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Abstract It is indeed remarkable that while charged
anisotropic models with the embedding class one property
are abundant, there are no reports of the physically important
isotropic case despite its simplicity. In fact, the Karmarkar
condition turns out to be the only avenue to generate all such
stellar models algorithmically. The process of determining
exact solutions is almost trivial: either specify the spatial
potential and perform a single integration to obtain the tem-
poral potential or simply select any temporal potential and get
the space potential without any integrations. Then the model
is completely determined and all dynamical quantities may
be calculated. The difficulty lies in ascertaining whether such
models satisfy elementary physical requisites. A number of
physically relevant models are considered though not exhaus-
tively. We prove that conformally flat charged isotropic stars
of embedding class one do not exist. If spacetime admits
conformal symmetries then the space potential must be of
the Finch–Skea type in this context. A general metric ansatz
is stated which contains interesting special cases. The Finch–
Skea special case is shown to be consistent with the expec-
tations of a stellar model while the Vaidya–Tikekar special
case generates a physically viable cosmological fluid. The
case of an isothermal sphere with charge and the Karmarkar
property is examined and is shown to be defective. When
the Karmarkar property is abandoned for isothermal charged
fluids, the spacetimes are necessarily flat.

1 Introduction

Interest in higher dimensional geometry commenced with
the pioneering work of Riemann, Cayley and seminal ideas
of Schlaefli [1] who examined the question of embedding a
lower dimensional Riemannian manifold in a higher dimen-
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sional Euclidean manifold. Essentially this is accomplished
by solving the well known Gauss–Codacci–Ricci equations
(see the Appendix for a brief review). It has been suggested
that higher dimensions which are not observable exist as
topologically curled and have very small value. In 1948
Karmarkar [3] established a necessary condition restricting
components of the Riemann tensor and later a sufficiency
condition was added by Pandey and Sharma [4]. Of rele-
vance to relativistic astrophysics the Karmarkar condition
establishes a direct relationship between the metric potential
functions for spherically symmetric spacetimes. It is known
that spherical metrics are in general class two and any four
dimensional metric may be embedded into a six dimen-
sional Euclidean spacetime, however, the imposing of the
Karmarkar condition allows spherical metrics to be of class
one and embeddable in five dimensional Euclidean space-
times. Taken together with the isotropy of pressure condi-
tion the equations of motion have the unique solutions of the
Schwarzschild interior metric (bounded) or the unbounded
Kohler–Chao [5] solution. Further significant advances in
this area were made by Nash [6] who posed the problem
equivalently as of finding to what extent Riemannian mani-
folds are submanifolds of Euclidean spaces. Nash proved that
every Riemannian manifold can be isometrically embedded
into some Euclidean space for continuously differentiable
(C1) embeddings. He further showed that for analytic embed-
dings or embeddings that are smooth of classCk , 3 ≤ k < ∞
such an isometric embedding is always possible. In 1973
Barnes [7] established that class one perfect fluids are either
conformally flat (such as the Schwarzschild interior), exhibit
geodesic flow or admit a three dimensional group of isome-
tries with two dimensional space-like trajectories.

The natural question that arises is: what importance do
the embedding theorems hold for current investigations in
relativistic astrophysics and cosmology in general. Firstly,
the search for a grand unified theory merging the quantum
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theory with gravitational physics strongly suggests that grav-
itation should incorporate higher dimensions in order to be
compatible with quantum field theory. In addition, in order to
address some shortcomings of general relativity without the
need to resort to exotic matter fields, there are many modified
theories of gravity on the market. Admittedly not all require
higher dimensions. However, brane world [8] ideas, Kaluza–
Klein [9,10] theory and the more recent vigorously pursued
Lovelock gravity [11,12], including its special case Einstein–
Gauss–Bonnet gravity [13–15], all demand extra spacetime
dimensions. Note that Lovelock gravity is a quintessentially
higher dimensional theory which is simply the standard Ein-
stein theory in dimensions less than five. Therefore it is of
immense interest to investigate the embedding prospects of
spacetimes in the context of a variety of matter fields.

Spacetimes with pressure isotropy are of particular sig-
nificance since they have been shown to be reasonable in
describing various physical phenomena such as stars and
cold fluid planets. As remarked above, the isotropic exact
solution of embedding class one is unique and known. How-
ever, when the electromagnetic field is introduced there is
no unique isotropic solution for charged stars of embedding
class one since the field equations are under-determined. It is
already known that no exact solution to the neutral Einstein
field equations can generate a charged stellar model [16].
This point is corroborated by Maurya et al. [17] and Singh et
al. [18]. Our interest lies in detecting new classes of isotropic
spherically symmetric charged fluid distributions which may
be embedded in five dimensional Euclidean space.

It is remarkable that a literature search returned zero
results for isotropic charged spheres of embedding class one.
There are a number of charged isotropic solutions investi-
gated in the literature without the embedding class one prop-
erty. These include the work of Kileba Matondo et al. [19]
with the imposition of conformal symmetry, Prasad et al. [20]
with isotropic solutions of compact stars and the work of Her-
rera and Ponce de León [21] with charged isotropic spheres
admitting a oneparameter group of conformal motions. Sev-
eral authors generating anisotropic models claim that it is triv-
ial to switch off the anistropy thus yielding an isotropic fluid.
This is misleading as the vanishing of anisotropy induces a
further constraint on the metric potentials in addition to the
Karmarkar condition.

There exists a plethora of anisotropic models with electric
charge and with the embedding property. For example, the
reader may consult [22–30]. The introduction of anisotropic
stresses further weakens the mathematical problem as an
extra choice is now available. For example for spherical sym-
metry the equations of motion number four in total but the
number of variables is up to 7 (density, radial pressure, tan-
gential pressure, electrostatic field intensity, proper charge
density, spatial and temporal potentials) for anisotropy and
charge. Even if one imposes the Karmarkar condition there

still remains two prescriptions to be made. Frankly it is possi-
ble to write solutions for such a problem at will without even
having to solve any complicated system of partial differential
equations and dozens of such solutions and their associated
graphical analyses have flooded the literature. Models which
satisfy important physical constraints such as an equation of
state are more likely to be physically relevant. This method
has been used by Bhar et al. [31], Maurya et al. [32–35]
and Singh et al. [36,37] to generate anisotropic solutions of
embedding class 1.

The approach taken in this article is to consider a wide
class of generalised Buchdahl spacetimes which contain a
number of interesting physically reasonable special cases
such as the Schwarzschild interior metric [38], the isother-
mal fluid sphere [39], the Vaidya–Tikekar [40] superdense
stars and the Finch–Skea [41] static star model shown to be
consistent with Walecka’s [42] astrophysical theory. We are
able to present the most general solution however it is given
in terms of elliptic functions. The important special cases
however, have remarkably simple forms worthy of attention.
In addition we also address the coupling of the embedding
problem with the conformal flatness scenario and separately
with the existence of conformal symmetries.

2 Einstein–Maxwell field equations

It is reasonable to assume that the interior of a spherically
symmetric charged star is described by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
(1)

where the functions ν(r) and λ(r) are gravitational potentials
and we specify a co-moving fluid four–velocity field ua =
e−νδ0

a . It has been extensively shown in the literature (for
example see [43]) that the Einstein–Maxwell field equations
are given by the nonlinear system
[
r
(

1 − e−2λ
)]′ = r2ρ + 1

2
r2E2 (2)

−
(

1 − e−2λ
)

+ 2ν′re−2λ = pr2 − 1

2
r2E2 (3)

e−2λ

[
rν′

ν
−rλ′

λ
+r2

(
ν′′−ν′λ′+ν′2)

]
=pr2 + 1

2
E2r2 (4)

r2σ = e−λ
(
r2E

)′
(5)

where ρ is the energy density, p the isotropic particle pres-
sure, E the electric field intensity and σ the proper charge
density. Note that ′ denotes differentiation with respect to the
variable r . The conservation laws T ab;b = 0 generate the
condition

p′ + (ρ + p)ν′ = E

r2

[
r2E

]′
(6)
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which may substitute one of the independent field equations
in the system (2). However since (6) incorporates four phys-
ical quantities, it has limited use. It is convenient to invoke
the following transformations to simplify the field equations:
x = Cr2, Z(x) = e−2λ(r), y2(x) = e2ν(r). With these trans-
formations the Einstein–Maxwell field equations (2) to (5)
may be expressed in the following equivalent form

1 − Z

x
− 2Ż = ρ

C
+ E2

2C
(7)

Z − 1

x
+ 4Z ẏ

y
= p

C
− E2

2C
(8)

4x2Z ÿ + 2x2 Ż ẏ +
(
Ż x − Z + 1 − E2x

C

)
y = 0 (9)

σ 2

C
= 4Z

x

(
x Ė + E

)2
(10)

where dots represent differentiation with respect to x . This
version has the distinct advantage that the equation of pres-
sure isotropy (9) is now linear in one of the potentials y. This
is bound to greatly assist in the process of locating exact
solutions.

The exterior gravitational field for a static, spherically
symmetric charged distribution is governed by the Reissner–
Nordstrom [44,45] solution. The Reissner–Nordstrom exte-
rior line element has the form

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1

dr2

+r2(dθ2 + sin2 θdφ2) (11)

where M and Q are associated with the mass and charge of
the sphere respectively as measured by an observer at spatial
infinity. For the Reissner–Nordstrom solution (11) the radial
electric field is described by

E = Q

r2 (12)

and consequently the proper charge density is σ = 0 in the
exterior by (5). Observe that upon setting Q = 0 in (11)
we regain the exterior Schwarzschild [46] solution. When
the gravitational field is generated by a massless electromag-
netic field, then such an exterior metric is referred to as an
electrovacuum solution.

3 Embedding class one

In order to embed a lower dimensional Riemannian space-
time into a higher dimensional Euclidean one, Karmarkar
[3] established the necessary condition between the met-
ric potentials. These spacetimes are referred to as being of
embedding class 1 and the Riemann tensor components must

obey

R0303 = R0101R2323 + R0113 + R0223

R1212
(13)

with R1212 �= 0 [4]. The Karmarkar condition constrains the
metric potentials according to the relationship

y = A + B
∫ √

1 − Z

Zx
dx (14)

where A and B are arbitrary constants. By specifying a metric
potential Z , we are theoretically able to find a solution for y.
The condition for pressure isotropy remains unchanged and
can be rearranged in the following form

E2

C
= 4x2Z ÿ + x (2x ẏ + y) Ż + y (1 − Z)

xy
(15)

from which we can obtain the electric field intensity E once
Z and y are known.

Revisiting (7), (8) and (10) the remaining dynamical quan-
tities ρ, p and σ assume the forms

ρ

C
= 2y (1 − Z) − 4xy Ż − 4x2Z ÿ − x (2x ẏ + y) Ż − y(Z − 1)

2xy
(16)

p

C
= 2y (Z − 1) + 8x Z ẏ + 4x2Z ÿ + x (2x ẏ + y) Ż + y(Z − 1)

2xy
(17)

σ 2

C
= 4Z

x

(
x Ė + E

)2
. (18)

The exercise of finding suitable metrics for charged perfect
fluids of embedding class 1 reduces to finding Z , y functions
satisfying (14). There is no other reasonable avenue to go
forward but to work with (14) since each of Eqs. (7)–(10)
consists of at least 3 of the dynamical or geometrical vari-
ables. Now given that the model comprises 5 equations in six
unknowns and there remains only one prescription left, it fol-
lows that (14) serves as an algorithm to detect all isotropic
charged spheres of embedding class one. Notice also that
(14) may be differentiated and it is easy to find Z in terms
of y. Now it is trivial to pick any y function to generate an
exact model. Theoretically this is a straight forward exercise,
however, the challenge lies in locating solutions that satisfy
the elementary physical requirements.

4 Embedding and conformal flatness

Conformal flatness is an indication that a spacetime tends to
flatness at spatial infinity and is characterised by the vanish-
ing of the Weyl conformal tensor. In our coordinates, this is
tantamount to the constraint equation

4x2Z ÿ + 2x2 Ż ẏ − (Ż x − Z + 1)y = 0 (19)
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which bears an uncanny resemblance to the isotropy of pres-
sure equation (9) when the electric field E vanishes. Conse-
quently it is simple to deduce that conformal flatness for neu-
tral isotropic spheres is satisfied only by the Schwarzschild
interior metric [16]. However, with the introduction of charge
the situation is different. There still remains one choice to be
made in order to close the system of field equations and a large
number of models may thus be found in general. Imposing
the requirement for the spacetime to be of embedding class
one together with conformal flatness fixes the variables and
a unique solution may be found if it exists. Inserting the Kar-
markar condition (14) into (19) generates the remarkably
simple equation

−2

√
1 − Z

Zx
= A

B
+

∫ √
1 − Z

Zx
dx (20)

after several simplifications. Differentiating Eq. (20) with
respect to x gives

Ż x − Z + 1 = 0 (21)

on rearranging. The general solution to (21) is

Z = 1 + kx (22)

which corresponds to the interior Schwarzschild potential
which corroborates the result of Barnes [7]. Substituting
(22) into (15) gives E = 0 and the charge disappears. So
the embedding requirement and conformal flatness condition
together generate the interior Schwarzschild metric applica-
ble to neutral incompressible spherically symmetric fluids.
Consequently we have proved the

Theorem There exists nonontrivial conformally flat charged
isotropic fluid sphere of embedding class one.

5 Embedding and conformal symmetry

It has long been established that for a spacetime to admit a
one-parameter group of conformal motions then the temporal
metric potential should have the quadratic form e2ν ∼ r2 [47]
which in our scheme may be expressed as

y = ax (23)

for some constant a. With this stipulation the embedding
condition (15) requires that the equation

A + B
∫ √

1 − Z

Zx
= ax (24)

be satisfied. Equation (24) results in the spatial potential

Z = 1

1 + a2

B2 x
(25)

which corresponds to the Finch–Skea potential. This case
will be examined in greater detail later in this article however
it is interesting to note that for a charged isotropic sphere to be
of embedding class one and to admit a one-parameter group
of conformal motions the unique solution is the Finch–Skea
class of spatial potentials. This class of potentials belongs to
a wider class which we propose to study next.

6 A general class of spacetimes

While the relationship (14) admits large classes of solutions
for choices of the metric potentials, we are interested in
those classes which contain important special cases of met-
ric ansatze that have been studied in the literature. Of course
these prescriptions will generate new line elements in view
of the Karmarkar condition. It is already known that exact
solutions of Einstein’s equations cannot model charged stars
as the electric field will always vanish [16].

Consider the spatial metric potential in the form

Z = 1 + ax

1 + bx + cx2 (26)

and the associated temporal potential

y = B

√
ac(1+ax)(b−a+cx)−(a2−ab + c) sinh−1

√
c(1+ax)
ab−a2−c√

a3c
+ A

(27)

with the help of (14). Note that introducing general quadratics
into the numerator and denominator of (26) leads to a solvable
integral but in the form of elliptic functions. These solutions
are not compatible with the process of model building. We
now consider in turn some well known metric prescriptions
and the behavior of their complete geometry and dynamics.

6.1 Isothermal behavior

We commence with the simple prescription of Z being a con-
stant. Aside from the trivial case of k = 1 the general case
does not actually fall into the class of solutions (27). Never-
theless it is simple to generate the solution on its own. The
importance of this selection of a constant space potential lies
in its relation to the isothermal behaviour of static neutral
spheres. By isothermal behaviour we mean that the density
and pressure both obey an inverse square law relation to the
radius of the sphere. By construction such spheres do not rep-
resent isolated spheres but have application to cosmological
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fluids since no surface of vanishing pressure demarcating a
boundary is possible. An additional drawback of such mod-
els is a persistent singularity at the centre of the distribution.
Nevertheless outside of these extremes such fluids have been
thoroughly analysed in the literature [39]. It is also known that
constant spatial potentials generate isothermal fluid spheres
in both regular Einstein theory and also in the generalised ver-
sion Lovelock gravity [48]. However, it is interesting to see if
isothermal behaviour is preserved in view of the embedding
restriction. The stipulation Z = k, for some positive constant
k, in (14) yields

y = A + 2B

√
x (1 − k)

k
(28)

where A and B are arbitrary constants for the temporal poten-
tial. Clearly the interval of validity for a realistic model
reduces to the window 0 < k < 1 from (28). The dynamical
quantities then assume the form

ρ

C
= (k − 1)

(
Akα

√
x + 2Bx

)

2x
(
2B(k − 1)x − Akα

√
x
) (29)

p

C
= A2(k − 1)k + 6ABk2α

√
x + 4B2(k − 1)(4k − 1)x

2x
(
A2k + 4B2(k − 1)x

) (30)

E2

C
= (k − 1)

(
2B(2k − 1)x − Akα

√
x
)

x
(
Akα

√
x − 2B(k − 1)x

) (31)

σ 2

C
= (k − 1)2k2x

(
A3(k − 1)k + 3A2Bk(3k − 2)α

√
x

−2AB2(k − 1)(11k − 6)x − 8B3(k − 1)(2k − 1)xα
√
x
)2 /

(
2B(k − 1)x − Akα

√
x
)5 (

2B(2k − 1)x − Akα
√
x
)

(32)

where we have set α =
√( 1

k − 1
)

for simplicity. What may
be observed is that the solution is not in general isothermal
except when A = 0, in which case ρ and p vary as 1

r2 .
However, A = 0 leads to a constant potential y which is
not physically viable and is indicative of the defective Ein-
stein universe model. Therefore we conclude that the embed-
ding requirement does not guarantee isothermal behaviour
for constant space potentials in general. It is worth noting
that imposing an inverse square fall-off on the density and
pressure fixes the model in the presence of charge and theo-
retically a unique solution exists. We consider this problem
next.

6.2 Isothermal charged fluid without embedding

Using ρ
c = G

x and p
c = H

x for some constants G and H , we
get the resulting equations

1 − Z

x
− 2Ż = G

x
+ E2

2C
(33)

Z − 1

x
+ 4Z ẏ

y
= H

x
− E2

2C
(34)

4x2Z ÿ + 2x2 Ż ẏ + (Ż x − Z + 1)y

2xy
= E2

2C
(35)

which are three independent differential equations uniquely
determining the structure of the isothermal sphere. We can
convert (33) to (35) to an equivalent more transparent system.
Adding (33) and (34) gives

ẏ

y
= 2Ż x + G + H

4x Z
(36)

while (34) and (35) together imply

4x2Z ÿ+ (8x Z + 2x2 Ż)ẏ+ (x Ż + Z − 1 − 2H)y = 0 (37)

and subtracting (33) from (35) gives the equation

4x2Z ÿ + 2x2 Ż ẏ + (5x Ż − Z + 1 + 2G)y = 0. (38)

Now Eqs. (36) to (38) constitute an equivalent set of indepen-
dent equations for the system (33) to (35). Now comparing
(37) and (38) the relationship

ẏ

y
= 2x Ż − Z + 1 + G + H

4x Z
(39)

results. Finally it is evident from (36) and (39) that the only
solution the system admits is

Z = 1 (40)

which is physically unacceptable. From (14) we get y = a
constant. Thus we have a trivial flat spacetime. In other words
we have the

Theorem Electrically charged isotropic static fluid spheres
with isothermal behaviour, that is where density and pressure
both decrease as 1/r2 generate flat spacetimes.

6.3 Geodesic flow

The results above raise the question of whether a constant
temporal potential always gives a flat spacetime. The case
y = a constant corresponds to geodesic flow and from (14)
the space potential is Z = 1 effectively corresponding to
a = b = c = 0 in the ansatz (26). Thus we have a defective
universe model such as was proposed by Einstein. Conversely
Z = 1 gives y = a constant. Thus a nontrivial static geodesic
flow model satisfying the embedding property does not exist.

6.4 Z = 1 + x – the Schwarzschild interior ansatz

Although we have inspected this case already – we check it
for completeness. Settinga = 1,b = c = 0 in (26) gives Z =
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1 + x known to generate the Schwarzschild incompressible
fluid sphere in general relativity. Plugging this into (14) we
get

y = A + 2B
√

1 + x (41)

where A and B are arbitrary constants. But it is known that
the Schwarzschild interior metric cannot be valid for charged
stars as shown by Hansraj et al. [16] since the electric field
vanishes.

6.5 Z = 1
1+x – The Finch–Skea metric ansatz

The extensively studied Finch–Skea [41] stellar model is gen-
erated by the potential choice Z = 1

1+x corresponding to
a = 0, b = 1 and c = 0. The general solution to Eq. (14)
has the remarkably simple form

y = A + Bx (42)

where A and B are arbitrary constants. It is convenient to let
β = A

B , and so the dynamical quantities may be expressed
as

ρ

C
= β(x + 6) + x(x + 8)

2(x + 1)2(β + x)
(43)

and at the centre

( ρ

C

)
0

= 3 (44)

where the subscript 0 is used to denote quantity values at the
stellar centre x = 0. For the pressure

p

C
= (−x2 + 4x + 8) − β(x + 2)

2(x + 1)2(β + x)
(45)

and at the centre

( p

C

)
0

= 8 − 2β

2β
(46)

for x = 0. Positivity of the central pressure demands

0 < β < 4 (47)

as a constraint on β. The electric field intensity is given by

E2

C
= x[β + (x − 2)]

(x + 1)2(β + x)
(48)

and this quantity vanishes at the centre, as expected. The
charge density has the form

(
σ 2

C

)
=

[
β2(x + 3) + 2β(x − 1)(x + 3) + (x − 1)x(x + 4)

]2

(x + 1)5(β + x − 2)(β + x)3
(49)

and at the centre

(
σ 2

C

)

0
= 3

β2 (50)

which is positive for all β values. The expressions for the
energy conditions are given by

ρ − p = β(x + 4) + (
x2 + 2x − 4

)

(x + 1)2(β + x)
(51)

ρ + p = 2(β + (3x + 2))

(x + 1)2(β + x)
(52)

ρ + 3p =
(−x2 + 10x + 12

) − βx

(x + 1)2(β + x)
(53)

and these are all expected to be positive. The square of the
speed of sound index is given by

(
dp

dρ

)
=

−β2(x + 3) − 2β
(
x2 − 5

)
+

(
−x3 + 9x2 + 24x + 8

)

β2(x + 11) + 2β
(
x2 + 12x − 1

) + x2(x + 15)

(54)

and at the centre (x = 0):
(
dp

dρ

)

0
= −3β2 + 10β + 8

11β2 − 2β
(55)

which places a further restriction on β, namely

1.3 < β < 4. (56)

The adiabatic stability index has the form

(
ρ + p

p

)
dp

dρ

= 4(β + 3x + 2)
(
β2(x + 3) + 2β

(
x2 − 5

) + (x(x2 − 9x − 24) − 8)
)

(βx + 2β + x2 − 4x − 8)
(
β2(x + 11) + 2β(x2 + 12x − 1) + x3 + 15x

)

(57)

and at the centre (x = 0):

[(
ρ + p

p

)
dp

dρ

]

0
= 4(β + 2)(3β2 − 10β − 8)

(2β − 8)(11β2 − 2β)
>

4

3
(58)

giving

0.18 < β < 2.52 (59)

as a restriction on β. Finally harmonising all the restrictions
we have established, we obtain the window

1.3 < β < 2.52 (60)
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on β which we will use when choosing suitable constants to
model stars. The mass profile is given by

M =
{

(x + 1)

(
4A3/2

√
B tan−1

(√
Bx

A

)

+
(

3A2 − 12AB + 5B2
)

tan−1 (√
x
))

+√
x(A − B)(A(2x − 3) + B(5 − 2x))

}

÷
[
4(x + 1)(A − B)2

]
(61)

and the compactification expression m
r reduces to

M√
x

=
{

(x + 1)

(
4A3/2

√
B tan−1

(√
Bx

A

)

+
(

3A2 − 12AB + 5B2
)

tan−1 (√
x
))

+√
x(A − B)(A(2x − 3) + B(5 − 2x))

}

÷
[
4
√
x(x + 1)(A − B)2

]
. (62)

Finally, the equation of state expression p
ρ

has the form

p

ρ
= 4(β + 3x + 2)

β(x + 6) + x(x + 8)
− 1 (63)

6.6 Hydrostatic equilibrium and stability

In order to study the balance of forces or state of hydrostatic
equilibrium inherent in this model we analyse the Tolman–
Oppenheimer–Volkoff (TOV) equation

(ρ + p)ν̇ + ṗ − E

x
(x Ė + E) = 0 (64)

obtained from the vanishing covariant divergence of the
energy momentum tensor. This is a statement about the
energy conservation of the system. The gravitational force
is defined as Fg = −(ρ + p)ν̇, the hydrostatic force is given
by Fh = − ṗ and the electrostatic force has the formula
Fe = E

x (x Ė + E). The expressions for these three quantities
are given by

Fg = − 2B(A + B(3x + 2))

(x + 1)2(A + Bx)2 (65)

Fh = −
A2(x + 3) + 2AB

(
x2 − 5

)
+ B2(x((x − 9)x − 24) − 8)

2(x + 1)3(A + Bx)2 (66)

Fe = A2(x + 3) + 2AB(x − 1)(x + 3) + B2(x − 1)x(x + 4)

2(x + 1)3(A + Bx)2 (67)

for our line element. These quantities will be examined with
the aid of plots below.

In the area of stellar structure there are several notions of
stability of the model. For example, the causality criterion is
understood to be a stability test. We shall analyse this in what
follows. The Harrison–Zeldovich–Novikov (HZN) [49,50]
sense of stability demands the inequality

dM(ρ0)

dρ0
≥ 0

be satisfied where M(ρ0) is the mass of a star and ρ0 is the
central energy density. The HZN stability asserts that the
mass increases with the value of the density at the stellar
centre. Defining the mass as M = 1

2C
3
2

∫ ρ0
0 ρ

√
vdv in our

coordinates we obtain the expression

dM(ρ0)

dρ0
=

√
ρ0 (β(6 + ρ0) + ρ0(ρ0 + 8))

2(1 + ρ0)2(β + ρ0)
(68)

for the HZN quantity. Given that β = 2 > 0 and ρ0 ≥ 0
it easily follows that the right hand side of (68) is posi-
tive and the HZN stability condition is satisfied. That is the
mass increases with increasing central density value. Figure 7
below confirms this result. In addition it can be seen that the
ratio of central pressure to central density

p0

ρ0
= 1

3
(69)

satisfies the Zeldovich [51] stability criterion p0
ρ0

< 1 which
essentially follows from the energy conditions. Further the
Chandrasekhar adiabatic stability condition [52–54]
(

ρ + p

p

)
dp

dρ
>

4

3

will be examined with the help of the plots.

6.7 Physical analysis

In the Finch–Skea case, from (43) we see that the density is
always positive. From Eq. (45) it is possible to infer the exis-
tence of a finite boundary p(R) = 0 on account of the exis-
tence of a zero of the numerator. The electric field intensity
and charge density are well behaved functions, decreasing
outwardly from the centre. We now analyse graphical plots of
the dynamical quantities. These plots have been constructed
using parameter values A = 1 and B = 0.5, so β = 2 which
fall within the accepted range shown in (60).

From Figs. 1 and 2 we see that the pressure and density are
both monotonically decreasing, which is expected. We also
note that the pressure cuts the x-axis at x = 3.23, which
determines the radius of the star. The sound speed index
shown in Fig. 3 is less than 1 which confirms the model as
causal. It can be observed from Fig. 4 that all the energy con-
ditions are positive and hence satisfied. The adiabatic index
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Fig. 1 Density ρ versus the
radial variable x
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Fig. 2 Pressure p versus the
radial variable x
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Fig. 3 Square of sound speed
dp
dρ versus the radial variable x
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Fig. 4 Energy conditions
versus the radial variable x
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Fig. 5 Chandrasekhar adiabatic
stability index versus the radial
variable x
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Fig. 6 Mass profile versus the
radial variable x
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Fig. 7 Change in mass dM
dρ0

versus the central density ρ0

0.0 0.5 1.0 1.5 2.0
Central Density

0.2

0.4

0.6

0.8

1.0
Change in Mass

Fig. 8 Compactification versus
the radial variable x
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Fig. 9 Equation of state p
ρ

versus the radial variable x
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Fig. 10 Variation of forces in
TOV-equation versus the radial
variable x

1 2 3 4

Gravitational Force
Hydrostatic Force
Electrostatic Force

Radius

- 2

- 1

1

2

Force

demonstrated in Fig. 5 is positive and is in the accepted range
of being more than 4

3 for the radius of the star. In Fig. 6 we see
that the mass profile appears well behaved as an increasing
function of the radius with a value of M = 1.27 at the radius.
As previously noted the HZN stability quantity is depicted in
Fig. 7 and its positivity is established for this model. The com-
pactification curve displayed in Fig. 8 is a smooth, increasing
function. The equation of state profile against the radial vari-
able in Fig. 9 is almost linear and decreasing. Finally Fig. 10
depicts the balance of forces in the TOV equation and con-
firms that the system is in hydrostatic equilibrium.

The line element for the star at the boundary (r = R) has
the form

ds2 = −
(
A + BCR2

)2
dt2 +

(
1 + CR2

)
dr2

+r2(dθ2 + sin2 θdφ2) (70)

which can be matched with the Reissner–Nordstrom exterior
line element [44,45] shown in (11). This gives

1

1 + CR2 =
(
A + BCR2

)2 = 1 − 2M

R
+ Q2

R2 . (71)

The pressure vanishing at the boundary results in the follow-
ing condition

(
−C2R4 + 4CR2 + 8

)
− A

B

(
CR2 + 2

)
= 0 (72)

from which we can get a relation on the integration constants
as

A = B
(−C2R4 + 4CR2 + 8

)

CR2 + 2
(73)

and using the condition from (71) we are able to write B as

B =
(

1 − 2M

R
+ Q2

R2

) 1
2
[

6 − 4

CR2 + 2

]−1

(74)

which settles the integration constants A and B. We are now
able to proceed to use numerical values to settle the other
constants and find the relevant ratios. From (72) using our
careful selection of A = 1 and B = 0.5 which yielded a
radius at the boundary of R = 3.23, we obtain C = 0.31.
Taking into consideration the radial electric field (12) we get
the following expression

CR2
( A
B + CR2 − 2

)
(
CR2 + 1

)2 ( A
B + CR2

) = Q

R2 (75)

where the numerical values are again used to obtain Q =
1.16. A maximum mass–radius ratio of 0.79 was determined
and this is less than 8

9 as required by Buchdahl [55]. The
Böhmer and Harko [56] upper bound is also satisfied with
a left hand side of 0.19 which is less than the limit 0.79.
The Andréasson [57] limit has also been satisfied, with the
left hand side value of 1.13 being less than the limit of
1.30. Finally, we obtain a mass–charge ratio of 1.09 which is
greater than 1 as demanded by Cooperstock and de la Cruz
[58]. We can now state that this model satisfies all require-
ments for physical viability.

6.8 Vaidya–Tikekar superdense star ansatz

Another interesting case is that proposed by Vaidya and
Tikekar [40] and in our scheme is generated by setting a = 1,
b = 2 and c = 0. It was shown that this model gener-
ates superdense isotropic stars, however, will this be the case
when charge is involved and when the geometric restriction
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of embedding class one is imposed? We shall see that the
answer is negative and that a bounded distribution does not
exist. Instead a cosmological fluid results under the embed-
ding requirement. Using the metric ansatz Z = 1+x

1+2x , the
general solution has the form

y = A + 2B
√
x + 1 (76)

which turns out to be the Schwarzschild interior temporal
potential – see (41). For simplicity, we now set

√
1 + x = u

and we let β = A
B . The dynamical quantities have the form

( ρ

C

)
= β(x + 3)u + (4x + 6)

(2x + 1)2 (βu + 2)
(77)

and at the centre (x = 0):
( ρ

C

)
0

= 3. (78)

The pressure
( p

C

)
= u(4x + 2) − β

(2x + 1)2 (βu + 2)
(79)

should vanish at the radius, giving us the roots

x0 = 1

12

(
3
√

54β2 + 6β

√
3

(
27β2 − 8

) − 8

+ 25/3

3

√
27β2 + 3β

√
3

(
27β2 − 8

) − 4

− 8

⎞
⎟⎟⎠ (80)

x1,2 = 1

24

[(
±i

√
3 − 1

)
3
√

54β2 + 6
√

3
√

β2
(
27β2 − 8

) − 8

∓
2 22/3

(
±1 + i

√
3
)

3

√
27β2 + 3

√
3
√

β2
(
27β2 − 8

) − 4

− 16

⎤
⎥⎥⎦ (81)

consequently, for the real root (80) to be positive it is required
that

β < −2 ∨ β > 2. (82)

Moreover at the centre (x = 0):
( p

C

)
0

= 2 − β

2 + β
(83)

and positivity of the pressure demands

− 2 < β < 2 (84)

which contradicts (82). Immediately we are alerted to the
possibility that the physical requirements for a closed com-
pact object will be violated at some level. The electric field
intensity is given by

E2

C
= 2βux

(2x + 1)2 (βu + 2)
(85)

and this has a 0 value at the centre. The charge density has
the form

(
σ 2

C

)
= 2βu3

(
β2(2x + 3) + β(6x2 + 19x + 12)u + 2(2x2 + 9x + 6)

)2

(2x + 1)5 (βu + 2)5

(86)

which simplifies to
(

σ 2

C

)

0
= 2β

(
3β2 + 12β + 12

)2

(β + 2)5
(87)

at the centre of a charged star. The expressions for the energy
conditions are given by

ρ − p = 2β(x + 2)u + 4

(2x + 1)2 (βu + 2)
(88)

ρ + p = 2βu + 8(x + 1)

(2x + 1)2 (βu + 2)
(89)

ρ + 3p = 2 (8x + 6 − βux)

(2x + 1)2 (βu + 2)
(90)

and these are all expected to be positive.
The speed of sound squared index is given by

(
dp

dρ

)
= β2(2x + 3) + β

(
2x2 + 5x + 4

)
u − 8

(
2x2 + 3x + 1

)

β2(2x + 11) + β
(
10x2 + 53x + 42

)
u + 8

(
2x2 + 7x + 5

) (91)

and is reduced to(
dp

dρ

)

0
= 3β2 + 4β − 8

11β2 + 42β + 40
(92)

at the centre, which places a further restriction on β

β < −2.43 ∨ β > 1.09 (93)

to ensure a subluminal sound speed 0 <
dp
dρ < 1 at x = 0.

The adiabatic stability index given by
(

ρ + p

p

)
dp

dρ

= −u (2βu + 8(x + 1))
(
β2(2x + 3) + uβ(2x2 + 5x + 4) − 8(2x2 + 3x + 1)

)

(u(4x + 2) − β)
(
β2(2x + 11) + uβ(10x2 + 53x + 42) + 8(2x2 + 7x + 5)

)

(94)

evaluates to
[(

ρ + p

p

)
dp

dρ

]

0
= (−2β − 8)

(
3β2 + 4β − 8

)

(2 − β)
(
11β2 + 42β + 40

) >
4

3

(95)

at the centre. This inequality is satisfied provided

− 2.25<β <−2 ∨ −1.81< β < −0.62 ∨ 2 < β < 3.49.

(96)

From our restrictions on β, it is evident that no parameter
space exists that generates a physically viable closed compact
star. Nevertheless the model does display pleasing properties
that may have significance as an unbounded cosmological
fluid. The mass profile is given by
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M =
[

2
√
x

2x + 1

(
A2 − 2B2

) (
A2(8x − 1) + 2AB

u
− 16B2x

)

+ A

B

[
−2

(
A2 − 2B2

)2
log

(
u
√
x + x + u

)

+2A
(

4B2 − A2
)3/2

tan−1

(
2B

√
x√

4B2 − A2

)

−8AB2
√

4B2 − A2 tan−1

(
Au

√
x√

4B2 − A2

)

−4B2
(
A2 − 4B2

)
tan−1 (

u
√
x
)

+√
2AB

(
3A2 − 10B2

)
tan−1

(√
2
√
x
)

+2A3
√

4B2 − A2 tan−1

(
Au

√
x√

4B2 − A2

)]]

÷16
(
A2 − 2B2

)2
(97)

and the compactification expression takes the form

M√
x

=
[

2
√
x

2x + 1

(
A2 − 2B2

)(
A2(8x−1)+2AB

u
−16B2x

)

+ A

B

[
−2

(
A2 − 2B2

)2
log

(
u
√
x + x + u

)

+2A
(

4B2 − A2
)3/2

tan−1
(

2B
√
x√

4B2 − A2

)

−8AB2
√

4B2 − A2 tan−1
(

Au
√
x√

4B2 − A2

)

s −4B2
(
A2 − 4B2

)
tan−1 (

u
√
x
)

+√
2AB

(
3A2 − 10B2

)
tan−1

(√
2
√
x
)

+2A3
√

4B2 − A2 tan−1
(

Au
√
x√

4B2 − A2

)]]

÷16
√
x

(
A2 − 2B2

)2
. (98)

Finally, the ratio p
ρ

given by

p

ρ
= u(4x + 2) − β

u [uβ(x + 3) + (4x + 6)]
. (99)

gives an indication of the equation of state.

6.9 Hydrostatic equilibrium and stability

The components of the TOV equation evaluate to

Fg = −
2B

(
A

(
1

x+1

)3/2 + 4B

)

(2x + 1)2
(
A
√

1
x+1 + 2B

)2
(100)

Fh = −
A2(2x + 3) + AB(x(2x + 5) + 4)

√
1

x+1 − 8B2(x + 1)(2x + 1)

(x + 1)(2x + 1)3
(
A
√

1
x+1 + 2B

)2
(101)

Fe =
A (x+1)−3/2

(
A2(2x+3)+AB(x(6x+19)+12)

√
1

x+1 +2B2(x(2x+9)+6)
)

(2x + 1)3
(
A
√

1
x+1 + 2B

)3

(102)

for this model. We comment on the state of equilibrium of
the model on the basis of the graphical plots below. For
the present model the HZN stability quantity assumes the
form

dM(ρ0)

dρ0
=

√
ρ0

(
β(ρ0 + 3)

√
ρ0 + 1 + (4ρ0 + 6)

)

(2ρ0 + 1)2
(
β
√

ρ0 + 1 + 2
) (103)

which can be seen to be positive by examining Fig. 17.
Observe that we are utilising a negative value for β in this
model hence we depend on the plot to verify the HZN stabil-
ity criterion. Moreover, the ratio of central pressure to central
density is given by

(
p

ρ

)

0
= 0.7

and is below unity as required.

6.10 Physical analysis

We now analyse graphical plots of the dynamical quantities.
These plots have been constructed using parameter values
A = −7 and B = 10 for illustrative purposes. Note that
β = −0.7, which violates the requirement for the existence
of a boundary β < −2 or β > 2. In other words we sacrifice
the boundedness property and consequently the fluid must
have a cosmological application.

Figures 11 and 12 depict that the pressure and density
are both monotonically decreasing, which is expected. We
also note that the pressure is asymptotic hence the model
may be interpreted as a cosmological fluid. The sound speed
index in Fig. 13 is less than 1 which confirms the model as
causal. It can be observed from Fig. 14 that all the energy
conditions are positive and hence satisfied. The adiabatic
index shown in Fig. 15 is positive and is in the accepted
range of being more than 4

3 for the radius of the star. The
mass profile and compactification displayed in Figs. 16 and
18 respectively appears well behaved as increasing func-
tions of the radius. As already noted the rate of change of
mass with respect to the central density shown in Fig. 17 is
always positive and corroborates the HZN stability require-
ment. The equation of state profile demonstrated in Fig. 19
is a smooth and increasing function. Finally Fig. 20 depicts
the balance of the forces for hydrodynamical equilibrium as
expressed in the TOV equation. This model therefore sat-
isfies most requirements for physical viability as a cosmo-
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Fig. 11 Density ρ versus the
radial variable x
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Fig. 12 Pressure p versus the
radial variable x
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logical fluid in view of the absence of a vanishing pressure
surface.

6.11 Other solvable cases

There exists a large number of exact models for charged
isotropic fluid spheres of embedding class 1. We tabulate a
few solutions which ostensibly have no singularities (at least
in the metric) in Table 1 but do not engage in a study of any,
as we have exhibited two simple models that satisfy all or
most physical requirements.

The table contains a small sample of exact solutions with
at least no singularities in the metric. A much wider class
exists for charged spheres of embedding class 1.

7 Discussion

We have considered for the first time in the literature charged
isotropic stars of embedding class one. The analysis boiled
down to nominating one of the gravitational potentials and
establishing the other via the Karmarkar condition for embed-
ding a four dimensional curved spacetime into a 5 dimen-
sional Euclidean spacetime. This process is virtually trivial,
however, the caveat is whether the model would satisfy ele-
mentary conditions demanded of stellar models. To this end
we commenced by analysing physically important geomet-
ric restrictions such as conformal flatness and the existence
of conformal symmetries. In the former case we proved that
no nontrivial conformally flat charged spacetimes of embed-
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Fig. 13 Square of sound speed
dp
dρ versus the radial variable x
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Fig. 14 Energy conditions
versus the radial variable x
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Fig. 15 Chandrasekhar
adiabatic stability index versus
the radial variable x
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Fig. 16 Mass profile versus the
radial variable x
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Fig. 17 Change in mass dM
dρ0

versus the central density ρ0
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Fig. 18 Compactification
versus the radial variable x
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Fig. 19 Equation of state p
ρ

versus the radial variable x
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Fig. 20 Variation of forces in
TOV-equation versus the radial
variable x
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Table 1 Viable metric potentials for embedding class 1 spacetimes

Z y

x A + B
(√

1 − x − tanh−1
√

1 − x
)

1
1+xn A + Bx

n+1
2

1
1+x+x3 A + B

(
x
√
x2 + 1 + sinh−1(x)

)

1
1+x2+x3 A + B

(
(1 + 2x)

√
x(1 + x) − sinh−1 √

x
)

ding class one exist for isotropic spheres. In the latter case,
conformal symmetries were admitted by spacetimes with
a Finch–skea spatial potential. An ansatz of a gravitational
potential was made and the exact solution explicitly found.
This metric contained a number of interesting special cases
such as the Finch–Skea and Vaidya–Tikekar potentials. The
charged Finch–Skea potential of embedding class one gen-
erated an astrophysical model that satisfied all the physical

constraints imposed on it. The Vaidya–Tikekar proposal gen-
erated a fluid model with pleasing physical properties but did
not admit a surface of vanishing pressure required for a bound
model and accordingly has the interpretation of a cosmolog-
ical fluid. While considering our general class of spacetimes
we inspected the case of a charged isothermal fluid sphere of
embedding class one and proved the non-existence of same.
When the embedding property was removed, the fluid was
shown to be flat. Finally we exhibited a set of metrics all of
which satisfy the Karmarkar condition and which generate
charged star models.
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Appendix

We give a very brief explanation of the connection between
the Gauss–Codacci–Ricci equations of surface theory and the
concept of Gaussian curvature which generate the Kamarkar
embedding condition. In Riemannian geometry the problem
of embedding a d-dimensional Riemannian manifold into a
higher dimensional Euclidean space R

N may be reduced to
the solvability of the Gauss–Codacci–Ricci system of nonlin-
ear partial differential equations. Denoting gi j as the metric
tensor, �k

i j as the Christoffel symbols or affine metric con-
nection, Ri jkl as the Riemann tensor, hai j as the coefficients
of the second fundamental form and finally κa

lb as the coef-
ficients of the connection form on the normal bundle, the
Gauss–Codacci–Ricci system may be expressed in the form

haji h
a
kl − haki h

a
jl = Ri jkl

hal j,k − hak j,l + �m
l j h

a
km − �m

kj h
a
lm + κakbh

b
l j − κalbh

b
k j = 0

κalb,k − κakb,l − gmn
(
hamlh

b
kn − hamkh

b
ln

)
+ κakcκ

c
lb − κalcκ

c
kb = 0

(104)

known respectively as the Gauss, Codacci and Ricci equa-
tions and where “,” refers to ordinary partial differentiation
with respect to the relevant index. The equations relate the
components of the intrinsic and extrinsic curvature of the
manifolds. A significant theorem due to Günther [2] asserts
that any smooth d-dimensional compact Riemannian mani-
fold admits a smooth (C∞) isometric embedding in R

N for
N = 1

2 max {d(d + 5), d(d + 3) + 10}. The Riemann tensor
of a d +1 dimensional manifold can be expressed entirely in
terms of the extrinsic curvature of the d- dimensional mani-
folds via the Gauss–Codacci–Ricci equations. In his famous
TheoremaEgregiumGauss proved remarkably that the Gaus-
sian curvature of a surface is an intrinsic invariant, i.e. Gaus-
sian curvature is independent of the embedding. In this con-
text we are embedding into a flat manifold and so its Gaussian
curvature and indeed Riemann tensor vanish. The equations
show that the components of the second fundamental form

and its derivatives along the surface completely classify the
surface up to a Euclidean transformation.

In the work of Kamarkar the vanishing of the Gaussian cur-
vature gives relationship (14) in our coordinates. Of course
at that time the first integration which we are now exploiting
was not known. Additionally Kamarkar utilised the fact that
a four dimensional manifold admits a symmetric tensor bi j
such that

Rhi jk = ±(bhj bik − bi j bhk) (105)

when it is of class one; that is it can be immersed in a 5 dimen-
sional flat manifold. Only 8 of 20 Riemann tensor compo-
nents survive for a spherical line element. Consequently only
the diagonal terms bii and b03 = b30 are nonzero and it may
be deduced that b22 = b11 sin2 θ . Finally on plugging in the
components of bi j into (105) the result (13) emerges.
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