightforward to obtain the expression of the
special CWI for the correlator

�μν(x1, x2, x3, x4) ≡ 〈Tμν(x1)O(x2)O(x3)O(x4)〉 (2.22)

in the form

Kκ�μν(x1, x2, x3, x4)

= Kκ
scalar (xi )�

μν(x1, x2, x3, x4)

+2
(
δμκ x1ρ − δκ

ρ x
μ
1

)
�ρν(x1, x2, x3, x4)

+2
(
δνκ x1ρ − δκ

ρ x
ν
1

)
�μρ(x1, x2, x3, x4) = 0, (2.23)

where the first contribution denotes the scalar part and the last
two contributions the spin part, which are trivially absent in
the case of a scalar correlator.

The transition to momentum space of such equations has
been discussed in [8], to which we will refer for further
details, and the action of Kκ can be summarized by the
expression

3∑

j=1

[
2(� j − d)

∂

∂pκ
j

− 2pα
j

∂

∂pα
j

∂

∂pκ
j

+ (p j )κ
∂

∂pα
j

∂

∂p jα

]

〈Tμ1ν1(p1) O(p2) O(p3)O( p̄4〉
+ Kκ

spin〈Tμ1ν1(p1) O(p2) O(p3)O( p̄4〉 = 0, (2.24)

where we have defined the spin part ofK in momentum space
as
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Kκ
spin〈Tμ1ν1(p1) O(p2) O(p3)O( p̄4〉

≡ 4

(
δκ(μ1

∂

∂pα1
1

− δκ
α1

δλ(μ1
∂

∂pλ
1

)

〈T ν1)α1(p1) O(p2) Op3)O( p̄4)〉 (2.25)

(symmetrization is normalized with an overall factor 1/2).
In the previous expression we have taken p4 as a dependent

momentum (p4 → p4), which requires an implicit differen-
tiation if we take p1, p2 and p3 as independent momenta.
The equations can be projected onto the three independent
momenta, giving scalar equations which can be re-expressed
in terms of all the scalar invariants parameterizing the form
factors. The hypergeometric character of the 3-point func-
tions, as well as for 4-point functions (for the dcc solutions),
emerges after such reduction of the equations to a scalar form
[3,4,7,8].

For this purpose, we recall that F4, Appell’s 4th hypergeo-
metric function, which is the only special function appearing
in the solution, is defined by the series

F4(α, β, γ, γ ′; x, y) =
∞∑

m,n=0

(α)m+n(β)m+n

(γ )m(γ ′)nm!n! x
m yn (2.26)

with the (Pochhammer) symbol (α)k given by

(α)k = �(α + k)

�(α)
= α(α + 1) . . . (α + k − 1). (2.27)

Such function appears in the solution of the CWI’s of the
scalar 3-point correlator [3]

�(q1, q2, q3) = 〈O(q1)O(q2)O(q3)〉, (2.28)

given by

K13� = 0 K23� = 0, (2.29)

where the Ki are defined as

K j = ∂2

∂p2
j

+ (d − 2� j + 1)

p j

∂

∂p j
, j = 1, 2, 3 , (2.30)

Ki j = Ki − K j . (2.31)

In this case, following the discussion of [3,8], they can be
solved by the linear combination of Appell functions

�(q1, q2, q3) = (q2
3

)�t
2 − 3

2 d−4∑

a,b

c(a, b, �) xa yb

F4(α(a, b), β(a, b); γ (a), γ ′(b); x, y), (2.32)

where here

x = q2
1/q2

3 , y = q2
2/q2

3 (2.33)

are quadratic ratios of momenta, expressed in terms of a
pivot, which in this case is q3. The pivot is arbitrary among
the three momenta, and changes in the pivot are associ-
ated to analytic continuations of the variables [3]. In (2.32)
we are assuming the same scaling dimension for the three
scalars operators (�i = �, i = 1, 2, 3). The expressions of
α(a, b), β(a, b), γ (a), γ ′(b) take the form

α(a, b) = a + b + d

2
− �

2
, β(a, b) = a + b + d

2
− 3�

2

γ (a) = 2a + d

2
− � + 1, γ ′(b) = 2b + d

2
− � + 1

(2.34)

where the (a, b) run on 4 pairs of indices (ai , b j ) (i, j,=
0, 1)

a0 = 0, a1 = � − d

2
,

b0 = 0, b1 = � − d

2
. (2.35)

that are identified by the condition that an ansäzt based on the
ratios of momenta x and y is free of non-analytic terms at x
= 0, y = 0 (i.e. ∼ 1/x, 1/y), which need to vanish [8]. Notice
that the coefficients c(a, b,�) are not all independent, but
they need to satisfy some constraints. These constraints come
from the requirement that the linear combination (2.32) does
not contain any collinear singularities when p1 + p2 = p3 or
equivalently when x + y = 1. Finally, only a single overall
constant appears in the general solution [3,8].

Equivalently, they can be written down as an integral of
three Bessel functions (3K integral),

Iα{β1,β2,β3}(q1, q2, q3) = C
∫ ∞

0
dx xα (q1)

β1 (q2)
β2 (q3)

β3

×Kβ1(q1 x) Kβ2(q2 x) Kβ3(q3 x), (2.36)

in the form [4]

�(q1, q2, q3) = C Id/2−1{�1−d/2,�2−d/2,�3−d/2}(q1, q2, q3)

(2.37)

with α = d/2 − 1 and βi = �i − d/2.
In the next sections, we are going to derive the explicit

form of the CWI’s for the T OOO , extending the approach of
[4] from 3- to 4-point functions. Together with the conformal
constraints, we need to impose on the correlator also the
canonical WI’s, which we are now going to derive.

2.1 Conservation and Trace Ward Identities

For this goal, we start from the generating functional
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Z [φ0, g
μν] =

∫
D�exp

(− SCFT [φ, gμν]

−
∑

i

∫
dd x

√
gφ j

0 Oj
)
, (2.38)

dependent on the background metric gμν and the classical
source φ0(x) coupled to the scalar operator O(x), with the
1-point functions given by

〈Tμν(x)〉 = 2√
g(x)

δZ

δgμν

, (2.39)

〈Oj (x)〉 = − 1√
g(x)

δZ

δφ
j
0 (x)

. (2.40)

In our case, in order to avoid some bulky notation, we con-
sider only one type of scalar operator, with a unique scaling
dimension �. We will present the derivations of all the con-
formal and canonical WI’s in this specific case. In Sect. 7.1
we will then provide the expression of the same equations
for general distinct �i ’s, which can be obtained by a very
similar procedure, as in the equal scaling case.

To get the transverse and trace Ward Identities, we require
that the generating functional Z is invariant under diffeomor-
phisms and Weyl transformations respectively, which gives

∇ν〈Tμν(x1)〉 + ∂μφ0 · 〈O(x1)〉 = 0, (2.41)

gμν〈Tμν(x1)〉 + (d − �)φ0〈O(x1)〉 = 0. (2.42)

The WI’s for the 〈Tμ1ν1(p1)O(p2)O(p3)O(p4)〉 can be
derived by taking three variations of the above identities with
respect to the source φ0 of the scalar operator. At the end, by
imposing the flat limit gμν = δμν,∇ν = ∂ν , turning off the
sources (φ0 = 0) and using the definitions

〈Tμν(x1)O(x2)O(x3)O(x4)〉 = −2√
g(x1) . . .

√
g(x4)

× δ4Z

δgμν(x1)δφ0(x2)δφ0(x3)δφ0(x4)
, (2.43)

〈O(x1)O(x2)O(x3)〉 = −1√
g(x1)

√
g(x2)

√
g(x3)

× δ3Z

δφ0(x3)δφ0(x2)δφ0(x1)
, (2.44)

the conservation WI gives the constraint

∂ν〈Tμν(x1)O(x2)O(x3)O(x4)〉
= ∂μδ(d)(x1 − x2)〈O(x1)O(x3)O(x4)〉

+ ∂μδ(d)(x1 − x3)〈O(x1)O(x2)O(x4)〉
+ ∂μδ(d)(x1 − x4)〈O(x1)O(x2)O(x3)〉, (2.45)

while the trace WI gives

δμν〈Tμν(x1)O(x2)O(x3))(x4)〉
= (d − �)δ(d)(x1 − x2)〈O(x1)O(x3)O(x4)〉

+ (d − �)δ(d)(x1 − x3)〈O(x1)O(x2)O(x4)〉
+ (d − �)δ(d)(x1 − x4)〈O(x1)O(x2)O(x3)〉. (2.46)

The expressions of (2.45) and (2.46) in momentum space can
be obtained by a Fourier transform and are explicitly given
by

δ(d)

(
4∑

i=1

pi

)
p1ν〈Tμν(p1)O(p2)O(p3)O(p4)〉

= −
(
pμ

2 〈O(p1 + p2)O(p3)O(p4)〉
+ pμ

3 〈O(p1 + p3)O(p2)O(p4)〉

+ pμ
4 〈O(p1 + p4)O(p2)O(p3)〉

)
δ(d)

(
4∑

i=1

pi

)
,

(2.47)

and

δ(d)

(
4∑

i=1

pi

)
δμν〈Tμν(p1)O(p2)O(p3)O(p4)〉

= (d − �)

(
〈O(p1 + p2)O(p3)O(p4)〉

+ 〈O(p1 + p3)O(p2)O(p4)〉 + 〈O(p1

+ p4)O(p2)O(p3)〉
)

δ(d)

(
4∑

i=1

pi

)
, (2.48)

where on the right hand side of the equations appear only
scalar 3-point functions. We will insert a bar over a momen-
tum variable to indicate that it is treated as a dependent one.
In the following we are going to make two separate choices
of dependent momenta, respectively p̄1 and p̄4. If we choose
p̄1 as the dependent momentum, the WI’s take the form

p̄μ1 〈Tμ1ν1(p̄1) O(p2) O(p3) O(p4)〉
= −pν1

2 〈O(p3 + p4) O(p3) O(p4)〉
− pν1

3 〈O(p2 + p4) O(p2) O(p4)〉
− pν1

4 〈O(p2 + p3) O(p2) O(p3)〉, (2.49a)

δμ1ν1 〈Tμ1ν1(p̄1) O(p2) O(p3) O(p4)〉
= (d − �)

[
〈O(p3 + p4) O(p3) O(p4)〉

+ 〈O(p2 + p4) O(p2) O(p4)〉
+ 〈O(p2 + p3) O(p2) O(p3)〉

]
, (2.49b)
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and for p̄4

p1,μ1〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= +pν1

1 〈O(p2)O(p3)O(p1 +Np4)〉
− pν1

2

(
〈O(p1 + p2)O(p3)O(p̄4)〉

− 〈O(p2)O(p3)O(p1 +Np4)〉
)

− pν1
3

(
〈O(p2)O(p1 + p3)O(p̄4)〉

− 〈O(p2)O(p3)O(p1 +Np4)〉
)
, (2.50a)

δμ1ν1〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= (d − �)

[
〈O(p1 + p2)O(p3)O(p̄4)〉

+ 〈O(p1 + p3)O(p2)O(p̄4)〉
+ 〈O(p1 + p̄4)O(p2)O(p3)〉

]
. (2.50b)

The left hand sides of these equations will be related to the
form factor identified from the t t sector.

3 The reconstruction method from 3- to 4-point
functions and the T OOO

Following [4], we consider the four point correlation func-
tion formed by a stress–energy tensor Tμν and three scalar
operators O(pi ) of the same kind and with the same scaling
dimensions. We define

pi =
√

p2
i , s =

√
(p̄1 + p2)2 =

√
(p3 + p4)2,

t =
√

(p2 + p3)2, u =
√

(p2 + p4)2, (3.1)

and introduce the t t (�) and local (�) projectors

�
μν
αβ (p) = 1

2

(
πμ

α (p)πν
β (p) + π

μ
β (p)πν

α (p)
)

− 1

d − 1
πμν(p)παβ(p)

(3.2)

�
μν
αβ (p) = δ(μ

α δ
ν)
β − �

μν
αβ (p)

= 1

p2

[
2 p(β δ

(μ

α) p
ν) − pα pβ

(d − 1)

(
δμν + (d − 2)

pμ pν

p2

)]

+ 1

d − 1
πμν(p)δαβ . (3.3)

The stress–energy tensor is decomposed in its transverse
traceless (t t) and local parts in the form

Tμν = tμν + tμν
loc (3.4)

with

tμν
loc(p) = pμ

p2 Qν + pν

p2 Q
μ − pμ pν

p4 Q + πμν

d − 1
(T − Q

p2 )

= �
μν
αβ T

αβ (3.5)

and

Qμ = pνT
μν, T = δμνT

μν, Q = pν pμT
μν. (3.6)

One can consider the decomposition of the 〈T OOO〉 cor-
relation function as

〈Tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉
= 〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉

+ 〈tμ1ν1
loc (p̄1)O(p2)O(p3)O(p4)〉 (3.7)

where in bold we refer to vectors in the Euclidean R
d space,

and we are considering p̄μ
1 = −pμ

2 − pμ
3 − pμ

4 from momen-
tum conservation.

The first term on the right hand side of (3.7) is the t t part of
the correlation function, and the second represents the local
(loc) part. The method consists in expanding the t t sector into
a minimal number of form factors, fixed by the symmetry of
the correlator [4]. In our case the t t and local parts take the
form

〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉
= �

μ1ν1
α1β1

(p̄1)
[
A pα1

2 pβ1
2 + A(p2 ↔ p3) p

α1
3 pβ1

3

+A(p2 ↔ p4) p
α1
4 pβ1

4

]
(3.8)

〈tμ1ν1
loc (p̄1)O(p2)O(p3)O(p4)〉
= �

μ1ν1
α1β1

(p̄1)〈T α1β1(p̄1)O(p2)O(p3)O(p4)〉. (3.9)

From these expressions, one can observe that the local term
is constrained by the conservation WI’s (2.49), which project
on 3-point functions of the form OOO , as we have discussed
in the previous section. Using (3.3) and (2.49) in (3.9), one
can explicitly write the local term in the form

〈tμ1ν1
loc (p̄1)O(p2)O(p3)O(p4)〉
= 2

p̄2
1

[
− p̄(μ1

1 pν1)
2 〈O(p3 + p4)O(p3)O(p4)〉

− p̄(μ1
1 pν1)

3 〈O(p2 + p4)O(p2)O(p4)〉 − p̄(μ1
1 pν1)

4

× 〈O(p2 + p3)O(p2)O(p3)〉
]

+ (d − �)

d − 1
πμ1ν1(p̄1)

×
[
〈O(p2 + p4)O(p2)O(p4)〉 + 〈O(p2 + p3)

O(p2)O(p3)〉 + 〈O(p3 + p4)O(p3)O(p4)〉
]
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− 1

(d − 1)

(
δμ1ν1 + (d − 2)

p̄μ1
1 p̄ν1

1

p̄2
1

)

×
[
− p̄1 · p2

p̄2
1

〈O(p3 + p4)O(p3)O(p4)〉

− p̄1 · p3

p̄2
1

〈O(p2 + p4)O(p2)O(p4)〉

− p̄1 · p4

p̄2
1

〈O(p2 + p3)O(p2)O(p3)〉
]

. (3.10)

The scalar 3-point function appearing on the right hand side
is exactly known. In this way, the task of finding the structure
of the entire 〈T OOO〉 has been reduced to the identification
of only its t t part. In particular, as we are going to show, all
the WI’s will constrain a single form factor.

The parameterization of this form factor (A), eventually,
can be chosen according to the type of amplitude that one
intends to consider, in order to facilitate the analysis.

For instance, in the case in which one in interested in
a comparison between the conformal prediction and a free
field theory realization – for example in a 1 (graviton) →
three (scalars) process – then it is convenient to adopt the
parameterization A ≡ A(p2, p3, p4, s, t, u) and derive the
equations using such variables. This choice is the one which
respects the symmetries of the process, since the three scalars
can be treated equally, and it allows to discuss more easily
its asymptotic behaviour. Notice that in this case, momen-
tum p1 is treated as a dependent one (p1) and needs to be
differentiated implicitly in the corresponding equations.

4 Conformal Ward Identities in the 1 → 3 formulation

Using the 1 → 3 symmetric formulation and the parame-
terization presented in (3.9), the A form factor exhibits the
following symmetries

A(p3 ↔ p4) = A(p2, p3, p4, s, t, u) (4.1)

A(p2 → p4 → p3 → p2) = A(p2 ↔ p4) (4.2)

A(p2 → p3 → p4 → p2) = A(p2 ↔ p3), (4.3)

which can be written in the form

A(p2, p4, p3, s, u, t) = A(p2, p3, p4, s, t, u) (4.4)

A(p4, p2, p3, t, u, s) = A(p4, p3, p2, t, s, u) (4.5)

A(p3, p4, p2, u, s, t) = A(p3, p2, p4, u, t, s). (4.6)

In order to extract some information on A(p2, p3, p4, s, t
, u), we turn to the dilatation and the special conformal WI’s
which it has to satisfy. In the case of scalars of equal scaling
� these take simplified forms respect to (2.5) and (2.24)

0 =
⎡

⎣(3� − 2d) −
4∑

j=2

pμ
j

∂

∂pμ
j

⎤

⎦

〈Tμ1ν1 (p̄1)O(p2)O(p3)O(p4)〉, (4.7)

0 =
4∑

j=2

[
2(� − d)

∂

∂p j κ

− 2pα
j

∂2

∂pα
j ∂ p j κ

+ pκ
j

∂2

∂ pα
j ∂ p j α

]

× 〈Tμ1ν1 (p̄1)O(p2)O(p3)O(p4)〉, (4.8)

where, as already mentioned, the momentum pμ
1 is taken as

the dependent one.
As discussed in [8], one of the external coordinates of the

correlator can be set to vanish by translational symmetry, and
its corresponding momentum, after Fourier transform, has to
be taken as dependent on the other. For instance, in this case,
for convenience, we have chosen the coordinate of the stress–
energy tensor to vanish (x1 = 0), and taken its momentum
as the dependent one (p1 → p1). This implies that the spin
part of the special conformal transformation will not act on
the stress–energy tensor, and the action of this generator is
reduced to a pure scalar.

The differentiation is performed only respect to the inde-
pendent momenta, using the chain rule while differentiating
p1. This choice is optimal if we intend to derive symmetric
equations for the T OOO , in which we treat the three scalar
operators equally, as is the case if we intend to investigate this
correlator in a 1 → 3 kinematical configuration. In Sect. 5 we
will reverse this choice, by taking one of the scalar momenta
(p4) as the dependent one, which is equivalent to choosing
x4 = 0 in coordinate space. In this second case the special
conformal generator will act with its spin part on the indices
of the stress–energy tensor as well, being the momentum p1

one of the independent momenta.
The procedure that we will apply in this case follows

quite closely the approach implemented for 3-point func-
tions, developed in [4]. Both equations are projected onto
the transverse traceless sector using the � projector, whose
action is endomorphic on this sector [4]. A more detailed
discussion of this point can be found in [8].

Henceforth, by applying �
ρ1σ1
μ1ν1(p̄1) on the left of the

dilatation and special conformal generators, we find

�ρ1σ1
μ1ν1

(p̄1) D̂ 〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉 = 0 (4.9)

for the dilatation WI, and

0 = �ρ1σ1
μ1ν1

(p̄1)Kκ
[〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉

+〈tμ1ν1
loc (p̄1)O(p2)O(p3)O(p4)〉

]

= �ρ1σ1
μ1ν1

(p̄1)Kκ 〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉

+ �ρ1σ1
μ1ν1

[
4d

p̄2
1

p̄1 βδμ1κ 〈T ν1β(p̄1)O(p2)O(p3)O(p4)〉
]

(4.10)
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for the conformal WI, where we have used the relation

�ρ1σ1
μ1ν1

Kκ 〈tμ1ν1
loc (p̄1)O(p2)O(p3)O(p4)〉

= �ρ1σ1
μ1ν1

[
4d

p̄2
1

δμ1κ p̄1 β 〈T ν1β(p̄1)O(p2)O(p3)O(p4)〉
]

.

(4.11)

The first term in (4.10) can be explicitly written as

�
ρ1σ1
μ1ν1 (p̄1)Kκ 〈tμ1ν1 (p̄1)O(p2)O(p3)O(p4)〉

= �
ρ1σ1
μ1ν1 (p̄1)

{
pκ

2

[
C11 p

μ1
2 p

ν1
2 + C12 p

μ1
3 p

ν1
3 + C13 p

μ1
4 p

ν1
4

]

+ pκ
3

[
C21 p

μ1
2 p

ν1
2 + C22 p

μ1
3 p

ν1
3 + C23 p

μ1
4 p

ν1
4

]

+ pκ
4

[
C31 p

μ1
2 p

ν1
2 + C32 p

μ1
3 p

ν1
3 + C33 p

μ1
4 p

ν1
4

]

+ δμ1κ

[
C41 p

ν1
2 + C42 p

ν1
3 + C43 p

ν1
4

]}
(4.12)

where we have used the chain rules

∂

∂pμ
2

= pμ
2

p2

∂

∂p2
+ pμ

2 + pμ
3

t

∂

∂t
+ pμ

2 + pμ
4

u

∂

∂u
(4.13)

∂

∂pμ
3

= pμ
3

p3

∂

∂p3
+ pμ

3 + pμ
4

s

∂

∂s
+ pμ

2 + pμ
3

t

∂

∂t
(4.14)

∂

∂pμ
4

= pμ
4

p4

∂

∂p4
+ pμ

2 + pμ
4

s

∂

∂s
+ pμ

2 + pμ
4

u

∂

∂u
(4.15)

in order to write the covariant derivatives in terms of scalar
derivatives involving the invariants parameterizing A. The
coefficients Ci j in (4.12) are linear combinations of differ-
ential operators acting on A. The dilatation WI (4.9) can be
written in scalar form as

0 = �ρ1σ1
μ1ν1

(p̄1) D̂ 〈tμ1ν1(p̄1)O(p2)O(p3)O(p4)〉

= �ρ1σ1
μ1ν1

(p̄1)

{
D1 pμ1

2 pν1
2 + D2 pμ1

3 pν1
3 + D3 pμ1

4 pν1
4

]}

(4.16)

where Di are terms involving scalar derivatives acting on the
form factor A(p2, p3, p4, s, t, u). The previous equation is
satisfied if all the Di vanish independently, giving a dilatation
constraint on A(p2, p3, p4, s, t, u) of the form

D1 = 0 �⇒
⎡

⎣
4∑

j=2

p j
∂

∂p j
+ s

∂

∂s
+ t

∂

∂t
+ u

∂

∂u

⎤

⎦

A(pi , s, t, u) = (�t − 3d − 2) A(pi , s, t, u), (4.17)

where �t = ∑4
j=1 � j = d + 3�, since �1 = d for the

stress–energy tensor, and we have set �2 = �3 = �4 = �.
From the other conditions Di = 0, with i = 2, 3, we generate

the same constraint as from D1, modulo some permutations
involving (p2 ↔ p3) and (p2 ↔ p4) respectively.

4.1 Primary conformal ward identities

From the expressions of (4.10) and (4.12), after some lengthy
algebraic manipulations, we derive the primary constraints
as

C11 = 0, C12 = 0, C13 = 0,

C21 = 0, C22 = 0, C23 = 0,

C31 = 0, C32 = 0, C33 = 0, (4.18)

which are explicitly given in Appendix B.
One can easily reorganize these equations by introducing

the operators

K̄ (p2, p3, p4, s, t, u)

≡ K2 + p2
3 − p2

4

s t

∂

∂s∂t
− p2

3 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

u

∂

∂u

)

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ 2p2
2 + p2

3 + p2
4 − s2 − t2 − u2

t u

∂

∂t∂u
(4.19)

and

L(s, t) ≡ 2

s

∂

∂s
− 2

t

∂

∂t
(4.20)

with

L(s, t) = −L(t, s), (4.21)

obtaining

C11 = K̄ (p2, p3, p4, s, t, u) A(p2, p3, p4, s, t, u)

C12 = K̄ (p2, p3, p4, s, t, u) A(p3, p2, p4, u, t, s)

+ L(t, u)

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

C13 = K̄ (p2, p3, p4, s, t, u) A(p4, p3, p2, t, s, u)

− L(t, u)

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)

C21 = K̄ (p3, p2, p4, u, t, s) A(p2, p3, p4, s, t, u)

− L(s, t)

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

C22 = K̄ (p3, p2, p4, u, t, s) A(p3, p2, p4, u, t, s)

C23 = K̄ (p3, p2, p4, u, t, s) A(p4, p3, p2, t, s, u)
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C11 C12 C13

C21 C22 C23

C31 C32 C33

P23

P234

P24

P23

P24

P234

P23

P24

P234

Fig. 1 Orbits of the primary CWI’s of the T OOO under P23 and P24

+ L(s, t)

(
A(p4, p3, p2, t, s, u) + A(p3, p2, p4, u, t, s)

)

C31 = K̄ (p4, p3, p2, t, s, u) A(p2, p3, p4, s, t, u)

− L(s, u)

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)

C32 = K̄ (p4, p3, p2, u, t, s) A(p3, p2, p4, u, t, s)

+ L(s, u)

(
A(p3, p2, p4, u, t, s) + A(p4, p3, p2, t, s, u)

)

C33 = K̄ (p4, p3, p2, u, t, s) A(p4, p3, p2, t, s, u).

We illustrate in (1) pictorially the action of the permutation
operators Pi j , acting on the two momenta pμ

i and pμ
j , on the

various Ci j presented above. The functional dependence of
the form factor A(p2, p3, p4, s, t, u) will vary accordingly.

The orbits connect the various coefficients Ci j which can
be reached by the action of the various permutations. We
start with P23, P24 and their product P234. The orbits describe
equivalent equations and we are allowed to choose any of the
equations labelled by coefficients Ci j belonging to separate
orbits. Since there are three independent orbits under this
subgroup, we start by selecting only three primary conformal
WI’s which are not related by the action of such permutations
(Figs. 1, 2, 3).

The equations that we are going to choose are

C11 = K̄ (p2, p3, p4, s, t, u) A(p2, p3, p4, s, t, u)

C12 = K̄ (p2, p3, p4, s, t, u) A(p3, p2, p4, u, t, s)

+ L(t, u)

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

C13 = K̄ (p2, p3, p4, s, t, u) A(p4, p3, p2, t, s, u)

− L(t, u)

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)
.

(4.22)

C11 C12 C13

C22 C21 C23

C33 C32 C31

P23

P234

P24

P23

P234

P24

P23

P234

P24

Fig. 2 Equivalent pictorial representation of the orbits as in Fig. 1

C11 C12 C13P34

P34

P34

Fig. 3 Orbits of the CWI’s for the T OOO under P34

At this stage we include P34, under whose action C11 is
mapped to itself, while C12 ↔ C13. The mapping is illus-
trated below showing that the independent equations are only
two.

We take C11 and C12 as the independent ones, and all the
other equations are obtained by acting on these two with a
generic permutation of (p2, p3, p4). Therefore we have to
solve only the two equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 =K̄ (p2, p3, p4, s, t, u) A(p2, p3, p4, s, t, u)

0 =K̄ (p2, p3, p4, s, t, u) A(p3, p2, p4, u, t, s)

+ L(t, u)

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

(4.23)

as representatives of the set of the CWI, after taking into
account all the symmetry properties of A. They can equiva-
lently be set into the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = K̄ (p2, p3, p4, s, t, u) A(p2, p3, p4, s, t, u)

0 = K̄ (p3, p2, p4, u, t, s) A(p2, p3, p4, s, t, u)

− L(s, t)

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

) (4.24)
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using the symmetry of the correlator.

4.2 Secondary conformal ward identities

The secondary CWI’s for the correlator are first order dif-
ferential equations derived from the coefficients C4i , i =
1, 2, 3 in (4.12) together with Eq. (4.10). Such coefficients
take the forms

C41 =
[

2(p2
3 − p2

2 − t2)

t

∂

∂t
+ 2(p2

4 − p2
2 − u2)

u

∂

∂u

− 4 p2
∂

∂p2
+ 2

p̄2
1

(
d(d − 2)(p2

2 − s2) − 2s2

(d − 1)

)

+ 4�(d − 1) − 2d2 − 3(d − 2)

(d − 1)
− (d − 2)

(d − 1)

(
p2

2 − s2)2

p̄4
1

]

× A(p2, p3, p4, s, t, u)

−
[

2

p̄2
1

(
d(p2

3 − u2) + 2u2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
3 − u2)2

p̄4
1

]

× A(p3, p2, p4, u, t, s)

−
[

2

p̄2
1

(
d(p2

4 − t2) + 2t2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
4 − t2)2

p̄4
1

]

× A(p4, p3, p2, t, s, u) , (4.25)

C42 =
[

2(p2
2 − p2

3 − t2)

t

∂

∂t
+ 2(p2

4 − p2
3 − s2)

s

∂

∂s

− 4 p3
∂

∂p3
+ 2

p̄2
1

(
d(d − 2)(p2

3 − u2) − 2u2

(d − 1)

)

+ 4�(d − 1) − 2d2 − 3(d − 2)

(d − 1)
− (d − 2)

(d − 1)

(
p2

3 − u2)2

p̄4
1

]

× A(p3, p2, p4, u, t, s)

−
[

2

p̄2
1

(
d(p2

2 − s2) + 2s2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
2 − s2)2

p̄4
1

]

× A(p2, p3, p4, s, t, u)

−
[

2

p̄2
1

(
d(p2

4 − t2) + 2t2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
4 − t2)2

p̄4
1

]

× A(p4, p3, p2, t, s, u) (4.26)

and

C43 =
[

2(p2
3 − p2

4 − s2)

s

∂

∂s
+ 2(p2

2 − p2
4 − u2)

u

∂

∂u
− 4 p4

∂

∂p4

+ 2

p̄2
1

(
d(d − 2)(p2

4 − t2) − 2t2

(d − 1)

)

+ 4�(d − 1) − 2d2 − 3(d − 2)

(d − 1)
− (d − 2)

(d − 1)

(
p2

4 − t2
)2

p̄4
1

]

A(p4, p3, p2, t, s, u)

−
[

2

p̄2
1

(
d(p2

3 − u2) + 2u2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
3 − u2)2

p̄4
1

]

A(p3, p2, p4, u, t, s)

C41

C42

C43

P234P23

P24
P34

P34

P34

Fig. 4 Orbits of the secondary CWI’s under permutations

−
[

2

p̄2
1

(
d(p2

2 − s2) + 2s2

(d − 1)

)
+ (d − 2)

(d − 1)
+ (d − 2)

(d − 1)

(p2
2 − s2)2

p̄4
1

]

A(p2, p3, p4, s, t, u) , (4.27)

where here p2
1 is treated as a dependent variable, that is:

p̄2
1 = s2 + t2 + u2 − p2

2 − p2
3 − p2

4. The actions of the oper-
ators enforcing the momentum permutations and the orbits
of the Ci j are illustrated in Fig. 4, where a given equation is
connected by a link if there is a permutation of the momenta
which relates it to a different one.

It is clear from the figure that each single vertex of the
triangle is mapped into itself under a permutation acting on
the opposite edge, showing that there is only one independent
secondary CWI. In particular, we choose as the independent
one C41, which can be re-expressed in the form

L1 A(p2, p3, p4, s, t, u)

− L2 A(p3, p2, p4, u, t, s)

− L2(p3 ↔ p4) A(p4, p3, p2, t, s, u)

= −4d

p̄2
1

〈O(p3 + p4)O(p3)O(p4)〉, (4.28)

where

L1 =
[

2(p2
3 − p2

2 − t2)

t

∂

∂t
+ 2(p2

4 − p2
2 − u2)

u

∂

∂u

− 4 p2
∂

∂p2
+ 2

p̄2
1

(
d(d − 2)(p2

2 − s2) − 2s2

(d − 1)

)

+ 4�(d − 1) − 2d2 − 3(d − 2)

(d − 1)
− (d − 2)

(d − 1)

(
p2

2 − s2)2

p̄4
1

]
(4.29)

L2 =
[

2

p̄2
1

(
d(p2

3 − u2) + 2u2

(d − 1)

)
+ (d − 2)

(d − 1)

+ (d − 2)

(d − 1)

(p2
3 − u2)2

p̄4
1

]
. (4.30)

From (4.28), one can check that the symmetry p3 ↔ p4 is
explicitly manifest.

In general, the role of the secondary WI’s is to reduce the
parameters of the solutions of the primary ones. For instance,
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in the case of 3-point functions, such solutions are determined
from the primary equations modulo few constants, which are
then fixed by the secondary ones. In that case, the right hand
side of the secondary equations will be proportional to 2-
point functions.

The constraints on the primary solutions are obtained by
taking special limits on the left hand side of the equations,
in order to send two external coordinates into coalescence.
This is obtained, for 3-point functions, by taking two of the
external invariant masses large and of unit ratio – p2

3/p
2
2 →

1, for instance – which reduces the correlator to a 2-point
function.

For 4-point functions this limit is far more involved, and
we will be able to say little about it, the crucial point being that
the primary solutions should contain arbitrary function(s), in
this case a single function, as expected from the analysis in
coordinate space, which are not identified in our formulation.

For this reason, we will try to discuss the asymptotic limit
only of the primary solutions, where it is possible to under-
score some specific behaviors of such solutions just by exam-
ining the structure of the equations.

5 The decomposition of the T OOO in the 2 → 2
formulation

In this section we will reconsider the T OOO correlator
〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉 but with a different choice
of the dependent momentum compared to the 1 → 3 case,
which is suitable for the study of a 2 → 2 process.

We choose pμ
4 as the dependent momentum, p̄4

μ =
−pμ

1 −pμ
2 −pμ

3 . Moreover, also the Mandelstam invariant u2,
will be taken as dependent variable ũ2 = −s2 − t2 +∑ p2

i .
We rewrite the decomposition (3.7) in the form

〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= 〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉

+〈tμ1ν1
loc (p1)O(p2)O(p3)O(p̄4)〉, (5.1)

which is symmetric in pμ
2 , pμ

3 , pμ
4 . Furthermore, we require

the parameterization in the t t sector to be symmetric under
the exchange of the indices of the stress–energy tensor
μ1 ↔ ν1. The t t component of the T OOO can then be
parameterized as

〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉 = �
μ1ν1
α1β1

(p1)X
α1β1 , (5.2)

where Xα1β1 is a general rank-2 tensor built out momenta
and Kronecker’s delta’s. There are two equivalent decompo-
sitions of such t t term, that we will present below, but only
one of them allows to obtain simplified expressions of the
primary and secondary CWI’s, which will turn very useful
for our analsysis.

5.1 First decomposition

First, we are going to derive the decomposition of the cor-
relator by choosing as independent momenta pμ

2 , pμ
3 . Terms

that include pμ
1 will be eliminated by the transverse-traceless

projector �
μ1ν1
α1β1

(p1) and therefore will be omitted. We obtain
the parameterization

Xα1β1 = C ′(p1, p2, p3, p4, s, t)p
α1
2 pβ1

2

+C ′′(p1, p2, p3, p4, s, t)p
α1
3 pβ1

3

+C(p1, p2, p3, p4, s, t)p
α1
2 pβ1

3 , (5.3)

expressed in temrs of form factorsC,C ′,C ′′. Now, by impos-
ing all the possible permutations (6 in total) of the momenta
pμ

2 , pμ
3 , pμ

4 , we derive the constraints

C ′(p1, p2, p3, p4, s, t)

= 1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p4, p3, p2, t, s)

)
,

C ′′(p1, p2, p4, p3, s, ũ)

= 1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p2, p4, p3, s, ũ)

)
.

Finally, such t t component takes the form

〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= �

μ1ν1
α1β1

[
1

2

(
C(p1, p2, p3, p4, s, t)

+ C(p1, p4, p3, p2, t, s)
)
pα1

2 pβ1
2

+ 1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p2, p4, p3, s, ũ)

)

× pα1
3 pβ1

3 + C(p1, p2, p3, p4, s, t)p
α1
2 pβ1

3

]
,

(5.4)

expressed in terms of a single form factor which exhibits the
following symmetries

C(p1, p2, p3, p4, s, t) = C(p1, p3, p2, p4, ũ, t),

C(p1, p2, p4, p3, s, ũ) = C(p1, p4, p2, p3, ũ, s)

C(p1, p4, p3, p2, t, s) = C(p1, p3, p4, p2, ũ, s).

(5.5)

5.2 Second decomposition

The second decomposition is obtained by using all the avail-
able momenta. It takes the form

〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉 = �
μ1ν1
α1β1

(p1)X̃
α1β1 , (5.6)

where

X̃α1β1 = F(p1, p2, p3, p4, s, t)p
α1
2 pβ1

3
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+F ′(p1, p2, p3, p4, s, t)p
α1
2 pβ1

4

+F ′′(p1, p2, p3, p4, s, t)p
α1
3 pβ1

4 . (5.7)

Taking into account all the possible permutations, we end up
with the expression

X̃α1β1 = F(p1, p4, p3, p2, t, s)p
α1
3 pβ1

4

+F(p1, p2, p4, p3, s, ũ)pα1
2 pβ1

4

+F(p1, p2, p3, p4, s, t)p
α1
2 pβ1

3 . (5.8)

Our form factor obeys the following symmetries:

F(p1, p3, p4, p2, ũ, s) = F(p1, p4, p3, p2, t, s),

F(p1, p4, p2, p3, ũ, s) = F(p1, p2, p4, p3, s, ũ),

F(p1, p3, p2, p4, ũ, t) = F(p1, p2, p3, p4, s, t).

(5.9)

Now, we can impose momentum conservation on the first
two terms of (5.4). Then comparing with (5.8) and using the
symmetry properties of the previous form factor C in (5.5),
we obtain

F(p1, p2, p3, p4, s, t)

= −1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p2, p4, p3, s, ũ)

)
,

F(p1, p2, p4, p3, s, ũ)

= −1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p4, p3, p2, t, s)

)
,

F(p1, p4, p3, p2, t, s)

= −1

2

(
C(p1, p2, p3, p4, s, t) + C(p1, p2, p4, p3, s, ũ)

)
.

(5.10)

The form factors F andC are related proving the equivalence
between the two parameterizations. However F is the one
which generates CWI’s of a simpler structure.

5.3 Dilatation Ward Identity in the 2 → 2 formulation

In this section we will proceed with the study of the dilatation
WI. Using the form factor F , the full correlator is given by
(5.1) and the exact parameterization of its t t sector takes the
form

〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= �

μ1ν1
α1β1

(p1)
(
F(p1, p4, p3, p2, t, s)p

α1
3 pβ1

4

+ F(p1, p2, p4, p3, s, ũ)pα1
2 pβ1

4

+ F(p1, p2, p3, p4, s, t)p
α1
2 pβ1

3

)
,

(5.11)

while the longitudinal sector is extracted by a contraction
with the longitudinal projector

〈tμ1ν1
loc (p1)O(p2)O(p3)O(p̄4)〉

= �
μ1ν1
α1β1

(p1)〈T α1β1(p1)O(p2)O(p3)O(p̄4)〉 (5.12)

as in our previous analysis of the equations for the 1 →
3. We can express the CWI’ s in terms of 6 invariants of

the four-point function (
√
p2
i = pi , s = √

(p1 + p2)2, t =
√

(p2 + p3)2) by using the chain rules

∂

∂p1μ

= pμ
1

p1

∂

∂p1
− p̄4

μ

p4

∂

∂p4
+ pμ

1 + pμ
2

s

∂

∂s
, (5.13)

∂

∂p2μ

= pμ
2

p2

∂

∂p1
− p̄4

μ

p4

∂

∂p4
+ pμ

1 + pμ
2

s

∂

∂s
+ pμ

2 + pμ
3

t

∂

∂t
,

(5.14)

∂

∂p3μ

= pμ
3

p3

∂

∂p3
− p̄4

μ

p4

∂

∂p4
+ pμ

2 + pμ
3

t

∂

∂t
. (5.15)

Applying the dilatation WI to (5.1) we obtain

[
(�t −3d)−

3∑

i=1

pλ
i

∂

∂pλ
i

]〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉 = 0,

(5.16)

which can be projected using the t t projector �
ρσ
μ1ν1(p1)

obtaining

�ρσ
μ1ν1

(p1)D̂〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉 = 0. (5.17)

Using (5.11) and differentiating by the chain rule (5.15), we
finally obtain the equation
[
(2 + 3d − �t) +

4∑

i=1

pi
∂

∂pi
+ s

∂

∂s
+ t

∂

∂t

]

F(p1, p2, p3, p4, s, t) = 0. (5.18)

The same equation holds also for F(p1, p2, p4, p3, s, ũ),

and F(p1, p4, p3, p2, t, s). The 2 in the first term of the sum
(2 + 3d . . .), defines the tensorial dimension of the form fac-
tor, and counts the number of momenta with which it appears
in the parameterization.

5.4 Special CWI for the 〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉

In this section we repeat the analysis of the 1 → 3 case, with
the new parameterization of the correlator that we have just
derived, by selecting p4 as the dependent momentum. The
action of the special conformal generator, as before, will take
the form

0 = Kκ 〈Tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
= Kκ 〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉

+ Kκ 〈tμ1ν1
loc (p1)O(p2)O(p3)O(p̄4)〉,

(5.19)
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We will focus now on the local part related to tloc.
Using (5.12) we now have to compute

�ρσ
μ1ν1

(p1)Kκ�
μ1ν1
α1β1

〈T α1β1(p1)O(p2)O(p3)O(p̄4)〉, (5.20)

projected on the t t sector. We split our results into the scalar
and the spin part of Kκ . Acting with the projection � we
obtain

�ρσ
μ1ν1

(p1)Kκ
scalar〈tμ1ν1

loc (p1)O(p2)O(p3)O(p̄4)〉

= �ρσ
μ1ν1

(p1)

[
4(�1 − d + 1)

δκμ1δ
ν1
α1 p1,β1

p2
1

+ 4
pκ

1

p2
1

δ
μ1
β1

δν1
α1

]

× 〈T α1β1(p1)O(p2)O(p3)O(p̄4)〉,
(5.21)

and

�ρσ
μ1ν1

(p1)Kκ
α,spin〈tμ1ν1

loc (p1)O(p2)O(p3)O(p̄4)〉

= �ρσ
μ1ν1

(p1)

[
4(d − 1)

δκμ1δ
ν1
α1 p1,β1

p2
1

− 4
pκ

1

p2
1

δ
μ1
β1

δν1
α1

]

× 〈T α1β1(p1)O(p2)O(p3)O(p̄4)〉.
(5.22)

In our results, we have ignored terms that include pμ1
1 , pν1

1
, δμ1ν1 , because we have the freedom to apply a transverse-
traceless projector of the form �

ρσ
μ1ν1(p1) to (5.19), so these

terms will vanish. Adding the scalar and the spin contribu-
tions (and using �1 = d), we get

�
ρσ
μ1ν1 (p1)Kκ 〈tμ1ν1

loc (p1)O(p2)O(p3)O(p̄4)〉

= �
ρσ
μ1ν1 (p1)

(
4d

p2
1

δκμ1 p1 α〈T αν1 (p1)O(p2)O(p3)O(p̄4)〉
)

.

(5.23)

Now, we will apply theKκ operator on the t t part, followed
by contraction with the � projector. We obtain the tensor
equation

�ρσ
μ1ν1

(p1)Kκ 〈tμ1ν1(p1)O(p2)O(p3)O(p̄4)〉
�ρσ

μ1ν1
(p1)

[
pκ

1

(
C̃11 p

μ1
2 pν1

3 + C̃12 p
μ1
2 pν1

4 + C̃13 p
μ1
3 pμ1

4

)

+ pκ
2

(
C̃21 p

μ1
2 pν1

3 + C̃22 p
μ1
2 pν1

4 + C̃23 p
μ1
3 pμ1

4

)

+ pκ
3

(
C̃31 p

μ1
2 pν1

3 + C̃32 p
μ1
2 pν1

4 + C̃33 p
μ1
3 pμ1

4

)

+ δμ1κ
(
C̃41 p

ν1
2 + C̃42 p

ν1
3

)+ δν1κ
(
C̃51 p

μ1
2 + C̃52 p

μ1
3

)]

(5.24)

which will allow us to extract the independent conformal
constraints.

5.5 Primary conformal ward identities

The factors C̃1 j , C̃2 j , C̃3 j are second-order differential equa-
tions involving the form factor F and its various permuta-
tions. We see from (5.19) and (5.24) that the coefficients of
the four-momenta pκ

1 , pκ
2 , pκ

3 are zero. This translates into
the equations

C̃11 = 0, C̃12 = 0, C̃13 = 0,

C̃21 = 0, C̃22 = 0, C̃23 = 0,

C̃31 = 0, C̃32 = 0, C̃33 = 0. (5.25)

These are the primary CWI’s that we have mentioned
before. Below we present the explicit expressions involving
the F(p1, p2, p3, p4, s, t) form factor. The remaining ones,
which are obtained just by permutations of the momenta, can
be found in Appendix B. We obtain

C̃11 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
1

− 1 − d

p1

∂

∂p1

+ 1

s

∂

∂s

(
p4

∂

∂p4
+ p3

∂

∂p3
− p1

∂

∂p1
− p2

∂

∂p2

)

+ d − �

s

∂

∂s
+ p2

3 − p2
2

st

∂2

∂s∂t

]
F(p1, p2, p3, p4, s, t)

+ 2

s

∂F(p1, p4, p3, p2, t, s)

∂s
− 2

s

∂F(p1, p2, p4, p3, s, ũ)

∂s
(5.26)

C̃21 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
2

− d − 2� + 1

p2

∂

∂p2

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p1

∂

∂p1
− p2

∂

∂p2

)

+ � − d − 2

t

∂

∂t
+ d − �

s

∂

∂s

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ p2
4 − p2

2

st

∂2

∂s∂t

]
F(p1, p2, p3, p4, s, t)

+ 2

s

∂F(p1, p4, p3, p2, t, s)

∂s
− 2

s

∂F(p1, p2, p4, p3, s, ũ)

∂s
,

(5.27)

and finally

C̃31 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
3

− d − 2� + 1

p3

∂

∂p3

+ 2

s

∂

∂s
+ p2

1 − p2
2

st

∂2

∂s∂t
+ � − d − 2

t

∂

∂t

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)]
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F(p1, p2, p3, p4, s, t) + 2

s

∂F(p1, p4, p3, p2, t, s)

∂s

− 2

s

∂F(p1, p2, p4, p3, s, ũ)

∂s
. (5.28)

5.6 Secondary conformal ward identities

Since our 4-point function is symmetric in μ1 ↔ ν1, the
terms proportional to δμ1κ and δν1κ given by the coefficients
C̃41 and C̃51 identify a single constraint, as well as C̃42 and
C̃52, and are explicitly given by the factors C̃4 j . They take
the form

C̃41 = Ĝ
(
F(p1, p2, p3, p4, s, t) − F(p1, p4, p3, p2, t, s)

)

+ ÂF(p1, p2, p4, p3, s, ũ),

(5.29)

where

Ĝ = d(s2 + t2 − p2
4 − p2

2 − 2p2
1) + 2�p2

1

p2
1

− t2 + p2
3 − p2

2

t

∂

∂t

+ p2
2 + p2

4 − s2 − t2

p1

∂

∂p1

− s2 + p2
3 − p2

4

s

∂

∂s
− 2p3

∂

∂p3
, (5.30)

and

Â =
(
d(s2 + p2

4 − p2
2 − t2)

p2
1

)
+ t2 + p2

2 − p2
3

t

∂

∂t

+ p2
2 + t2 − p2

4 − s2

p1

∂

∂p1

+ p2
3 − p2

4 − s2

s

∂

∂s
+ 2p2

∂

∂p2
− 2p4

∂

∂p4
. (5.31)

Moreover, we obtain

C̃42 = M̂
(
F(p1, p2, p3, p4, s, t) − F(p1, p2, p4, p3, s, ũ)

)

+ N̂ F(p1, p4, p3, p2, t, s),

(5.32)

where

M̂ =
(

2�p2
1 − d(p2

1 − p2
2 + s2)

p2
1

)
− p2

1 + p2
2 − s2

p1

∂

∂p1

+ p2
3 − p2

2 − t2

t

∂

∂t
− 2p2

∂

p2

(5.33)

and

N̂ =
(
d
(
p2

1 + p2
2 + 2p2

4 − s2 − 2t2
)

p2
1

)
+ t2 + p2

3 − p2
2

t

∂

∂t

− p2
1 + p2

2 + 2p2
4 − s2 − 2t2

p1

∂

∂p1

+ 2(p2
3 − p2

4)

s

∂

∂s
− 2p4

∂

∂p4
+ 2p3

∂

∂p3
.

(5.34)

Combining (2.50) along with (5.23) and (5.24) we obtain
the equations

Ĝ
(
F(p1, p2, p3, p4, s, t) − F(p1, p4, p3, p2, t, s)

)

+ ÂF(p1, p2, p4, p3, s, ũ)

= 4d

p2
1

(
〈O(p1 + p2)O(p3)O(p̄4)〉

− 〈O(p2)O(p3)O(p2 + p3)〉
)
,

(5.35)

and

M̂
(
F(p1, p2, p3, p4, s, t) − F(p1, p2, p4, p3, s, ũ)

)

+ N̂ F(p1, p4, p3, p2, t, s)

= 4d

p2
1

(〈O(p2)O(p1 + p3)O(p̄4)〉

− 〈O(p2)O(p3)O(p2 + p3)〉
)
.

(5.36)

These are the secondary WI’s for the T OOO . The 3-point
function on the right hand side of this equation is uniquely
given by a combination of hypergeometric functions and will
be discussed below.

6 Asymptotics for scalar and dual conformal/conformal
4-point functions

Our goal, from this section on, will be to identify some of
the properties of these primary and secondary equations for
the T OOO , and for this reason it will be compelling to con-
sider first the (OOOO) correlator, which is slightly simpler
compared to the former. Both cases show some similarities,
starting from the fact that they are both characterised by a
single form factor. The structure of the equations is expected
to be similar, and indeed in both cases we will be able to
identify also a similar behaviour in the corresponding form
factors, in some kinematical limits.
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The OOOO , as shown recently [9], allows a specific class
of solutions which are uniquely identified by enlarging the
original conformal symmetry to include a dual conformal
symmetry as well. Indeed, these special solutions are very
useful for studying the hypergeometric structure of the CWI’s
in some asymptotic limits. As we are going to see, hypergeo-
metric solutions of 4-point functions are very special, as one
expects on generic grounds, and the general CWI’s, even in
the scalar case, are not described by hypergeometric systems
related to F4. The only exact statement that can be made con-
cerning the structure of such systems of equations, as we are
going to show, will be that Lauricella functions – i.e. hyper-
geometric functions of three variables – are exact solutions
of all these systems of equations and can be interpreted as
homogeneous (i.e. particular) solutions of such CWI’s for
arbitrary scaling dimensions of the scalar operators.

We start our discussion by recalling that for the OOOO ,
the two CWI’s take the form (general scalar CWI’s) [9]

S1 =
{

∂2

∂p2
2

+ (d − 2�2 + 1)

p2

∂

∂p2
− ∂2

∂p2
4

− (d − 2�4 + 1)

p4

∂

∂p4

+ 1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)

+ �3412

s

∂

∂s

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p1

∂

∂p1
− p4

∂

∂p4

)

+ �1423

t

∂

∂t

+ (p2
2 − p2

4)

st

∂2

∂s∂t

}
�(p1, p2, p3, p4, s, t) = 0 (6.1)

S2 =
{

∂2

∂p2
1

+ (d − 2�1 + 1)

p1

∂

∂p1
− ∂2

∂p2
3

− (d − 2�3 + 1)

p3

∂

∂p3

+ 1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)

+ �3412

s

∂

∂s

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ �1423

t

∂

∂t

+ (p2
1 − p2

3)

st

∂2

∂s∂t

}
�(p1, p2, p3, p4, s, t) = 0. (6.2)

S3 =
{

∂2

∂p2
1

+ (d − 2�1 + 1)

p1

∂

∂p1

− ∂2

∂p2
4

− (d − 2�4 + 1)

p4

∂

∂p4

+ 1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)

+ �3412

s

∂

∂s

+ (p2
2 − p2

3)

st

∂2

∂s∂t

}
�(p1, p2, p3, p4, s, t) = 0 (6.3)

where

�i jkl = �i + � j − �k − �l (6.4)

is a specific combination of the scaling parameters of the
primary scalar operators (O), which plays a special role in
the derivation of the dcc solutions. In [9] the discussion dealt
with two possible cases for the OOOO in which the scaling
combinations in (6.4) vanish: (1) the equal scaling case with
�i = � (i=1,2,3,4) and (2) the case in which two operators
are pairwise of equal scalings. In both cases, the solutions
satisfy the condition of being conformal and dual conformal
invariant.

The vanishing of (6.4) is necessary in order to remove the
∂/∂s and ∂/∂t terms and reduce the three Si ’s to a hyper-
geometric system of equations (D.1). Notice that differently
from the case of 3-point functions, where a similar system
has been identified [3], as shown in Eq. (2.29), the variables
are quartic – rather than quadratic – ratios of the invariants.

In order to derive such a system, which is extracted from
the Si ’s, we need a product ansatz based on a quartic pivot
(s2t2) with variables [4,9]

x = p2
1 p

2
3

s2t2 y = p2
2 p

2
4

s2t2 , (6.5)

and observe that this choice sets automatically to zero the
mixed derivative terms in pi and s and t in Eqs. (6.1),(6.2)
and (6.3). The ansatz for the solution is based on the product
of a function G(x,y) and of powers of x and y – given by (6.5)
– of the form

� ∼ xa ybG(x, y), (6.6)

for suitable a and b, quite similarly to the case of a scalar
3-point function. On any function G(x, y), terms of the form

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
G(x, y) = 0 (6.7)

vanish, if we choose x and y as the quartic ratios (6.5). If we
use the definition of the Ki j operators (2.30), (2.29) and the
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ansatz based onG(x, y) as defined above, the three equations
take the form (intermediate scalar CWI’s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
K24 + (p2

2 − p2
4)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t)

= −
(

�3412

s

∂

∂s
+ �1423

t

∂

∂t

)
�(p1, p2, p3, p4, s, t)

(
K13 + (p2

1 − p2
3)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t)

= −
(

�3412

s

∂

∂s
+ �1423

t

∂

∂t

)
�(p1, p2, p3, p4, s, t)

(
K14 + (p2

2 − p2
3)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t)

= −�3412

s

∂

∂s
�(p1, p2, p3, p4, s, t)

(6.8)

where we have removed all the mixed derivative terms in
(s, p2

i ), (t, p
2
i ), thanks to (6.7). Explicit dcc solutions of this

system of equations are obtained if �i jkl = 0, and the oper-
ators K24 and K13 depend separately on a single scaling
variable, that is if �2 = �4 and �1 = �3. Notice that
this condition is compatible with the vanishing of �3412 and
�1423 and takes to a hypergeometric system of equations,
which are again solved in terms of hypergeometrics of the
variables x and y given in (6.5). In this case we could rewrite
the system in the form (reduced scalar CWI’s)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
K24(�2) + (p2

2 − p2
4)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t) = 0

(
K13(�1) + (p2

1 − p2
3)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t) = 0

(
K14 + (p2

2 − p2
3)

st

∂2

∂s∂t

)
�(p1, p2, p3, p4, s, t) = 0

(6.9)

where the Ki j (�i ) indicates that such operators depend on a
single scaling constant.

It is important to observe that the system (6.9) admits
explicit dcc solutions which are expressed as hypergeometric
functions, or, equivalently, as 3K integrals, but the entire set
of dcc solutions is not just composed of these functions. We
refer to appendix E for few comments on the properties of
such solutions.

Dual conformal symmetry constrains a certain ansatz (the
dual conformal ansatz) to be expressed only in terms of the
two quartic ratios x and y, via a function G(x, y). Functions
G of such ratios will then necessarily satisfy the condition
(6.7), and henceforth the reduced system (6.8).

The solutions of the three constraints in (6.8) of the form
G(x, y), will then characterize the most general set of dcc
solutions for scalar primary operators, of which special cases
are those found in [9] and reported below in Eq. (6.12). The

additional reduction of the system (6.8) to (6.9) obviously,
allows us to work with explicit expressions which are all
related by analytic continuations and therefore describe a
unique solution, as shown in [9]. Therefore, they are opti-
mal for the study of several kinematical limits of the scalar
correlator, that we are now going to investigate.

6.1 Limits for equal scalings and �i jkl = 0

As we have mentioned, the choice �i jkl = 0 is what renders
the system (6.9) a variant of the ordinary hypergeometric
system, which in general takes the form (2.29) and it is solved
by quadratic – rather than quartic – ratios of invariants. Once
this gets reduced to (6.9), as already mentioned, the complete
ansatz for the general solution of such system is constructed
by multiplying the function G(x, y) by the pivot, raised to a
power ns , fixed by the dilatation WI

[
(�t − 3d) −

4∑

i=1

pi
∂

∂pi
− s

∂

∂s
− t

∂

∂t

]
�(p1, p2, p3, p4, s, t) = 0,

(6.10)

with �t denoting the total scaling. If we choose as a pivot
s2t2, the solution indeed will take the form

�(pi , s, t) = (s2t2)ns G(x, y) ns = �t − 3d

4
. (6.11)

Few additional comments are in order concerning the homo-
geneous case (�i jkl = 0) and the system (6.9). We remark
that the third equation of such system is identically satisfied
if the first and the second equations are, which is the case if
an ansatz of type (6.11) is chosen. This is clearly consistent
with the fact the four functionally independent solutions of
an Appell system of equations (for F4) is based only on two
independent equations (D.1).

The solution of the homogeneous system (6.9), as already
mentioned, can be written in terms of 4 Appell functions F4

of the x and y ratios given in (6.5) [9]

〈O(p1)O(p2)O(p3)O(p4)〉 = 2
d
2 −4 C

∑

λ,μ=0,�− d
2

ξ(λ, μ)

[(
s2 t2)�− 3

4 d

(
p2

1 p
2
3

s2t2

)λ (
p2

2 p
2
4

s2t2

)μ

× F4

(
3

4
d − � + λ + μ,

3

4
d − � + λ + μ, 1 − �

+d

2
+ λ, 1 − � + d

2
+ μ,

p2
1 p

2
3

s2t2 ,
p2

2 p
2
4

s2t2

)

+ (s2 u2)�− 3
4 d

(
p2

2 p
2
3

s2u2

)λ (
p2

1 p
2
4

s2u2

)μ

× F4

(
3

4
d − � + λ + μ,

3

4
d − �
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+λ + μ, 1 − � + d

2
+ λ, 1 − � + d

2
+ μ,

p2
2 p

2
3

s2u2 ,
p2

1 p
2
4

s2u2

)

+ (t2 u2)�− 3
4 d

(
p2

1 p
2
2

t2u2

)λ (
p2

3 p
2
4

t2u2

)μ

× F4

(
3

4
d − � + λ + μ,

3

4
d − �

+λ + μ, 1 − � + d

2
+ λ, 1 − � + d

2
+ μ,

p2
1 p

2
2

t2u2 ,
p2

3 p
2
4

t2u2

)]
,

(6.12)

where the coefficients ξ(λ, μ) are explicitly given by

ξ (0, 0) =
[
�

(
3

4
d − �

)]2 [
�

(
� − d

2

)]2

ξ

(
0, � − d

2

)
= ξ

(
� − d

2
, 0

)

=
[
�

(
d

4

)]2
�

(
� − d

2

)
�

(
d

2
− �

)

ξ

(
� − d

2
, � − d

2

)
=
[
�

(
� − d

4

)]2 [
�

(
d

2
− �

)]2
,

(6.13)

which is explicitly symmetric under all the possible permu-
tations of the momenta and it is fixed up to one undetermined
constant C .

As shown in [9], (6.12) can be re-expressed in the form

I d
2 −1{�− d

2 ,�− d
2 ,0}(p1 p3, p2 p4, st)

= (p1 p3)
�− d

2 (p2 p4)
�− d

2

∫ ∞

0
dx x

d
2 −1

K
�− d

2
(p1 p3 x) K�− d

2
(p2 p4 x) K0(st x). (6.14)

i.e. as a 3K integrals of quadratic (p1 p3, st, p2 p4) variables,
which are solutions of a system of the form (D.1) with quartic
ratios x, y. Few technical details are given in appendix (D.1).

6.2 Comparison between the general, the intermediate and
the reduced systems

To address the asymptotic behaviour of this solution of the
general system of Eqs. (6.1), (6.2), (6.3) (the Si constraints)
and compare it with the intermediate (6.8) and the reduced
(6.9) ones, we clearly need to perform a special asymptotic
limit. We can reasonably assume that at large s and t the
general solution of the S′

i s equations decays as ∼ 1/(st)α ,
with α > 0.

Both for the Si and for the intermediate system (6.8), the
action of the derivative operators (1/s)∂/∂s and (1/t)∂/∂t is
suppressed by two additional powers of the kinematic invari-
ant s and t and can reasonably be set to zero asymptotically.

If we neglect such contributions, the equations in (6.8)
turn again into a homogeneous system (6.12) which, how-

ever, is not hypergeometric any longer, nor the third equation
is dependent from the previous two, as found in the �i jkl = 0
case for the reduced system (6.9). Although the three sys-
tems, general intermediate and reduced, look pretty similar
in such limit, we can only safely state that their solutions
have to share the same asymptotic behaviour. This is fixed
by the scaling power ns = �t − 3/4d, extracted from the
dilatation WI in the form

�(p1, p2, p3, p4) ∼ 1

(s2t2)−ns
+ O(1/(s2t2)) (6.15)

which requires that ns be negative.
In the two sections below we will try to characterize the

behaviour of the dcc solution of (6.9) in various limits before
coming back again to the three systems of equations, dis-
cussing some approximate factorised solutions of such equa-
tions.

6.3 IR and equal mass limits of the dcc solutions

The analysis of the infrared or soft limits at small s and t
of the dual conformal solution, with �i jkl = 0, for �i =
�, i = 1, 2, 3, 4 can be discussed using a second version of
the solution given by (6.12), but completely equivalent to it,
obtained by a sequence of analytic continuations [9]

� = C1

{ (
p2

1 p2
3

)�− 3
4 d
[
F4

(
d

4
,

3

4
d − �, 1 ,

d

2
− � + 1 ; s2t2

p2
1 p

2
3

,
p2

2 p
2
4

p2
1 p

2
3

)

+ τ1

(
p2

2 p
2
4

p2
1 p

2
3

)�− d
2

F4

(
� − d

4
,
d

4
, 1 , 1 − d

2
+ � ; s2t2

p2
1 p

2
3

,
p2

2 p
2
4

p2
1 p

2
3

)]

+ (p2
2 p2

3

)�− 3
4 d
[
F4

(
d

4
,

3

4
d − �, 1 ,

d

2
− � + 1 ; s2u2

p2
2 p

2
3

,
p2

1 p
2
4

p2
2 p

2
3

)

+ τ1

(
p2

1 p
2
4

p2
2 p

2
3

)�− d
2

F4

(
� − d

4
,
d

4
, 1 , 1 − d

2
+ � ; s2u2

p2
2 p

2
3

,
p2

1 p
2
4

p2
2 p

2
3
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+ (p2
1 p2

2

)�− 3
4 d
[
F4

(
d

4
,

3

4
d − �, 1 ,

d

2
− � + 1 ; u2t2

p2
1 p

2
2

,
p2

3 p
2
4

p2
1 p

2
2

)

+ τ1

(
p2

3 p
2
4

p2
1 p

2
2

)�− d
2

F4

(
� − d

4
,
d

4
, 1 , 1 − d

2
+ � ; u2t2

p2
1 p

2
2

,
p2

3 p
2
4

p2
1 p

2
2

)]}
.

(6.16)

τ1 = �
(
� − d

4

)
�
(
1 + � − 3

4 d
)
�
(
1 − � + d

2

)

�
(
� − 3

4 d
)
�
(
1 − � + 3

4 d
)
�
(
1 + � − d

2

) (6.17)

From this expression, we can keep t2 fixed and of order
O(p2

i ) and send s2 → 0 to derive the soft behaviour

� ∼ (p2
1 p

2
3)�− 3

4 d + O(s2/p2
i ) (6.18)

if the external mass invariants p2
i are kept larger than the

invariant s2.
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6.4 Equal mass limit with p2
i = M2 > s2, t2

The equal mass limit is obtained by taking p2
i = M2 for all

the external invariants. In this case, using the relation between
F4 and the Gauss hypergeometric F21(a, b, c, x)

F4(α, β, γ, γ ′, x, y)

=
∞∑

m=0

(α)m(β)m

(γ )mm! 2F1(α + m, β + m, γ ′, y)xm (6.19)

and

2F1(a, b, c, 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, (6.20)

from (6.16) we then obtain the simplified expression

� = M4�−3d
∞∑

m=0

1

m!
(

�
( d

2 − � + 1
)
�
(− d

2 − 2m + 1
)
�
( d

4 + m
)
�
( 3d

4 − � + m
)

�
( d

4

)
�(m + 1)�

( 3d
4 − �

)
�
(− d

4 − m + 1
)
�
( d

4 − � − m + 1
)

�
( d

2 − � + 1
)
�
(− 3d

4 + � + 1
)
�
(− d

2 − 2m + 1
)
�
( d

4 + m
)
�
(− d

4 + � + m
)

�
( d

4

)
�(m + 1)�

( 3d
4 − � + 1

)
�
(
δ − 3d

4

)
�
(− d

4 − m + 1
)
�
(− 3d

4 + � − m + 1
)
)

×

×
((

s2t2

M4

)m
+
(
s2u2

M4

)m
+
(
u2t2

M4

)m )

which in d = 4 becomes

� = M4�−3d
∞∑

m=0

1

m!
(

�(−2m − 1)�(−� + m + 3)

�(−m)�(−� − m + 2)

+�(3 − �)�(� − 2)�(−2m − 1)�(� + m − 1)

�(4 − �)�(� − 3)�(−m)�(� − m − 2)

)

×
((

s2t2

M4

)m
+
(
s2u2

M4

)m
+
(
u2t2

M4

)m )

and is convergent as far as M2 � s2, t2. Explicitly (in d = 4)

� = M4�−3d
[
d0 + d1

(
s2t2

M4 + s2u2

M4 + u2t2

M4

)
+ . . .

]
,

(6.21)

where

d0 = 1

2

(
�(� − 1)

�(� − 2)
− �(3 − �)

�(2 − �)

)
(6.22)

and

d1 = 1

12

(
�(4 − �)

�(1 − �)
− �(�)

�(� − 3)

)
. (6.23)

6.5 The equal mass limit with s2, t2 > M2

A similar limit can be performed starting from (6.12). We can
take s2, t2, u2 > M2, which in (6.12) takes to a univariate
expression of F4, F4(a, b, c, c′; x, x). It can be expressed as
a single series in x using the relation

F4(a, b, c, c′; x, x)
= 4F3

(
a, b,

c + c′

2
,
c + c′ − 1

2
| c, c′, c + c′ − 1; 4x

)

(6.24)

due to Burchnall, as reported in [44].
Setting x1 = M4/(s2t2) ∼ M4/(s2u2) ∼ M4/(u2t2)

and choosing, for instance, a scaling dimension of a scalar
operator φ2 (with � = d −2), in d = 4 one obtains a simple
expression for �

� = C

⎛

⎝
log2

(
M4

s2t2

)

s2t2 +
log2

(
M4

s2u2

)

s2u2 +
log2

(
M4

t2u2

)

t2u2

+ π2

3s2t2 + π2

3s2u2 + π2

3t2u2

)
+ O(x2

1 ) (6.25)

and in d = 3

� = C

(
π�
( 1

4

)2

M4
√
s
√
t

+ π�
( 1

4

)2

M4
√
s
√
u

+ π�
( 1

4

)2

M4
√
t
√
u

− 4π�
( 3

4

)2

M2s3/2t3/2 − 4π�
( 3

4

)2

M2s3/2u3/2

− 4π�
( 3

4

)2

M2t3/2u3/2 + π�
( 1

4

)2

4s5/2t5/2
+ π�

( 1
4

)2

4s5/2u5/2

+ π�
( 1

4

)2

4t5/2u5/2

)
+ O(x2

1 )

7 Large s and t limits and the Lauricella system

We have already mentioned that the system of Eqs. (6.1),
(6.2), (6.3) reduces to (6.8) if we choose a combination of
invariants given by (6.5). The system (6.8) turns into hyper-
geometric if �i jkl = 0, with only two independent equations,
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as pointed out above. However, for a generic �i jkl it is pos-
sible to uncover an approximate hypergeometric structure in
the equations only in the large s and t limit, if we neglect the
coupling between the s, t and p2

i invariants. At the same time
we could assume that �i jkl � 1, which allows to drop the
1/s∂/∂s and 1/t∂/∂t terms in the differential operator. This
approximate factorization has been discussed in [9], where it
has been shown to take to a hypergeometric system of Lau-
ricella type in three variables (see Sect. D). This asymptotic
analysis is based on the ansatz

�(p2
1, p

2
2, p2

3, p2
4, s, t) ∼ φ(p2

1, p
2
2, p2

3, p2
4)χ(s, t) (7.1)

and invokes the separability of the asymptotic system (6.8)

K24φ = 0

K13φ = 0

K14φ = 0

1

st

∂2

∂s∂t
χ(s, t) = 0.

(7.2)

The Lauricella system corresponds to the first three equations
of (7.2). Lauricella systems have recently appeared also in
CFT in coordinate space [13]. One can easily realize that they
characterize a homogeneous solution in the variables p2

i of
the entire (complete) system (6.1), (6.2), (6.3) as well as of
(6.8). They are exact solutions of such systems, before an
asymptotic limit. Notice that logarithmic terms of the form
f (1/(s2t2)) logk(s2/t2) (k>0) are also compatible with the
asymptotic structure of such systems, which are generically
expected for scattering at fixed angle in perturbation theory
(see [45] for an example).

7.1 The general primary CWI’s in the 2 → 2 and 1 → 3
formulations for the T OOO and asymptotics

In order to get further insight into the structure of the CWI’s
for the T OOO , we proceed with a rearrangement of their
expressions in order to reduce them to homogeneous equa-
tions, following the same approach of Sect. 6, adopted in
the scalar case. We will proceed by generalizing the CWI’s
for different scalar coefficients from the equal scaling case
presented in Sect. 5.5. For simplicity we set

F ≡ F(p1, p2, p3, p4, s, t), F(p2 ↔ p4)

≡ F(p1, p2, p4, p3, t, s), F(p3 ↔ p4)

≡ F(p1, p4, p2, p3, s, ũ). (7.3)

If we allow for different scaling �i , with �1 = d for the
stress–energy tensor, then the equations given in (5.26)–

(5.28) can be generalized as follows

C̃11 − C̃21 → B1 =
(
K21 + �1423 + 2

t

∂

∂t
− 1

t

∂

∂t

×
(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ p2
3 − p2

4

st

∂2

∂s∂t

)
F(1, 2, 3, 4) = 0.

(7.4)

The other homogeneous equations for F(p1, p2, p3, p4, s
, t) are similarly derived in the form

C̃11 − C̃31 → B2

=
(
K31 + �1423 + 2

t

∂

∂t
+ �1234 − 2

s

∂

∂s

− 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p1

∂

∂p1
− p2

∂

∂p2

)

+ p2
3 − p2

1

st

∂2

∂s∂t

)
F(1, 2, 3, 4) = 0, (7.5)

and

C̃21 − C̃31 → B3

=
(
K32 + �1234 − 2

s

∂

∂s

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p1

∂

∂p1
− p2

∂

∂p2

)
(7.6)

+ p2
4 − p2

1

st

∂2

∂s∂t

)
F(1, 2, 3, 4) = 0. (7.7)

One can show that B1, B2, B3 are not independent, in fact

B1 + B3 = B2, (7.8)

indicating that there are only two independent homogeneous
equations involving the F form factor.

Finally, one has to consider the system of three differential
equations, composed of (B1, B2) together with the analogous
of C̃21, given in (5.27), now for different �i ’s, which can be
written as
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∂p4
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∂p3
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+ 1
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∂p3
+ p4

∂
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∂
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∂

∂s

)
F
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K42 + 1

s

∂
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∂

∂p3
+ p4

∂

∂p4
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∂

∂p1
− p2

∂

∂p2

)

+ 1

t

∂

∂t
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∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
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4 − p2

2
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∂2

∂s∂t

]
F =

(
�1423 + 2

t

∂

∂t
− �1234

s

∂

∂s

)
F

− 2

s

∂

∂s

(
F(p2 ↔ p4) − F(p3 ↔ p4)

)

(
K21 − 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ p2
3 − p2

4

st

∂2

∂s∂t

)
F = −�1423 + 2

t

∂

∂t
F

(7.9)

We will try to extract some information about the structure
of such equations by discussing some possible limits.

In the characterization of the nature of the system we begin
by considering the case in which all the scalings are different
and work our way starting from the left hand side of (7.9).
We have different options. For instance, if we are looking
for factorised solutions such as those discussed in the scalar
case, of the form (7.1), then we could consider the asymp-
totic limit s, t → ∞ and identify the Lauricella component
of such solutions, since the equations above turn homoge-
nous, and the left hand side, exactly as in (7.2), reduces to a
Lauricella system of hypergeometrics (D). This holds inde-
pendently of the values of the scalings �i . On the other hand,
it is possible to identify, at least asymptotically, some hyper-
geometric solutions, different from the Lauricella’s, but we
need to constrain the scaling dimensions in such a way that
the operators K31 and K42 are each characterised by a single
conformal scaling (�4 = �2 and �3 = �1). As discussed
in the previous sections, we can choose as variable the scale
invariant ratios (6.5) for x and y in the ansatz for the solution,
reobtaining the same left hand side of (6.8). This approximate
solutions would again be quite similar to those discussed in
the scalar case. However, in the general case, as we have
already mentioned, even for large s and t , when we keep the
scalings generic, one can show that the left hand side of such
system of equations is not of hypergeometric form, and the
explicit form of such solutions is unknown (Fig. 5).

gμ1ν1

t2

s2

φ(p2)

φ(p3)

φ(p4)

Fig. 5 The T OOO in a kinematical region in which can be described
as a 1 → 3 process

7.2 The 1 → 3 case

It is possible to perform other limits on the same form factor
of the T OOO in order to simplify the primary CWI’s pre-
sented in the previous sections. We are going to focus our
discussion on the 1 → 3 formulation, which is symmetric
in the momenta of the three scalar operators and provides
a clear separation of the parametric dependence of the cor-
relator in terms of a function of the external invariants p2

i
times a function of s, t and u, in analogy with the discussion
presented in the 2 → 2 case.

This kinematic choice is illustrated in Fig. 1.
In order to proceed with the investigation of this limit, it is

convenient to perform an analytic continuation of the CWI’s
to the Minkowski region from their Euclidean definition, and
take all the invariants t2 and u2 and s2 to be positive. The
kinematical region of interest, in this case, is delimited by
the conditions

(p2 + p3)
2 ≤ t2 ≤ (p1 − p4)

2

(p3 + p4)
2 ≤ s2 ≤ (p1 − p2)

2

(p2 + p4)
2 ≤ u2 ≤ (p1 − p3)

2 , (7.10)

with the usual relation

s2 + t2 + u2 = p2
1 + p2

2 + p2
3 + p2

4 . (7.11)

We will be performing the large p1 limit, where the invari-
ant mass of the virtual graviton line gets asymptotically large,
and assume that the invariants s2 ∼ t2 ∼ u2 ∼ p2

1 grow large
with p2

1. In this limit the primary CWI’s simplify, and the
equations become approximately separable in their depen-
dence on the external p2

i (i = 2, 3, 4) and the remaining
(s, t, u) invariants. For this reason we choose asymptotic
solutions of the form

A(p2, p3, p4, s, t, u) ∼ �(p2, p3, p4)χ(s, t, u). (7.12)

We study now the form of the χ(s, t, u). The correspond-
ing equations for the (s, t, u) invariants, from the primary
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conformal WI’s, take the form

∂2χ

∂s∂t
= 0,

∂2χ

∂s∂u
= 0,

∂2χ

∂t∂u
= 0, (7.13)

with the additional constraint imposed by the dilatation Ward
identity. In particular, in this limit, the dilatation WI for the
(s, t, u) invariants takes the form

[
s

∂

∂s
+ t

∂

∂t
+ u

∂

∂u

]
χ(s, t, u) = 0. (7.14)

Notice that the remaining contribution to the dilatation WI
is satisfied separately by the scale invariant condition on
�(p2, p3, p4)
[
p2

∂

∂p2
+ p3

∂

∂p3
+ p4

∂

∂p4

]
�(p2, p3, p4)

= (�t − 3d − 2)�(p2, p3, p4), (7.15)

which takes to generalized hypergeometric F4 solutions,
functions of the ratios p2

2/p2
4 and p2

3/p2
4, as given in (2.32).

The choice of the pivot (p4 in this case) is arbitrary.
By differentiating (7.14) with respect s and using (7.13),

one finds another constraint. Similar constraints are obtained
by repeating the procedure with respect to t and u. The result-
ing three equations obtained in this manner can be written in
the form

[
s

∂2

∂ s2 + ∂

∂s

]
χ(s, t, u) = 0

[
t

∂2

∂ t2 + ∂

∂t

]
χ(s, t, u) = 0

[
u

∂2

∂u2 + ∂

∂u

]
χ(s, t, u) = 0, (7.16)

giving the solution for χ of the form

χ(s, t, u) = c1 log(s) + c2 log(t) + c3 log(u) + c4, (7.17)

where c1, c2, c3, c4 are undetermined constants. Imposing
the dilatation WI on this solution we find some relations
between the undetermined coefficients, with the solution
rewritten in the form

χ(s, t, u) = c1 log
( s
t

)
+ c2 log

(u
t

)
+ c4. (7.18)

Finally, we also impose the symmetry constraint on the form
factor A of the T OOO

A(p2, p4, p3, s, u, t) = A(p2, p3, p4, s, t, u) (7.19)

which implies that

φ(p2, p3, p4)χ(s, t, u) = φ(p2, p4, p3)χ(s, u, t), (7.20)

and recalling that the φ(p2, p3, p4) is symmetric under
the permutation of {p2, p3, p4}, we obtain the condition
χ(s, t, u) = χ(s, u, t) or

(
2c2 + c1

)
log
(u
t

)
= 0. (7.21)

Therefore the χ(s, t, u) function acquires the final form

χ(s, t, u) = c1 log

(
u t

s2

)
+ c4. (7.22)

As we have seen from the last and the previous cursory anal-
ysis of such systems, it is possible to identify an approximate
behaviour of such solutions, in one specific asymptotic limit
in which the invariant s and t get large and of the same size.

In this approximate analysis the only exact statement that
one can make is that Lauricella functions are indeed spe-
cial solutions of such equations, and correspond to particular
solutions of such inhomogeneous systems.

We have been careful to rewrite all the CWI’s for generic
scalings �i , in such as way that the left hand sides of these
systems carry a close resemblance to those of 3-point func-
tions, except for an extra term proportional to a double deriva-
tive in s and t , ∼ 1/(st)∂2/(∂s∂t), which is new for 4-point
functions and absent in 3-point functions.

As we have stressed in the previous sections in the case
of dcc solutions, this term does preserve the hypergeometric
structure of the corresponding equations, although such solu-
tions have little in common with those derived for genuine
3-point functions, for being quartic -rather than quadratic -
ratios of momenta.

The discovery of such solutions may not be accidental in
the context of CFT’s, since in ordinary perturbation theory
similar dependences have been uncovered in the analysis of
ladder diagrams [46]. However, one can easily check, follow-
ing the discussion in [9], that box-like master integrals with
propagators raised to generic powers, cannot be special cases
of such dcc solutions, except for the ordinary box diagram.
On general grounds, one expects that the simplified CWI’s,
which are found in the scalar case for the dcc solutions, are
related to an underlying Yangian symmetry [47], which is
manifesting here in a bosonic, non supersymmetric, context.
In the T OOO such a symmetry, differently from the scalar
case, is violated by the presence of a single stress–energy ten-
sor. It could be restored in tensor correlators characterised by
a single primary operator, such as the J J J J or the T T T T .
We plan to come back to a discussion of this point in the near
future.
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8 Comments and Conclusions

The investigation of the CWI’s of four point functions of a
generic CFT in momentum space in d > 2 is a new challeng-
ing domain of research, with the possibility of establishing a
direct connection with the analysis of scattering amplitudes
in Lagrangian field theories. As in the case of lower point
functions, one could envision several areas where such stud-
ies could find direct physical applications, from cosmology
to condensed matter theory [48,49], due to the interplay, in
the latter case, of quantum anomalies in transport phenom-
ena. These studies need to be accompanied by investigations
of the operator product expansion in the same variables, in
order to develop a bootstrap program, as in coordinate space.

Obviously, while in coordinate space the operatorial
expansion is well-behaved at separate spacetime points, in
momentum space we gather information on such operators
from all the spacetime regions, including those in which the
external coordinates of a correlator coalesce. This makes the
analysis in momentum space more demanding, and we have
to worry about anomalies and address the issue of how to
regulate a given theory.

It is then natural to advance our knowledge in this area
starting from the analysis of simpler correlation functions,
the scalar and the tensor/scalar cases being the first on the
list.

For this reason we have derived the CWI’s for the T OOO
and discussed their relation to those obtained in the case of
4 scalars. In both cases we have discussed their expressions
in various limits, showing the hypergeometric character of
the asymptotic solutions, if certain constraints on the scaling
dimensions are respected.

While, obviously, we do not expect that a given correlator
can be uniquely identified by these equations, neverthless
they constrain quite significantly the structure of the possible
solutions.

As mentioned, in our analysis we have concentrated on
the structure of the equations in several kinematical limits,
in order to gather some information about the behaviour of
the corresponding solutions. In such limits, the differential
operators take a simplified but a still nontrivial form.

The comparison between the T OOO and scalar cases,
allows to uncover some common features of the systems of
equations that they need to satisfy. In this context, of particu-
lar significance are those solutions which are dual conformal
and conformal at the same time (or dcc solutions), which
take a unique expression. Several different ansätze take to
the same hypergeometric form of such solutions, which are
related by analytic continuations, and, as we have shown,
turn useful for their study in specific kinematical limits. For
such a reason they play a strategic role, since they can be
used to investigate the behaviour of scalar 4-point functions
in a rather direct way and allow to underscore some similar-

ities between the CWI’s both in the tensor and in the scalar
contexts.

Specific features of such dcc solutions, extracted in several
asymptotic limits, are expected to provide some indication on
the behaviour of the more general (and unknown) solutions
of the equations satisfied by scalar operators – the OOOO
for instance – for generic scaling dimensions of the primaries
O . Both correlators are characterised by a single form fac-
tors, allowing particular solutions of Lauricella type. This
suggests the presence of a more general underlying hyper-
geometric structure in such systems of equations. It could be
of interest to investigate from a purely mathematical point
of view the structure such equations in order to classify the
structure of such solutions.

Our investigations can be extended in several directions,
for instance to the study of the renormalization of the corre-
sponding form factors, which requires a separate investiga-
tion, as in the case of 3-point functions [50]. There are also
other and quite direct implications of our results and equa-
tions for the analysis of the decomposition of such correla-
tors in terms of CP-symmetric (Polyakov) blocks. Indeed the
CWI’s that we have derived can be applied to constrain the
block decomposition [11]. We hope to address these issues
in a future work.
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A Appendix

We summarize some definitions and relations concerning the
special functions and integrals introduced above. 3K integrals
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can be related to linear combinations of 4 hypergeometric
functions
∫ ∞

0
dx xα−1Kλ(ax)Kμ(bx)Kν(cx)

= 2α−4

cα

[
B(λ, μ) + B(λ,−μ) + B(−λ,μ) + B(−λ,−μ)

]
,

(A.1)

where

B(λ, μ) =
(a
c

)λ
(
b

c

)μ

�

(
α + λ + μ − ν

2

)

× �

(
α + λ + μ + ν

2

)
�(−λ)�(−μ)×

× F4

(
α + λ + μ − ν

2
,
α + λ + μ + ν

2
;

λ + 1, μ + 1; a
2

c2 ,
b2

c2

)
, (A.2)

valid for

Re α > |Re λ| + |Re μ| + |Re ν|, Re (a + b + c) > 0

and the Bessel functions Kν satisfy the equations

∂

∂p

[
pβ Kβ(p x)

] = −x pβ Kβ−1(px)

Kβ+1(x) = Kβ−1(x) + 2β

x
Kβ(x). (A.3)

B Primary conformal ward identities in p̄1

Here we present the explicit expressions of the Primary Con-
formal Ward Identites in the case of p̄1 dependency. The Ci j

are given by

C11 =
[
K2 + p2

3 − p2
4

s t

∂

∂s∂t
− p2

3 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

u

∂

∂u

)

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ 2p2
2 + p2

3 + p2
4 − s2 − t2 − u2

t u

∂

∂t∂u

]

A(p2, p3, p4, s, t, u) = 0 (B.1)

C12 =
[
K2 + p2

3 − p2
4

s t

∂

∂s∂t
− p2

3 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

u

∂

∂u

)

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ 2p2
2 + p2

3 + p2
4 − s2 − t2 − u2

t u

∂

∂t∂u

]

A(p3, p2, p4, u, t, s)

+ 2

t

∂

∂t

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

− 2

u

∂

∂u

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

(B.2)

C13 =
[
K2 + p2

3 − p2
4

s t

∂

∂s∂t
− p2

3 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

u

∂

∂u

)

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ 2p2
2 + p2

3 + p2
4 − s2 − t2 − u2

t u

∂

∂t∂u

]
A(p4, p3, p2, t, s, u)

− 2

t

∂

∂t

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)

+ 2

u

∂

∂u

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)

(B.3)

and

C21 =
[
K3 + p2

2 − p2
4

t u

∂

∂t∂u
− p2

2 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
3 + p2

2 + p2
4 − s2 − t2 − u2

s t

∂

∂s∂t

]
A(p2, p3, p4, s, t, u)

+ 2

t

∂

∂t

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)

− 2

s

∂

∂s

(
A(p2, p3, p4, s, t, u) + A(p3, p2, p4, u, t, s)

)
(B.4)

C22 =
[
K3 + p2

2 − p2
4

t u

∂

∂t∂u
− p2

2 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)
+ (d − �)

(
1

t

∂

∂t
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
3 + p2

2 + p2
4 − s2 − t2 − u2

s t

∂

∂s∂t

]
A(p3, p2, p4, u, t, s)

(B.5)
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C23 =
[
K3 + p2

2 − p2
4

t u

∂

∂t∂u
− p2

2 − p2
4

s u

∂

∂s∂u

+ 1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p4

∂

∂p4

)

+ (d − �)

(
1

t

∂

∂t
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
3 + p2

2 + p2
4 − s2 − t2 − u2

s t

∂

∂s∂t

]
A(p4, p3, p2, t, s, u)

+ 2

s

∂

∂s

(
A(p4, p3, p2, t, s, u) + A(p3, p2, p4, u, t, s)

)

− 2

t

∂

∂t

(
A(p4, p3, p2, t, s, u) + A(p3, p2, p4, u, t, s)

)
(B.6)

and finally

C31 =
[
K4 + p2

2 − p2
3

t u

∂

∂t∂u
− p2

2 − p2
3

s t

∂

∂s∂t

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ (d − �)

(
1

u

∂

∂u
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
4 + p2

2 + p2
3 − s2 − t2 − u2

s u

∂

∂s∂u

]
A(p2, p3, p4, s, t, u)

− 2

s

∂

∂s

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)

+ 2

u

∂

∂u

(
A(p2, p3, p4, s, t, u) + A(p4, p3, p2, t, s, u)

)
(B.7)

C32 =
[
K4 + p2

2 − p2
3

t u

∂

∂t∂u
− p2

2 − p2
3

s t

∂

∂s∂t

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ (d − �)

(
1

u

∂

∂u
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
4 + p2

2 + p2
3 − s2 − t2 − u2

s u

∂

∂s∂u

]
A(p3, p2, p4, u, t, s)

+ 2

s

∂

∂s

(
A(p3, p2, p4, u, t, s) + A(p4, p3, p2, t, s, u)

)

− 2

u

∂

∂u

(
A(p3, p2, p4, u, t, s) + A(p4, p3, p2, t, s, u)

)
(B.8)

C33 =
[
K4 + p2

2 − p2
3

t u

∂

∂t∂u
− p2

2 − p2
3

s t

∂

∂s∂t

+ 1

u

∂

∂u

(
p2

∂

∂p2
− p3

∂

∂p3
+ p4

∂

∂p4

)

+ (d − �)

(
1

u

∂

∂u
+ 1

s

∂

∂s

)

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p2

∂

∂p2

)

+ 2p2
4 + p2

2 + p2
3 − s2 − t2 − u2

s u

∂

∂s∂u

]
A(p4, p3, p2, t, s, u).

(B.9)

C Primary conformal ward identities in p̄4

We present the remaining Primary CWI’s of Sect. 5.5. We
obtain

C̃12 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
1

− 1 − d

p1

∂

∂p1

+ 1

s

∂

∂s

(
p4

∂

∂p4
+ p3

∂

∂p3
− p1

∂

∂p1
− p2

∂

∂p2

)

+ d − � + 2

s

∂

∂s
+ p2

3 − p2
2

st

∂2

∂s∂t

]
F(p1, p4, p3, p2, t, s),

(C.1)

C̃13 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
1

− 1 − d

p1

∂

∂p1

+ 1

s

∂

∂s

(
p4

∂

∂p4
+ p3

∂

∂p3
− p1

∂

∂p1
− p2

∂

∂p2

)

+ d − � − 2

s

∂

∂s
+ p2

3 − p2
2

st

∂2

∂s∂t

]
F(p1, p2, p4, p3, s, ũ),

(C.2)

C̃22 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
2

− d − 2� + 1

p2

∂

∂p2

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p1

∂

∂p1
− p2

∂

∂p2

)

+ � − d

t

∂

∂t
+ d − � + 2

s

∂

∂s
+ 1

t

∂

∂t

(
p1

∂

∂p1

+p4
∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ p2
4 − p2

2

st

∂2

∂s∂t

]
F(p1, p4, p3, p2, t, s)

+ 2

t

∂F(p1, p2, p4, p3, s, ũ)

∂t
− 2

t

∂F(p1, p2, p3, p4, s, t)

∂t
,

(C.3)

C̃23 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
2

− d − 2� + 1

p2

∂

∂p2

+ 1

s

∂

∂s

(
p3

∂

∂p3
+ p4

∂

∂p4
− p1

∂

∂p1
− p2

∂

∂p2

)

+ � − d + 2

t

∂

∂t
+ d − � − 2

s

∂

∂s

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)

+ p2
4 − p2

2

st

∂2

∂s∂t

]
F(p1, p2, p4, p3, s, ũ), (C.4)

C̃32 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
3

− d − 2� + 1

p3

∂

∂p3

+ p2
1 − p2

2

st

∂2

∂s∂t
+ � − d + 2

t

∂

∂t

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)]
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F(p1, p4, p3, p2, t, s), (C.5)

C̃33 =
[

∂2

∂p2
4

+ d − 2� + 1

p4

∂

∂p4
− ∂2

∂p2
3

− d − 2� + 1

p3

∂

∂p3

+ p2
1 − p2

2

st

∂2

∂s∂t
+ � − d

t

∂

∂t

+ 1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
− 2

s

∂

∂s

]

F(p1, p2, p4, p3, t, ũ)

+ 2

s

∂F(p1, p2, p3, p4, s, t)

∂s
− 2

s

∂F(p1, p4, p3, p2, t, s)

∂s

+ 2

t

∂F(p1, p4, p3, p2, t, s)

∂t
− 2

t

∂F(p1, p2, p3, p4, s, t)

∂t
.

(C.6)

D Appendix

D.1 The hypergeometric system from (2.29)

Rewriting (2.29), with quadratic ratios x = q2
1/q2

3 , y =
q2

2/q2
3 for the correlator �(q1, q2, q3) = 〈OOO〉 with scal-

ing dimensions �i = �, i = 1, 2, 3

K13� = 0 K23� = 0,

one obtains the system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x(1 − x) ∂2

∂x2 − y2 ∂2

∂y2 − 2 x y ∂2

∂x∂y + [γ − (α + β + 1)x
]

∂
∂x

−(α + β + 1)y ∂
∂y − α β

]
�(x, y) = 0 ,

[
y(1 − y) ∂2

∂y2 − x2 ∂2

∂x2 − 2 x y ∂2

∂x∂y + [γ ′ − (α + β + 1)y
]

∂
∂y

−(α + β + 1)x ∂
∂x − α β

]
�(x, y) = 0 ,

(D.1)

with parameters α(a, b), β(a, b), γ (a, b), γ ′(a, b) given in
(2.34) and (2.35), which are solved by ansatz of the form
xa ybG(x, y).G is an Appell function of type F4(α, β, γ, γ ′, x, y),
given in (2.26). Both in the case of quadratic or quar-
tic (6.5) ratios, in the variables x and y, the structure of
(D.1) is preserved, with appropriate values of the parame-
ters α(a, b), β(a, b), γ (a, b), γ ′(a, b) and indices a, b.

D.2 The Lauricella system and 4K

In the s, t → ∞ limit the equations for the Ki j operators,
for arbitrary scalings �i , can be organized in the form

K14φ = 0, K24φ = 0, K34φ = 0 (D.2)

where

Ki = ∂2

∂p2
i

+ (d − 2�i + 1)

pi

∂

∂pi
, i = 1, . . . , 4 , (D.3)

Ki j = Ki − K j . (D.4)

One can choose an arbitrary momentum as pivot in the ansatz
for the solution of such system, for instance (x, y, z, p2

4),
where

x = p2
1

p2
4

, y = p2
2

p2
4

, z = p2
3

p2
4

(D.5)

are dimensionless quadratic ratios. The ansatz for the solution
can be taken of the form

φ(p1, p2, p3, p4) = (p2
4)ns xa yb zc F(x, y, z), (D.6)

satisfying the dilatation Ward identity with the condition

ns = �t

2
− 3d

2
�t =

4∑

i=1

�i . (D.7)

With this ansatz the conformal Ward identities takes the form

K14φ =4p�t−3d−2
4 xa yb zc

[
(1 − x)x

∂2

∂x2 − 2x y
∂2

∂x∂y

− y2 ∂2

∂y2 − 2x z
∂2

∂x∂z
− z2 ∂2

∂z2 − 2y z
∂2

∂y∂z

+ (Ax + γ )
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z
+
(
E + G

x

)]

× F(x, y, z) = 0, (D.8)

with

A = �1 + �2 + �3 − 5

2
d − 2(a + b + c) − 1 (D.9a)

E = −1

4

(
3d − �t + 2(a + b + c)

)

(
2d + 2�4 − �t + 2(a + b + c)

)
(D.9b)

G = a

2
(d − 2�1 + 2a) (D.9c)

γ = d

2
− �1 + 2a + 1. (D.9d)

Similar constraints are obtained from the equations K24φ =
0 and K34φ = 0.

The reduction to the hypergeometric form requires that
all the 1/x, 1/y and 1/z terms of the equations vanish. This
implies that the Fuchsian points a, b, c have values

a = 0, �1 − d

2

b = 0, �2 − d

2

c = 0, �3 − d

2
(D.10a)
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and

α(a, b, c) = d + �4 − �t

2
+ a + b + c

β(a, b, c) = 3d

2
− �t

2
+ a + b + c (D.11)

γ (a) = d

2
− �1 + 2a + 1 ,

γ ′(b) = d

2
− �2 + 2b + 1 ,

γ ′′(c) = d

2
− �3 + 2c + 1. (D.12)

With this redefinition of the coefficients, the equations are
then expressed in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x j (1 − x j )
∂2F

∂x2
j

+ ∑
s �= j for r= j

xr
∑

xs
∂2F

∂xr∂xs

+ [γ j − (α + β + 1)x j
] ∂F

∂x j
− (α + β + 1)

∑
k �= j

xk
∂F

∂xk
− α β F = 0

( j = 1, 2, 3)

(D.13)

where we have set γ1 = γ , γ2 = γ ′ and γ3 = γ ′′ and
x1 = x , x2 = y and x3 = z. The system of equations admits
as solutions hypergeometric functions of three variables, the
Lauricella functions, of the form

FC (α, β, γ, γ ′, γ ′′, x, y, z) =
∞∑

m1,m2,m3

× (α)m1+m2+m3(β)m1+m2+m3

(γ )m1(γ
′)m2(γ

′′)m3m1!m2!m3! x
m1 ym2 zm3 . (D.14)

where the Pochhammer symbol (λ)k with an arbitrary λ and k
a positive integer has been defined in (2.27). The convergence
region of this series is defined by the condition

∣∣√x
∣∣+ ∣∣√y

∣∣+ ∣∣√z
∣∣ < 1. (D.15)

The function FC is the generalization of the Appell F4 for
the case of three variables. The system of equations (D.13)
admits 8 independent particular integrals (solutions) listed
below. Finally, the solution for φ can be written as

φ(p2
i ) = p�t−3d

4

∑

a,b

Ci (a,b) x
a ybzc

FC (α(a, b), β(a, b), γ (a, b), γ ′(as, b), γ ′′(a, b), x, y, z) (D.16)

where Ci are arbitrary constants. The sum runs over all the
possible triple (a, b, c) identified in (D.10). Introducing the
4K integral

Iα{β1,β2,β3,β4}(p1, p2, p3, p4)

=
∫ ∞

0
dx xα

4∏

i=1

(pi )
βi Kβi (pi x), (D.17)

the same solution can be re-expressed in the form

φ(p1, p2, p3, p4)

= C I
d−1

{
�1− d

2 ,�2− d
2 ,�3− d

2 ,�4− d
2

}(p1, p2, p3, p4)

=
∫ ∞

0
dx xd−1

4∏

i=1

(pi )
�i− d

2 K
�i− d

2
(pi x), (D.18)

where C is a undetermined constant.

E Appendix

E.1 DCC solutions

Dual conformal/conformal correlators, in the case of scalar
4-point functions (�), are defined by the condition that if we
redefine in momentum space the momentum dependence in
the form

p1 = y12 p2 = y23 p3 = y34 p4 = y41, (E.1)

in the dual variable yi (i=1,2,3,4), with �(pi ) → �(yi ),
such correlators satisfy the same CWI’s as usually defined in
the ordinary variables xi . This condition obviously constrains
the expression of the correlator to take the form (for equal
scalings �)

�(yi ) = 1

y2�
12 y2�

34

h(u(yi ), v(yi )), (E.2)

where the two conformal invariant ratios are given by

u(yi ) = y2
12y

2
34

y2
13y

2
24

v(yi ) = y2
23y

2
41

y2
13y

2
24

, (E.3)

giving the quartic ratios defined in (6.5)

x = p2
1 p

2
3

s2t2 y = p2
2 p

2
4

s2t2 . (E.4)

using the mapping (E.1). At this stage, one can introduce a
dual conformal ansatz in terms of x and y based on (E.2), and
impose the condition that (E.2) is a solution of the ordinary
CWI’s in momentum space. These (dcc) conditions take to an
hypergeometric solution of the form (6.16) or, equivalently,
to (6.12).
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