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Abstract The Hawking radiation of static, spherically sym-
metric, asymptotically flat solutions in quadratic gravity is
here scrutinized, in the context of the generalized uncer-
tainty principle (GUP). Near-center and near-horizon Frobe-
nius expansions of these solutions are studied. Their Hawk-
ing thermal spectrum is investigated out of the tunnelling
method and the WKB procedure. Computing the Hawking
flux of these black hole solutions shows that, for small black
holes and for a precise combination of the GUP parameter
and the parameters that govern the gravitational interaction
in quadratic gravity, the black hole luminosity can vanish.
This yields absolutely stable mini black hole remnants in
quadratic gravity.

1 Introduction

Black hole thermodynamics has been occupying a promi-
nent spot in physics in the last five decades, since the
Bekenstein’s conjecture was posed, asserting that black hole
physics has a close relationship with the laws of thermo-
dynamics [1]. Thereafter, Hawking demonstrated that black
holes can indeed radiate, when quantum effects set in [2–4].
The fact that the black hole radiation is purely thermal can
state that black holes do have a well-defined temperature,
being thermodynamical compact objects. There exist diverse
procedures to study the Hawking radiation and the tempera-
ture of a black hole. Among them, the tunnelling method is
a particularly interesting method for calculating black hole
temperature since it provides a dynamical model of the black
hole radiation.

The Hawking evaporation consists of a quantum effect
involving black holes, irrespectively of their masses. It is
usually described via the tunnelling procedure [6–9] in the
WKB semiclassical approximation. In the fermionic sector,
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the Hawking radiation spectrum was studied as the tunnelling
of fermions satisfying the Dirac equation through an event
horizon. The tunnelling method has also been used to cal-
culate the Hawking flux of dark fermions [10,11] across the
event horizon of black hole geometries. This method also
encompasses small black holes, whose masses are of the
order of the Planck scale [12–15].

In this paper, we will scrutinize the Hawking flux of
fermions across the event horizon of black holes that are
solutions of static, spherically symmetric, asymptotically flat
solutions in higher-derivative gravity with quadratic curva-
ture terms, including quantum effects on the fermion dynam-
ics predicted by the generalized uncertainty principle (GUP).
Some seminal works developed relevant aspects of GUP. Ref-
erence [16] studied the GUP in the context of string theory,
black hole physics and doubly special relativity, whereas
bounds on the GUP parameter, based on PLANCK obser-
vations on the cosmic inflation were discussed in Ref. [17].
Besides, Ref. [18] already predicted that GUP effects can
drive black hole remnants, whose Hawking temperature,
Bekenstein entropy, specific heat, emission rate and decay
time were also calculated. GUP corrections to the entropy
and thermodynamical quantities of charged black hole were
derived in Ref. [19], while GUP effects on compact stars were
discussed in Ref. [20]. Besides, an interesting study of GUP
and Lorentz violation was introduced in [21]. Other studies
regarding the GUP and applications were scrutinized in Refs.
[22–27].

One may argue that if the evaporation process has an end,
it will give rise to a remnant black hole. In fact, an s-wave
particle follows a trajectory outwards the black hole, that
is classically forbidden. As a consequence of energy con-
servation, the black hole radius lessens as a function of the
energy of the outgoing particle. This also provides a dynam-
ical model of black hole radiation, since the mass of the
black hole decreases, along the emission process outwards
the event horizon [9]. Similarly, if the Hawking flux is extin-
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guished, leaving a black hole with vanishing quantum lumi-
nosity, then a remnant black hole may be produced. A black
hole remnant consists of a black hole phase that evaporates
under the Hawking radiation, which is either (absolutely)
stable or long lived. The latter is also known as a metastable
remnant [28]. The central concept involving black hole rem-
nants consists of black holes whose size decreases during the
Hawking evaporation process, reaching a minimal length,
possibly near the Planck scale l p at which point the black
hole ceases to evaporate. Notwithstanding the fact that GUP
effects in black hole remnants were already extensively stud-
ied in the literature [28–33], a detailed analysis involving
GUP in higher-derivative gravity is lacking, despite a recent
development [34]. We show, in particular, that the absolutely
stable remnant case is attained for black hole solutions of
quadratic gravity. We will compute higher-derivative correc-
tions to the Hawking flux using the tunnelling method in a
GUP context, governed by the GUP parameter β.

The paper is organized as follows: in Sect. 2, we will
briefly review and discuss the black hole metric solution
arising in higher-derivative gravity. Using the semiclassical
approach of the WKB approximation, the tunnelling rate and
the black hole luminosity will be calculated in Sect. 3, show-
ing that for appropriate parameters of the black hole solution
in higher-derivative gravity the black hole luminosity equals
zero. It yields mini-black hole remnants. Section 4 is then
devoted to the concluding remarks.

2 Static spherically symmetric solutions in
higher-derivative gravity

Motivated by the divergence structure appearing in the quan-
tization of general relativity at one-loop, Stelle came up with
a gravitational theory containing quadratic curvature invari-
ants which turned out to be renormalizable [35], but saddly
suffers from a ghost in its spectrum. Several solutions to the
ghost issue have been proposed [36–39], but no consensus
has been reached so far. The ghost seems to be harmless at
energies below the Planck scale [40], which is the regime
we are mostly interested in this paper. In any case, one can
always project the ghost out by a suitable choice of boundary
conditions [41,42].

The action of quadratic gravity

S =
∫

d4x
√−g

[
1

16πG
R − 2aRμνR

μν +
(
b + 2a

3

)
R2
]

,

(1)

where G denotes the 4D Newton constant, is both renormal-
izable and asymptotically free. In fact, the coefficients of the
quadratic curvature terms vanish asymptotically in the ultra-
violet regime of the theory. The action (1) yields the EOMs

[43]

Bμν = Tμν , (2)

where

Bμν = 1

8πG
Gμν − a�Rμν + 1

3
(a − 3b)∇μ∇νR − 2aRρσ Rμρνσ

+1

4
gμν

[
2aRρσ Rρσ + 2

3
(a + 6b)�R −

(
2a

3
+ b

)
R2
]

+
(

2a

3
+ b

)
RRμν, (3)

forGμν being the Einstein tensor. The tensor (3), whose trace
reads

Bμ
μ = − 1

16πG
R + 6b�R = Tμ

μ , (4)

satisfies the effective field equations

∇νBμν = 0. (5)

When b = 0, corresponding to the Einstein–Weyl theory, the
sign of a can be derived when one linearizes the Minkowski
metric, namely, gμν = ημν + hμν , yielding

− 1
3a�

(
� − 1

16πGa

)
hμν = 0 . (6)

The range a > 0 implies a stable theory, in the sense that
no tachyonic instabilities sets in. In addition, there are mas-
sive spin-2 and spin-0 excitations, respectively with masses
m2

2 = 1
32πGa and m2

0 = 1
96πGb . The former corresponds

to the aforementioned ghost. Hence, one can write Bμ
μ =

6b
(
� − m2

0

)
R [43].

Solutions of the EOM (2) were scrutinized in Ref. [43],
using the Frobenius procedure, with respect to the radial
coordinate, r , to implement indicial equations for the lead-
ing asymptotic behaviour as r → 0. Ref. [44] derived the
leading asymptotic profiles of the temporal and radial metric
coefficients,

ds2 = −A(r) dt2 + B(r) dr2 + r2dθ2 + r2 sin2 θ dφ2 ,

(7)

In fact, one can express

Bμν = diag(Btt (r), Brr (r), Bθθ (r), Bθθ (r) sin2 θ), (8)

whose components are related by the radial component of
(5):

(
Brr
A

)′
+ 2Brr

Ar
+ B ′Brr

2AB
− 2Bθθ

r3 + B ′Btt

2B2 ≡ 0 . (9)
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For any given source, Tμν , the following equations govern
the system,

Btt = 1

2
Ttt , (10a)

Brr = 1

2
Trr . (10b)

Sourceless solutions, corresponding to Tμν = 0, are aimed,
hereon,

Btt = 0 , (11a)

Brr = 0 . (11b)

Solutions of the coupled system (11) can be emulated as the
asymptotic behaviour of solutions to the equations of motion
was analysed near the origin [44]. The temporal and radial
metric components (7) can be then expanded, in Frobenius
series, as

A(r) = anr
n + an+1r

n+1 + an+2r
n+2 + . . . ,

B(r) = bm
(
rm + bm+1r

m+1 + bm+2r
m+2 + . . .

)
, (12)

where an, bm �= 0. Replacing the series (12) into the
EOMs (11)] and analysing the consistent possibilities for the
(m, n) = (1,−1) indexes yields the family of solutions [44].
The corresponding equations can be, therefore, solved order
by order, for the coefficients an, bn . Clearly, some of the coef-
ficients are free parameters, not being possible to determine
them. One example of a free parameter, in B(r), is a scaling
of the temporal coordinate. The family of solutions read

A(r) = ζ

[
1

r
+ α1 + α2r

2 + 1

16
r3
(
α1α2 + α4

1 + α3

)

− 3

40
r4
(
α1

(
α1α2 + α4

1 + α3

))]
, (13)

B(r) = α1r − α2
1r

2 + α3
1r

3 + α3r
4

− 1

16
r5
(
α1

(
3α1α2 + 19α4

1 + 35α3

))
. (14)

The parameter ζ = M/2 in Eq. (13) plays the role of
the Misner–Sharp mass. References [43,44] showed that
the maximum number of integration-constant parameters
that govern this family of solutions comes from the fact
that Eqs. (10a, 10b) consist of a third-order coupled sys-
tem of non-linear ODE for the metric coefficients, having
four free parameters, α1, α2, α3, ζ . As it is an expansion
around r = 0, the metric (13, 14) is trustworthy for the
computation of the Hawking radiation spectrum, as terms in
order beyond O(r6) are totally negligible. The family (13,
14) includes the standard Schwarzschild solution [44], as a
solution of the higher-derivative EOMs. At the origin, the
family of solutions (13, 14) presents a physical singular-
ity, as limr→0 Rμνρσ Rμνρσ ∼ r−6 [43,44]. This family also
includes non-Schwarzschild black holes.

3 Hawking radiation spectrum, flux and black hole
Hawking luminosity

The GUP asserts that �x �p � h̄
2

[
1 + β�p2

]
, for β =

β0/m2
p, being β0 a dimensionless parameter that accounts for

effects of quantum gravity, having the bound |β0| � 1021 [45,
46]. In the GUP apparatus, x j = X j and p j = Pj (1+β p2)

are respectively position and momentum operators, where[
X j , Pk

] = i h̄ δ jk . Given the spacetime metric gi j , it implies
that

gi j p
i p j = h̄2 g jk∂ j∂k

(
2 β h̄2 gpq ∂p∂q − 1

)
. (15)

Given the set {γμ} of gamma matrices in spacetime, satisfy-
ing the Clifford–Dirac relation γ μγ ν + γ νγ μ = 2gμν , the
Dirac equation, governing fermions, with electromagnetic
field Aμ, reads

{
i γμ

[
h̄
(∇μ + �μ

)+ i eAμ

]+ mI4×4
}
ψ(xμ) = 0 , (16)

where �μ = − i
2 ω

ρσ
μ �ρσ , and ω

ρ
μ σ = e ρ

ν eα
σ γν

μα is the spin
connection. Besides, e denotes the electric charge in Eq. (16),
whereas Aμ is the electromagnetic gauge potential. Eq. (15)
can be substituted into Eq. (16), together with the energy
of a particle of mass m and electric charge e on the mass
shell, i h̄ ∂0

[
1 + β

(
p2 + m2

)]
[32]. The Dirac equation then

becomes{
i h̄ γ0∂0 +

[
mI4×4 + γμ

(
i h̄�μ + i h̄2β∂μ − eAμ

)]

×
(

1 + β(h̄2 gpq ∂ p ∂q − m2)
)}

ψ(xμ) = 0 . (17)

The black hole Hawking radiation for fermions can be
computed with the aid of the tunnelling procedure, where
the fermion is assumed to have the following form, without
loss of generality [10]:

� = (ψ1, 0, ψ2, 0)ᵀ e
i
h̄ J (t,r,θ,φ) , (18)

for an action J and wavefunctions ψ1 and ψ2. It is worth
emphasizing that employing the WKB approximation, the
tunnelling probability for a classically forbidden trajectory
of the s-wave outwards the horizon reads � ∝ exp(2ImJ ),
where J is the classical action of the trajectory to lead-
ing order in h̄. When one expands the action in terms of
the particle energy, the Hawking temperature is recovered
at linear order. In fact, for 2I = βE + O(E2), it yields
� ∝ exp(2ImJ ) � exp(βE). This corresponds to the reg-
ular Boltzmann factor for emission at the Hawking tem-
perature, for a particle of energy E , for β = 1/T , where
T is black hole horizon temperature. Higher order terms
regard self-interaction [5]. To compute the black hole temper-
ature linear order expansion suffices. The tunnelling method
makes it possible to calculate the imaginary part of the action
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for the emitted particle. The protocol to be prescribed con-
sists of assuming a Hamilton–Jacobi-like ansatz that regards
spin-1/2 fermions. From the symmetries of the metric that
describes the black hole geometry, the form of the action,
J , will be chosen by an appropriate ansatz. This procedure
is based on applying the WKB approximation to the Dirac
equation (17), corrected by GUP effects, that governs spin-
1/2 fermions. The metric (7) yields the tetrads

e α
μ = diag

[√
A(r),

√
B(r), r, r sin θ

]
. (19)

Since the method for computing the tunnelling rate is
representation-independent, the one used hereon is more
appropriate, for γ5 = iγ0γ1γ2γ3, where the σi denote the
Pauli matrices:

γt = −i
√
A(r)γ5, γθ = r

(O σ1

σ1 O
)

, γr

= √B(r)

(O σ3

σ3 O
)

,

γφ = r sin θ

(O σ2

σ2 O
)

. (20)

Equations (18, 20) replaced in the GUP-corrected Dirac
equation, (17), yields the following EOMs, using the WKB
regime to order in h̄:

ψ1

{
i√
A

[
J̇ − eAt

(
1 − β(m2 + κ)

)]

−m
(

1 − β(m2 − κ)
)}

= ψ2

(
1 − β(m2 − κ)

) J ′
√
B

,

(21)

ψ2

{
i√
A

[
J̇ + eAt

(
1 − β(m2 + κ)

)]

+m
(

1 − β(m2 − κ)
)}

= −ψ1

(
1 − β(m2 − κ)

) J ′
√
B

,

(22)(
1 − β(m2 + κ)

)( ∂

∂θ
+ i

sin θ

∂

∂φ

)
J = 0 , (23)

with J ′ = ∂ J
∂r , J̇ = ∂ J

∂t , and

κ = B J ′2 + 1

r2

(
∂ J

∂θ

)2

+ 1

r2 sin2 θ

(
∂ J

∂φ

)2

. (24)

Expressing the action as

J = −ω t + w(r) + Θ(φ, θ) , (25)

with ω denoting the energy of the emitted fermionic spec-
trum, the tunnelling rate will be then computed [6,7,30].

Substituting Eq. (25) in Eq. (23) yields

(
∂Θ

∂θ
+ i

sin θ

∂Θ

∂φ

)[
β

(
B (w′)2 + 1

r2

(
∂Θ

∂θ

)2

+ 1

r2 sin2 θ

(
∂Θ

∂φ

)2

+ m2

)
− 1

]
= 0. (26)

As the part of the equation, that is in the inner side of the
square brackets, will be not identically null, one must have

(
∂

∂θ
+ i

sin θ

∂

∂φ

)
Θ = 0. (27)

This means that the Θ function will not contribute for the tun-
nelling process. Now, replacing Eqs. (25, 27) into Eqs. (21,
22), yields

ξ0 + ξ1w
′2 + ξ2w

′4 + ξ3w
′6 = 0 , (28)

where

ξ0 = −
[
e2A2

t + m2 A
] (

1 − βm2
)2

+2 ω eAt

(
1 − βm2

)
− ω2 , (29a)

ξ1 = β

B

{
A
(

1 − β2 m4
)

+ 2 eAt

[
eAt

(
1 − βm2

)
− ω

]}
,

(29b)

ξ2 = A
(

2 − βm2
)

− β2

B2 e
2A2

t , (29c)

ξ3 = β2 A

B3 . (29d)

In what follows the scaling ζ 
→ ζ
mp

, α1 
→ α1mp,

α2 
→ α2m3
p and α4 
→ α4m4

p is more illustrative and will
be adopted.

Let us denote by w± the corresponding motion away from
(+) and toward (−) the black hole horizon. The ± cases
correspond to outgoing/incoming solutions of the same spin.
Note that neither of these cases is an antiparticle solution
since we assumed positive frequency modes as a part of the
ansatz. In computing the imaginary part of the action, both
Θ and w± are, in general, complex functions. Therefore,
they will contribute for the emission probability, �, defined
to be the probability of outward scattering-to-probability of
inward scattering ratio.

Solving Eq. (28) on the event horizon yields the imaginary
part of the action,

Imw±(r) = ±π

4

r2+ ω (1 + β�)

r+ − χ r−
, (30)
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where

χ =
2ζ
(

3 ζ 3/m3
p + ζ/mp

)

m5
p

(
5ζα2

1α2 + α3

) (
ζ

2mp
+ gα

) , (31a)

� = 3

2
m2 + e m2 At

ω − eAt

−
12 e2 Atm6

p

(
2(ζ 4α3

1α2α3) + 3α5
1α2

2

)

ζm11
p + 8ζ 2α4

1α2
2α3 + 9m3

pζα3
1α2α3

+ ζω

ζ/mp + gα
,

(31b)

for

gα = 2

m16
p

ζ 4α6
1α2

2α2
3 + 4

m8
p
ζ 2α3

1α2α3

+
[(

α2
1m

2
pr
(

15α2m
3
pr

3 + 32
)

+ 95α5
1m

5
pr

4

+α1mp

(
175α3m

4
pr

4 − 16
)

− 64α3m
4
pr

3

−48α3
1m

3
pr

2
) (

r3
(

3r
(
α1α2 + α4

1 + α3

)
m4

p

× (
8α1mpr − 5

)− 160α2m
3
p

)
+ 80

)]1/2 ∣∣
r=r+

(32)

and

r± = − 4α2

α3mp
± √

2

√√√√ 8α2
2

α2
3m

2
p

+ fα2,α3

32/3α3m4
p

+ 1
3
√

3 fα2,α3

+1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

256α3
2

α3
3

√√√√√
4α2

2
α2

3m
2
p

+
3√3α3m4

p+ f 2
α2,α3

6α3m4
p

3

√
12α2

2m
6
p+
√

144α4
2m

12
p − α3

3
3

− 128α2
2

α2
3m

2
p

+ 8 fα2,α3

32/3α3
+ 8

3
√

3 fα2,α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Eq. (33) is displayed for α1 = 0, where fα2,α3 =
3

√
36α2

2m
6
p +

√
1296α4

2m
8
p − 3α3

3m
12
p . For α1 �= 0, the gen-

eral solution, having dozens of pages, is opted not to be dis-
played here.

Thus, the tunnelling rate of fermions reads

� � e−2ImΘ−2Imw+

e−2ImΘ−2Imw− � exp

[
−8 π M (1 + β �) ω

m2
p

]
.

(34)

As ζ = M/2 in Eq. (13), in particular for Schwarzschild-
like black holes, the tunnelling rate (34) has the proper form

� = exp

(
− 8 π Mω

m2
p

)
when no GUP effects are considered,

i.e., when β → 0.

Fig. 1 Hawking radiation spectrum � (normalized by the ζ
α3

ratio)
with respect to both ω and the black hole mass M = ζ/2 (in powers of
mp), for β0 = 105 and α1 = α2 = 1

In what follows, for the sake of simplicity, one takes At =
0 and express

β� = β0

(
3m2

2m2
p

+ ζω

ζ/mp + gα

)
. (35)

The tunnelling rate of evaporation, �, is plotted in Figs. 1, 2,
3, 4 and 5 for various cases.

Taking into account that ω ∼ m2
p/ζ , the tunnelling rate

of evaporation (34) can be written as the Boltzmann term
� = exp (−ω/T ), where

T = m2
p

4 π ζ (1 + β�)
. (36)

It is worth emphasizing that

T0 = h̄

4 π

[√
A′(r)(B−1)′(r)

]
r=r±

= m2
p

64
√

5πζ
+
[(

α2
1m

2
pr
(

15α2m
3
pr

3 + 32
)

+ 95α5
1m

5
pr

4

+α1mp

(
175α3m

4
pr

4 − 16
)

− 64α3m
4
pr

3
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Fig. 2 Hawking radiation spectrum � (normalized by the ζ
α3

ratio),
with respect to both ω and the black hole mass M = ζ/2 (in powers of
mp), for β0 = 0 = α1 = α2

Fig. 3 Boltzmann factor, with respect to both ω and the fermion mass
m, for β0 = 105 and α1 = α2 = 1

−48α3
1m

3
pr

2
) (

r3
(

3r
(
α1α2 + α4

1 + α3

)
m4

p

× (8α1mpr − 5
)− 160α2m

3
p

)
+ 80

)]1/2 ∣∣
r=r+ (37)

is the Hawking temperature of the black hole (13, 14),
obtained with the tunnelling method [8]. The tunnelling
rate (34), thus, coincides to the Hawking standard one for
black holes with a sufficiently large mass, M = ζ/2, such
that the GUP correction is insignificant.

When the black hole mass is near the Planck scale, the �

function (31b) depends on ω ∼ M = ζ/2 ∼ mp. In this
regime, the fermion mass is clearly negligible. For particles
emitted in a wave mode labelled by energy ω and �, the prob-
ability for a black hole to emit a particle is equal to exp

(−ω
T

)
times the probability for a black hole to absorb a particle in
the same mode, where T is the black hole temperature. Bal-
ance condition demands that the ratio of the probability of
having N particles in a particular mode to the probability of

Fig. 4 Hawking radiation spectrum � (normalized by the ζ
α3

ratio),
with respect to both ω and the fermion mass m, for β0 = 0 = α1 = α2

Fig. 5 Hawking radiation spectrum � (normalized by the ζ
α3

ratio),
with respect to both ω and β0, for α1 = α2 = 0.1

having N−1 particles in the same mode is exp
(−ω

T

)
. Hence,

the average number n�(ω) in the mode n�(ω) = n
(

ω
T

)
can

be derived, where n (x) = 1
exp x+1 , for fermions. Ref. [47]

counted the number of modes, per frequency range, with peri-
odic boundary conditions, around a black hole. The expected
number emitted per mode n�(ω), to the average emission rate
per frequency range, reads

dn�(ω)

dt
= n�(ω)

∂ω

∂pr

dpr
2π h̄

= n�(ω)
dω

2π h̄
, (38)

where ∂ω
∂pr

is the radial velocity of the particle, whereas the
number of modes in the range (pr , pr + dpr ) is given by
dpr
2π h̄ , where pr = ∂ J

∂r is the radial wavevector.
Besides, also the temperature is dependent on ω ∼ mp. To

carry out this dependence, let us consider Hawking fermions
of energy ω in some given mode �. Their emission probability
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can be described by the rate �(ω) = e−ω/T (ω), up to a factor
that encodes the absorption probability of the fermions by
the black hole. To quantify this reasoning, one denotes the
average number of fermions carried by each � mode, n�(ω) =
(1 + exp(ω/T ))−1 = �(ω)

1+�(ω)
. Since each particle carries off

the energy ω, the total luminosity is obtained from dn�(ω)
dt by

multiplying by the energy ω and summing up over all energy
ω and �,

L = 1

2π h̄

∞∑
�=0

(2� + 1)

∫ ∞

0
ωn�(ω)dω. (39)

However, some of the radiation emitted by the horizon might
not be able to reach the asymptotic region. One needs to con-
sider the greybody factor |G� (ω)|2, where G� (ω) represents
the transmission coefficient of the black hole barrier which in
general can depend on the energy ω and angular momentum
l of the particle. Therefore, black hole luminosity reads

L = 1

2π h̄

∞∑
�=0

(2� + 1)

∫ ∞

0
ω n�(ω) |G� (ω)|2 dω , (40)

where G� (ω) denotes the grey-body factors. For small black
holes, when m2

p/M  ω, in the continuum limit, the lumi-
nosity reads

L = T 4 ζ 2

2πmp lp

∫ ∞

0

(
ω

T (ω)

)3

d

(
ω

T (ω)

)∫
0
n

×
[

ω

T (ω)

(
1 + � (� + 1)m6

p

16 π2 ω T (ω) ζ 4

)]
d

(
�(� + 1)

ζ 2 ω2

)
.

(41)

Modelling the black hole by a sphere introduces an upper
bound on the absorbed � modes, given by �(� + 1)m4

p �
27
4 ζ 2 ω2 [29], as the � modes beyond this range will not con-

stitute the absorption spectrum of the black hole.
Applying the metric (7) with coefficients (13, 14), for M �

mp, the flux is given by

L(ζ, β0,m) �
π m3

p

2 l p ζ 2

[
1 + α2

1(α1α2 − α3)

α2
1α3 − α2

2

]

+ β0
mp

lp

(
π m2

p

2 ζ 2gα
− ζ − 6mp

18 (α1α2 + α3) 8mp
Fα

)
,

(42)

where

Fα = 2 3
√

2α6
1m

7
p

6
√

α2 (α1α2 + α3) 2m9
p

(
4α9

1 + 243α2(α
2
2α2

1 + 2α2α3α1 + α2
3)
)

−243α2m
11
p (α2

2α2
1 + 2α2α3α1 − α2

3) − 2α9
1m

9
p − 2α3

1m
3
p

+22/3m21/2
p

[√
α2 (α1α2 + α3) 2

(
4α9

1 + 243α2(α
2
2α2

1 + 2α2α3α
2
1 + α2

3)
)

−2α9
1m

9
p − 243m8

p(α
3
2α2

1 + α2
3)
]1/3

(43)

The black hole evaporation rate Ṁ � −L , with regards to
the radiation flux (42), leads to the Hawking temperature for
β0 = 0 and vanishes for a certain value M = M0.

Before proceeding to the determination of black hole rem-
nants, it is important to realize that the parameters,α1, α2, α3,

in the metric coefficients (13, 14) are (a priori) free, as
integration-constant parameters that govern the family of
solutions of Eqs. (10a, 10b). However, to shed new light on
physical aspects of these solutions, one can constrain the
parameters α1, α2, α3. In fact, one can implement, for exam-
ple, the classical tests of GR in the Solar system, further prob-
ing physical constraints on these free parameters. Hence, the
perihelion precession of Mercury, the deflection of light by
the Sun and the radar echo delay observations, consisting of
well known tests for several solutions in GR, can be here
applied in the context of the metric coefficients (13, 14), to
observationally and experimentally constrain the free param-
eters. Considering the light speed c = 2.998 × 108 m/s, the
Solar mass M� = 1.989×1030 kg, let one regards the motion
of a planet on a Keplerian ellipse with semi-axes a1 and a2,
where a2 = a1

√
1 − e2, where e = 0.205615 is the eccen-

tricity of the orbit; a1 = 57.91 × 109 m, the Sun radius is
R� = 6.955×108 m and the Newton’s gravitational constant
reads G = 6.67 × 10−11 m3kg−1 s−2. Therefore, the classi-
cal tests of GR [48,49], applied to the metric (7) with metric
coefficients (13, 14), yield a lower bound for the parameters
α1, α2, α3, given by

|α1α2| � |59.28 ± 73.04| m−3, (44)

for the perihelion precession, whereas

|α1α3| � |17.37 ± 69.48| m−4, (45)

for the light deflection. Finally, the radar echo delay analysis
yields the bound

|α2α3| � |37.02 ± 40.21| m−4. (46)
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Due to the form of the metric coefficients (13, 14), it is not
possible to obtain separate bounds for each one of the param-
eters αi .

For β0 > 0, the GUP term in Eq. (42) can attain negative
values, thus compensating the Hawking radiation for some
values of α1, α2 and α3. In particular, for 0 < β0  1, the
Hawking flux vanishes for

M0(β0) � 3β
−1/2
0 mp, for α1 = −3.419, α2 = 1.673,

α3 = 2.137. (47)

When β0 � 1, the Hawking flux is equal to zero when

M0(β0) � 3.7mp, for α1 = 2.316, α2 = 12.420,

α3 = −0.219. (48)

For β0 � 1, the critical mass, for which the Hawking flux
vanishes, producing black hole remnants, reads

M0 ∼ 7.1mp, for α1 = −5.372,

α2 = 11.003, α3 = 2.914. (49)

These particular values of the αi parameters, in Eqs. (47)–
(49), are in full agreement with the physical bounds (44)–
(46).

It is worth noticing that for β = 0 the Hawking flux does
not vanish, whatever the values of α1, α2, α3, ζ are taken in
the metric (13, 14).

A crucial question when one tries to construct a quan-
tum theory of gravity is its renormalizability. A conservative
approach to obtain a renormalizable theory of gravity consists
of adding higher-order terms to the theory. Among all pos-
sibilities of finding a renormalizable model, an action with
curvature invariants up to second order stands out for its sim-
plicity. Such theory is described by the action (1), which is
equivalent to the theory studied in Ref. [35]

S =
∫

d4x
√−g

(
1

16πG
R + bR2 − aCμνρσC

μνρσ

)
,

(50)

for Cμνρσ being the Weyl tensor components, due to the
Gauss-Bonnet invariant.

As the Frobenius expansion was obtained near the origin
in (13, 14), it is now opportune to analyze the possibility of
black hole remnants for an expansion around a nonzero radius
rh . Reference [35] showed that in static and asymptotically
flat backgrounds, the existence of an event horizon yields a
vanishing Ricci scalar. Therefore the Schwarzschild solution
is also the solution of the (50). Hence, the quadratic theory
consists of Einstein–Weyl gravity, with action (50) with b =
0. The corresponding EOMs read, for the metric (7),

r2
[
A

(
2
A′′
B

− A′B′
B2

)
− A′2

]
+ 4A

[
r f A′ − A

(
B′
B2 r − 1

B
+ 1

)]
= 0

(51)

a

{
r3 A′

B

[
−A

A′B′
B2 + A′2

B
+ 2A2

(
2B′2
B3 − B′′

B2

)]

− A

B2

(
3r2A′2 + 8A2

)

−2
A2

B

(
−r2A′ B′

B2 − 2A

(
r2

(
2B′2
B3 − B′′

B2

)
+ r

B′
B2 + 2

))

−r A3 B′
B2

(
3r

B′
B2 + 4

)}

+ 1

8πG
r2B

(
r A′ + A(1 − B)

) = 0 . (52)

The Schwarzschild standard metric, considering A(r) =
1/B(r) = 1 − 2M

r , for rh = 2M in this case, satisfies the
EOMs (51, 52).

The quadratic gravity theory does not present an analytical
solution, but a Frobenius expansion around the event horizon
rh :

1

B(r)
= γ1(r − rh) +

(
3

128πG a
− 3

128πG aγ1rh
− 2γ1

rh
+ 1

r2
h

)

× (r − rh)
2 + O(r − rh)

3 , (53)

A(r) = γ2

[
(r−rh)+

(
− 1

128πG aγ1
+ 1

128πG aγ 2
1 rh

+ 1

γ1r2
h

− 2

rh

)

× (r − rh)
2 + O(r − rh)

3] , (54)

As accomplished for the near-origin Frobenius expansion
(13, 14), the near-horizon case (53, 54) has also a priori three
free parameters, a, γ1, γ2, coming from the EOM (52), as
integration constants. Implementing again the classical tests
of GR [48,49], applied to the metric (7) with metric coeffi-
cients (53, 54), constrains the parameters a, γ1, γ2. In fact,

|γ2|� |10.1 ± 12.4| m−1, |aγ1|� |8.2 ± 10.0| m−4 kg s2

(55)

for the perihelion precession, whereas

|aγ 2
1 | � |9.3 ± 37.2| m−5 kg s2, (56)

for the light deflection. Besides, the radar echo delay yields
the constraint∣∣∣ γ2

aγ1

∣∣∣ � |2.5 ± 2.7| m3 kg−1 s−2. (57)

One can compute the Hawking radiation flux and the black
hole luminosity as well, for the metric (53, 54)

L �
π m3

p

16 l p rh

[
1 + a2γ1γ2

π(γ 2
1 + 2γ 2

2 )

]

+β0
mp

lp

⎛
⎜⎝ 2π m2

p

rh + 2a2γ1γ2

π(γ 2
1 +γ 2

2 )

− γ1γ2m2
prh

196
(
3γ 2

1 + 4γ 2
2

)
mp

Gγ

⎞
⎟⎠ ,

(58)
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where

Gγ = 1

2

{
a2

16γ 2
2 m

2
p

− 1

6 3
√

2γ2mp

(
27a2γ1mp +

[
27a2γ1mp − 9aγ2γ1m

2
p + 144γ2γ

2
1 m

3
p − 54γ 3

2 m
3
p

)
2

−9aγ2γ1m
2
p + 2γ 3

1 m
3
p + 144γ2γ

2
1 m

3
p − 54γ 3

2 m
3
p

]1/3 + 4
(

3aγ2mp + γ 2
1 m

2
p + 24γ2γ1m

3
p

)
3

3 22/3γ2mp

[√(
27a2γ1mp − 9aγ2γ1m2

p + 2γ 3
1 m

3
p + 144γ2γ

2
1 m

3
p

)
2 + 4

(
3aγ2mp + γ 2

1 m
2
p

)
3

−9aγ2γ1m
2
p + 2γ 3

1 m
3
p + 144γ2γ

2
1 m

3
p + γ1

3γ2

]1/3
}

(59)

Similarly to the analysis accomplished for the Frobenius
expansion around the origin, the second term in Eq. (58) can
be negative, canceling the Hawking radiation out, for some
critical masses, near the Planck scale.

After numerical routines, we derive that, in the range 0 <

β0  1, the Hawking radiation flux equals zero, leaving
black hole remnants, for

M0(β0) � 2β
−1/2
0 mp, for

γ1 = 2.652, γ2 = 3.002 a = 1.539. (60)

In the range β0 � 1, the Hawking radiation flux is equal to
zero when

M0(β0) � 4.4mp, for

γ1 = −0.470, γ2 = 1.381, a = 1.227. (61)

Finally, the range β0 � 1 yields

M0 ∼ 6.1mp, for

γ1 = 1.109, γ2 = −1.562, a = 2.780. (62)

These particular values of the αi parameters, in Eqs. (47–
49), are in full agreement with the physical bounds (55–57).
For β = 0, when no GUP effects are taken into account, the
Hawking flux does not vanish.

Comparing the results (47)–(49) and (60)–(62) with other
previous results in the literature is not an easy task, since
the respective black hole solutions investigated in this work
are solutions of quadratic gravity. In Ref. [12], MGD black
holes were studied, in a totally different context of gravity.
However, also black hole remnants were shown to exist. In
fact, in the range β0 � 1, black hole remnants with mass
M0 ∼ 2.6mp were derived, whereas for β0 � 1 the crit-
ical mass reads M0 ∼ 2.2mp. We conclude that higher-
order gravity with GUP effects magnify the critical black
hole masses, but keeping them of order of the Planck scale.

4 Concluding remarks

The tunnelling method in the WKB approximation, in a GUP
context, was here applied to static, spherically symmetric and
asymptotically flat solutions in higher-derivative gravity with
quadratic curvature terms. Taking into account GUP effects,
we investigated the particles tunnelling in the background of
static, spherically symmetric, asymptotically flat solutions in
quadratic gravity. These solutions, previously studied in Refs.
[43,44], contained free parameters, that have been bounded,
by observational and experimental data, regarding the classi-
cal tests of GR in the Solar system, including the perihelion
precession of Mercury, the deflection of light by the Sun and
the radar echo delay. The bounds on the parameters of the
near-origin black hole solutions obtained are displayed in
Eqs. (44)–(46), whereas the constraints on the parameters
of the near-horizon black hole solutions are shown in Eqs.
(55)–(57). In this spacetime configurations, we showed that
the corrected Hawking temperature is not only determined
by the properties of the black holes, but also dependent on
the mass of the emitted fermions.

The black hole solutions evaporation was scrutinized, in
both the near-origin and near-horizon expansions. The GUP-
corrected Dirac equation was solved by the Hamilton–Jacobi
method. We showed that the Hawking flux of fermions emit-
ted by black holes can vanish for a critical masses (47)–(49),
respectively for fixed sets of parameters in the metric (13,
14), in the allowed range of the parameters in the black hole
solutions, obtained in Eqs. (44)–(46). Besides, the Hawk-
ing radiation in the vicinity of a black hole in a higher-
derivative theory of gravity, which includes the quadratic
Weyl modification to the Einstein-Hilbert action, was also
studied. The black hole evaporation that we have found is
largely different from the Schwarzschild one. In fact, also
in the near-horizon expansion we showed that the Hawking
flux of fermions emitted by black holes can also vanish, for
critical masses (60)–(62), in agreement with the range of
parameters in the black hole solutions (55)–(57), for fixed
sets of parameters in the metric (53, 54). Both analyses bring
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the possibility of absolutely stable black hole remnants in
the quadratic gravity setup. These remnants are stable also
under (small) linear perturbations. The Hawking temperature
of static, spherically symmetric and asymptotically flat solu-
tions in quadratic gravity was also shown to be corrected by
GUP effects. As a perspective, one may compute the infor-
mation entropy that underlies these solutions [50].

Acknowledgements IK is supported by the National Council for
Scientific and Technological Development – CNPq (Brazil) under
Grant No. 155342/2018-5. RdR is grateful to FAPESP (Grant No.
2017/18897-8), to CNPq (Grants No. 303390/2019-0, No. 406134/
2018-9 and No. 303293/2015-2) and to HECAP – ICTP, Trieste, for
partial financial support, and this last one also for the hospitality.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)
2. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)
3. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)
4. J.B. Hartle, S.W. Hawking, Phys. Rev. D 28, 2960 (1983)
5. P. Kraus, F. Wilczek, Nucl. Phys. B 433, 403 (1995)
6. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000).

arXiv:hep-th/9907001
7. L. Vanzo, G. Acquaviva, R. Di Criscienzo, Class. Quantum Gravity

28, 183001 (2011). arXiv:1106.4153 [gr-qc]
8. R. Kerner, R.B. Mann, Phys. Lett. B 665, 277 (2008).

arXiv:0803.2246 [hep-th]
9. R. Kerner, R.B. Mann, Class. Quantum Gravity 25, 095014 (2008).

arXiv:0710.0612 [hep-th]
10. R. da Rocha, J.M. Hoff da Silva, EPL 107, 50001 (2014).

arXiv:1408.2402 [hep-th]
11. R. da Rocha, W.A. Rodrigues, Mod. Phys. Lett. A 21, 65 (2006).

arXiv:math-ph/0506075
12. R. Casadio, P. Nicolini, R. da Rocha, Class. Quantum Gravity 35,

185001 (2018). arXiv:1709.09704 [hep-th]
13. R. da Rocha, C.H. Coimbra-Araujo, Phys. Rev. D 74, 055006

(2006). arXiv:hep-ph/0607027

14. R. Casadio, J. Ovalle, Phys. Lett. B 715, 251 (2012).
arXiv:1201.6145 [gr-qc]

15. R. da Rocha, Phys. Rev. D 95, 124017 (2017). arXiv:1701.00761
[hep-ph]

16. A.N. Tawfik, A.M. Diab, Int. J. Mod. Phys. D 23(12), 1430025
(2014). arXiv:1410.0206 [gr-qc]

17. A.N. Tawfik, A.M. Diab, Rep. Prog. Phys. 78, 126001 (2015).
arXiv:1509.02436 [physics.gen-ph]

18. A. Tawfik, JCAP 1307, 040 (2013). arXiv:1307.1894 [gr-qc]
19. A.N. Tawfik, E.A. El Dahab, Int. J. Mod. Phys. A 30(09), 1550030

(2015). arXiv:1501.01286 [gr-qc]
20. A.F. Ali, A.N. Tawfik, Int. J. Mod. Phys. D 22, 1350020 (2013).

arXiv:1301.6133 [gr-qc]
21. A. Tawfik, H. Magdy, A.F. Ali, Phys. Part. Nucl. Lett. 13, 59 (2016).

arXiv:1205.5998 [physics.gen-ph]
22. M. Bojowald, A. Kempf, Phys. Rev. D 86, 085017 (2012).

arXiv:1112.0994
23. H.S. Snyder, Phys. Rev. 71, 38 (1947)
24. D. Amati, M. Ciafaloni, G. Veneziano, Phys. Lett. B 216, 41 (1989)
25. M. Maggiore, Phys. Lett. B 304, 65 (1993)
26. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)
27. F. Scardigli, R. Casadio, Class. Quantum Gravity 20, 3915 (2003)
28. P. Chen, Y.C. Ong, D.H. Yeom, Phys. Rep. 603, 1 (2015).

arXiv:1412.8366 [gr-qc]
29. B. Mu, P. Wang, H. Yang, Adv. High Energy Phys. 2015, 898916

(2015). arXiv:1501.06025 [gr-qc]
30. M.A. Anacleto, F.A. Brito, E. Passos, Phys. Lett. B 749, 181 (2015).

arXiv:1504.06295 [hep-th]
31. R.V. Maluf, J.C.S. Neves, Phys. Rev. D 97, 104015 (2018).

arXiv:1801.02661 [gr-qc]
32. D. Chen, H. Wu, H. Yang, JCAP 1403, 036 (2014).

arXiv:1307.0172 [gr-qc]
33. R.J. Adler, P. Chen, D.I. Santiago, Gen. Relativ. Gravit. 33, 2101

(2001). arXiv:gr-qc/0106080
34. R.A. Konoplya, A.F. Zinhailo, Phys. Rev. D 99, 104060 (2019).

arXiv:1904.05341 [gr-qc]
35. K.S. Stelle, Phys. Rev. D 16, 953 (1977)
36. T.D. Lee, G.C. Wick, Nucl. Phys. B 9, 209 (1969)
37. R.E. Cutkosky, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, Nucl.

Phys. B 12, 281 (1969)
38. E. Tomboulis, Phys. Lett. B 70, 361 (1977)
39. E.T. Tomboulis, Phys. Rev. Lett. 52, 1173 (1984)
40. F.d.O. Salles, I.L. Shapiro, Phys. Rev. D 89, 084054, (2014) [Erra-

tum: Phys. Rev. D 90, 129903 (2014)]. arXiv:1401.4583 [hep-th]
41. N. Barnaby, N. Kamran, JHEP 0802, 008 (2008). arXiv:0709.3968

[hep-th]
42. I. Kuntz, R. da Rocha, Eur. Phys. J. C 79, 447 (2019).

arXiv:1903.10642 [hep-th]
43. H. Lü, A. Perkins, C.N. Pope, K.S. Stelle, Phys. Rev. D 92, 124019

(2015). arXiv:1508.00010 [hep-th]
44. K.S. Stelle, Gen. Relativ. Gravit. 9, 353 (1978)
45. S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008).

arXiv:0810.5333 [hep-th]
46. F. Scardigli, R. Casadio, Eur. Phys. J. C 75, 425 (2015).

arXiv:1407.0113 [hep-th]
47. D.N. Page, Phys. Rev. D 13, 198 (1976)
48. C.G. Boehmer, G. De Risi, T. Harko, F.S.N. Lobo, Class. Quantum

Gravity 27, 185013 (2010). arXiv:0910.3800 [gr-qc]
49. R. Casadio, J. Ovalle, R. da Rocha, EPL 110, 40003 (2015).

arXiv:1503.02316 [gr-qc]
50. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016).

arXiv:1610.01572 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/9907001
http://arxiv.org/abs/1106.4153
http://arxiv.org/abs/0803.2246
http://arxiv.org/abs/0710.0612
http://arxiv.org/abs/1408.2402
http://arxiv.org/abs/math-ph/0506075
http://arxiv.org/abs/1709.09704
http://arxiv.org/abs/hep-ph/0607027
http://arxiv.org/abs/1201.6145
http://arxiv.org/abs/1701.00761
http://arxiv.org/abs/1410.0206
http://arxiv.org/abs/1509.02436
http://arxiv.org/abs/1307.1894
http://arxiv.org/abs/1501.01286
http://arxiv.org/abs/1301.6133
http://arxiv.org/abs/1205.5998
http://arxiv.org/abs/1112.0994
http://arxiv.org/abs/1412.8366
http://arxiv.org/abs/1501.06025
http://arxiv.org/abs/1504.06295
http://arxiv.org/abs/1801.02661
http://arxiv.org/abs/1307.0172
http://arxiv.org/abs/gr-qc/0106080
http://arxiv.org/abs/1904.05341
http://arxiv.org/abs/1401.4583
http://arxiv.org/abs/0709.3968
http://arxiv.org/abs/1903.10642
http://arxiv.org/abs/1508.00010
http://arxiv.org/abs/0810.5333
http://arxiv.org/abs/1407.0113
http://arxiv.org/abs/0910.3800
http://arxiv.org/abs/1503.02316
http://arxiv.org/abs/1610.01572

	GUP black hole remnants in quadratic gravity
	Abstract 
	1 Introduction
	2 Static spherically symmetric solutions in higher-derivative gravity
	3 Hawking radiation spectrum, flux and black hole Hawking luminosity
	4 Concluding remarks
	Acknowledgements
	References




