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Abstract By employing the holographic operator mix-
ing technique to deal with coupled perturbations in the
gauge/gravity duality, I numerically compute the real and
imaginary parts of the diagonal and Hall AC conductivities
in a strongly coupled quantum field theory dual to a bulk
condensate of magnetic monopoles. The results obtained
show that a conclusion previously derived in the literature,
namely, the vanishing of holographic DC conductivities in
3-dimensional strongly coupled quantum field theories dual
to a 4-dimensional bulk magnetic monopole condensate, also
applies to the calculation of diagonal and Hall conductivities
in the presence of a topological 8-term. Therefore, the con-
densation of magnetic monopoles in the bulk is suggested
as a rather general and robust mechanism to generate dual
strongly coupled quantum field theories with zero DC con-
ductivities. The interplay between frequency, 6-angle and the
characteristic mass scale of the monopole condensate on the
results for the conductivities is also investigated.
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1 Introduction

The role played by magnetic monopoles in the deter-
mination of holographic phases of matter have recently
attracted attention in the literature. For instance, in Refs.
[1-5] the correlations of monopole operators have been
investigated in holographic models at finite temperature
and density. In particular, the condensation of magnetic
monopoles in the bulk, corresponding to the establish-
ment of a bulk dual superconducting phase — responsible
for confining electric fields within flux tubes in the bulk,
which pop up as localized electric charges at the bound-
ary of the bulk geometry —, has been suggested as a holo-
graphic dual of insulating states of the corresponding strongly
coupled quantum field theory (QFT) living at the bound-
ary.

Regarding the calculation of transport coefficients, in
Ref. [6] it has been shown that the diagonal holographic
DC conductivity in 3-dimensional strongly coupled QFT’s
at finite temperature — in the absence of a topological 6-
term in the 4-dimensional bulk — vanishes when the bulk
comprises a condensate of magnetic monopoles (defined
in the probe limit). This result was analytically demon-
strated for a general isotropic background black hole met-
ric at finite temperature. The main question investigated
in the present work regards the fate of this result when
a topological 6-term is included in the bulk effective
action.

In the presence of a f-term, pure Maxwell theory in the
bulk (which corresponds to a bulk phase with no magnetic
monopoles) implies nonzero, but frequency-independent val-
ues for the diagonal and Hall (off-diagonal) conductivi-
ties, as shown in Ref. [7]. As I am going to show in
the present work, this result is drastically modified when
a magnetic monopole condensate is formed within the
bulk.
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As done in Ref. [6], the low energy effective action
describing the condensate of magnetic monopoles in the
bulk will be constructed here by means of the so-called
Julia-Toulouse mechanism (JTM), which was originally pro-
posed in Ref. [8] in the context of non-relativistic con-
densed matter media as a prescription to identify the low-
est lying modes of a system in a phase characterized
by a condensate of topological defects. This was later
generalized in Refs. [9,10] to deal with the construction
of low energy effective actions for relativistic systems
described by p-forms (corresponding to antisymmetric ten-
sor fields of rank p) non-minimally coupled to Dirac-like
defects [11,12], in the regime where these defects pro-
liferate until forming a macroscopically continuous dis-
tribution corresponding to the condensate of defects. The
JTM has been then applied to describe different aspects
of several physical systems, see for instance Refs. [10,13—
23].

Particularly, the p-form of interest in the present work
is the Maxwell gauge field A, defined in an asymptoti-
cally AdS4 background, and the associated defects that cou-
ple non-minimally to this 1-form are Dirac-like magnetic
monopoles. In Ref. [6] it was discussed in details how the
JTM can be implemented in the context of the gauge/gravity
duality [24-26] to describe the effects of a 4-dimensional
bulk condensate of magnetic monopoles in the conductiv-
ity of the dual strongly coupled QFT in 3 dimensions. In
the present work I generalize this approach to include the
effects associated to a topological f-term in the bulk. In
the absence of such term the Hall conductivity trivially van-
ishes, therefore, one of the main motivations for considering
the contribution of the f-term is to obtain nontrivial results
for the Hall conductivity, besides the diagonal conductivity
which is also affected by the presence of the 6-term in the
magnetically condensed phase of the bulk, as I am going to
show.

This work is organized as follows. I begin in Sect. 2 by
reviewing in details the calculation of the Hall and diag-
onal conductivities in the probe Maxwell theory with the
O-term defined on top of the AdS4-Schwarzschild back-
ground, which in view of the JTM corresponds to a regime
of the bulk with no magnetic monopoles (completely diluted
phase). The main original results of this work are presented
in Sect. 3, where I consider a complete monopole conden-
sation in the bulk and study the corresponding effects on
the diagonal and Hall conductivities of the dual boundary
QFT. As it will be shown, the main result derived in Ref.
[6], namely, the vanishing of the diagonal DC conductiv-
ity in the magnetically condensed phase (in the absence of
a f-term in the bulk) remains valid upon the inclusion of
the O-term, and also holds for the DC Hall conductivity.
In this way, one of the main results of the present work is
the indication that a bulk monopole condensate constitutes
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a fairly general and robust holographic mechanism to gen-
erate zero DC conductivities in 3-dimensional strongly cou-
pled QFT’s. I will also investigate the interplay between the
frequency, the 6-angle, and the characteristic mass scale of
the monopole condensate on the diagonal and Hall AC con-
ductivities. The numerical results for the AC conductivities
in the magnetically condensed phase are obtained through
the use of the holographic operator mixing technique [27—
30], which is required since the 6-term couples the relevant
fluctuations in this phase. Furthermore, in Appendix 5 I also
investigate the case with (no monopoles and) a complete elec-
tric charge condensation in the bulk and the corresponding
effects on the boundary QFT diagonal and Hall conductivi-
ties.

In this work I use natural units with dimensionless ¢ =
h = kp = 1 and a mostly plus metric signature. Greek
indexes run over all bulk coordinates, while Latin indexes
denote only coordinates parallel to the boundary.

2 Hall and diagonal conductivities in the bulk diluted
phase

The purpose of this review section is twofold. First, the cal-
culations reviewed here are completely analytical and serve
as a standard and clear example of how to calculate ther-
mal retarded Green’s functions in holography for decoupled
perturbations [31]. This will be contrasted with the more
involved situation discussed in Sect. 3, where one needs to
obtain retarded propagators for coupled perturbations in a
numerical calculation where the identification of the proper
contributions for the diagonal and Hall conductivities is not
so straightforward due to the coupled equations of motion for
the relevant perturbations. This will be done by means of the
more general holographic operator mixing technique [27-
30], which agrees with the simpler prescription of [31] when
the latter is applicable (as it is the case for the Maxwell theory
with a 6-term [7] reviewed in the present section, and also
for the case with a bulk monopole condensate in the absence
of a f-term, which was first discussed in Ref. [6]). And sec-
ond, the effective action for the Maxwell theory with a 6-term
employed below, which describes the bulk phase without any
magnetic monopoles (completely diluted phase), is also the
starting point for the construction of the low energy effective
action for the bulk monopole condensate via JTM, to be dis-
cussed in Sect. 3. Moreover, the analytical results reviewed in
the present section will be also important in Sect. 3 since, as
I will discuss, in the ultraviolet limit of high frequencies one
needs to recover the analytical Maxwell results for the diag-
onal and Hall conductivities in the magnetically condensed
phase (this will serve as an important check of the numerical
robustness of the method employed in Sect. 3).
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I begin working with a general background isotropic met-
ric guy = diag (guu» —&t+ Lxx» &yy = gxx) With a holo-
graphic radial coordinate u in terms of which the boundary
locates at u = € — 0 and the background black hole horizon
lies at u = upg. The probe Maxwell action with a topological
O-term is given by,’
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where in the last line I used Stoke’s theorem to integrate in
the radial direction u and get the border terms. By varying
the bulk piece of Eq. (1) with respect to the Maxwell field
one obtains the Maxwell equations,’

3 (V—gg"*g"F Fup) = 0, 2)

and one sees that the last term in Eq. (1) vanishes on-shell. By
following the prescription originally put forward in [31] to
obtain the thermal retarded propagator of the vector current
sourced by the boundary value of the bulk Maxwell field,
one discards the border term located at the horizon in the
action (1) and evaluate on-shell the remainder of the action
with infalling wave condition for the Maxwell field at the
horizon,?

0,bd 1 . —
Sdil y[A?] =+ / d3x 111’1‘1 { _gguu [_gnAl Fu
2 AIMy u=e—0

- infalling
8 (A Fux + Ay Fuy) | + 07549, Ay

on-shell

1T absorb the dimensionless gauge coupling constant in 4D into the
definition of the Maxwell field and take the 6-angle to be indepen-
dent of the radial holographic coordinate u. Notice also that F/*V =
e /2 /—g.

2 Notice that the 4D equation of motion in the diluted phase is not
affected by the presence of the -term, since the latter corresponds to a
Chern—Simons action at the 3 D boundary. However, in the magnetically
condensed phase the O-term will also affect the equations of motion
and dynamically mix the components of the relevant fields, making the
analysis of the problem considerably more involved.

3 1 work here in the radial gauge defined by the condition A, = 0. I
take the #7-component of the metric to be —g;; with g, > 0, and use
that &% = g'/k5?6%5¢ with e/
considering an isotropic metric, gyy

1. Notice also that, since I am
8xx-

1
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where A? is the boundary value of the Maxwell field and in
the last line I considered the Maxwell field as function of
just u and ¢ (the prime denotes derivative with respect to u),
since for the calculation of the electric conductivity one just
needs to consider the retarded propagator of the boundary
vector current evaluated at zero spatial momentum. I define
the Fourier modes A; (u, w) in momentum space according
to,4

Ai(u, 1) = / g—:e*iwai(u, w). 4)

The Dirichlet boundary condition for the Fourier modes
reads,

m% Ai(u, ) = A(w). 5)

By substituting (4) into (3), one gets,

1 d do .. -~
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—Ay(u, —) Ay (u, )} (6)

on-shell

The reality condition for the Maxwell field, Al’i(u, 1) =
A, (u, 1), implies that A/’i(u, w) = A, (u, —w). Using this
result in Eq. (6), one obtains,

obdy 04 1| [do
Sai MAl=—3 | >~
x {— limo(a/—gg’”‘ [—g”AfA; s (Af;A’x +A*;A;)}
U—=€— -

4 Since I am omitting the dependence on the spatial momentum,
because I will take it to zero in the evaluation of the 2-point retarded
correlation function, from now on I will also omit the integration in the
spatial directions.

@ Springer



470 Page 4 of 20

Eur. Phys. J. C (2020) 80:470

Fig. 1 Real and imaginary parts of the diagonal AC conductivity as
functions the #-angle and the dimensionless frequency variable, v =
3w/4n T, for Cn = AL/2 = 1 (dimensionless combination involv-

infalling

0

+iod (434, — AA,

on-shell

By working in the radial gauge, A, = 0, in the limit
of vanishing spatial momentum, one substitutes the Fourier
mode A;(u, t, w) = e "' A;(u, w) into the Maxwell equa-
tions (2), obtaining the following set of equations of motion
for the components of the Maxwell field,

AL+ <_% ey ai/ __g> JUN T
8uu 8xx —8 81t
3
A+ B _ B B8 A+ g“”szy =0,
Suu 8yy v =8 81t
)
A; =0.
(10)
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ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh(u)

The Dirichlet boundary condition (5) together with equation
(10) imply that A; = A?. And since I am considering an
isotropic metric, gyx = gy, and, therefore, Egs. (8) and (9)
have the very same structure.

I now specialize to a specific background, given by the
metric of the near-horizon approximation of a non-extremal
M2-brane solution of 11D supergravity, corresponding to a
very massive AdS4-Schwarzschild black hole (modulo a 7-
sphere),5

4U?
+ (— FU)AE +dx® + dy2) ,

Y

e L?dU?
T = =
AU f(U)

where ¢, x, y € (—00,00), U € (Uy, 00), L/2 is the radius
of the asymptotically AdS4 space (corresponding to half the
radius L of the 7-sphere [32], which I did not write explicitly

5 See the discussions around Egs. (119) and (259) of Ref. [32].
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Fig. 2 Real and imaginary parts of the Hall AC conductivity as func-
tions the f-angle and the dimensionless frequency variable, v =
3w/4nT, for CA = AL/2 = 1 (dimensionless combination involv-

above), f(U) = 1 — U131 /U3, Uy is the non-extremality
parameter (which vanishes for the extremal solution) and
the boundary lies at U — oo, with the horizon placed at

U = Upy. The Hawking temperature of the black hole is
then given by,

I qUU 3U

r_ Yes™ 3 (12)
4 v=u, 7L

I now define a new radial coordinate according to,

H Uy, 3
u:=7:>f(U)= —ﬁzl—u =: h(u), (13)
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ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh(u)

where in terms of the radial coordinate u, the boundary is at
u = 0, while the horizon is placed at u = 1. By using Eq.
(12), one rewrites Eq. (14) as follows,

2 L2du?

B 4(nTL)?
T 4ulh(u)

9u?

(—h@u)dt® + dx* + dy?).
(15)

For the metric (15), the Maxwell equations (8), (9), and
(10), read,

" 9?2
A;/ + EA; + ?Ax =0, (16)
" 9o
A’y/ + ZA; + ?Ay =0, a7
Al =0, (18)

where I defined the dimensionless frequency,
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Fig. 3 Real and imaginary parts of the diagonal AC conductivity as
functions the #-angle and the dimensionless frequency variable, v =
3w/4x T, for Cn = AL/2 = 2 (dimensionless combination involv-

w

The set of ordinary differential equations (ODE’s) (16), (17),
and (18) has analytical solutions, therefore, in the present
case, one is able to compute the AC electric conductivity
analytically in the bulk diluted phase. As discussed before,
one has A, = A?. The general solution of the ODE’s (16)
and (17) can be put in the form below,

C1+iC
2

+ % (1 — )™, (20)

Ax(y)(u, ) = T ()1 —u)™'™

where 74+ (1) = exp {:I:"Tm [2«/§arctan (%) +In(1 4+ u

+u?)]} are regular functions at the horizon u = 1. The
solution o (1 — u) ™™ corresponds to a wave travelling to
the horizon and, therefore, the infalling wave condition at the
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w=3w/ianT

ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh(u)

horizon is imposed by setting C; = iC, = C in Eq. (20),
Ay, 0) = Cro(u)(1 —u)™'™. 1)

The constant C is fixed by imposing the Dirichlet boundary
condition (5) into (21),

im

0o —zm 0o 2
C = Al e 23 =AY e WA, 22)

therefore,

Axiy(tt, @) = AY e AT (1 —u) 3T exp

iw 14 2u 5
X{W[Zﬁarctan< 7 )—I—ln(l—i—u—i—u)]}.
(23)

From (23), one obtains,
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Fig. 4 Real and imaginary parts of the Hall AC conductivity as func-
tions the f-angle and the dimensionless frequency variable, v =
3w/4n T, for Cx = AL/2 = 2 (dimensionless combination involv-

: _ 40
'}1_1;1}) Ay, w) = Ax(y)(a)) and

. Jiw
I}I_I)I}) A;(y)(u, w) = mAx(y)(w). 24)

For the metric (15), one has at the boundary,

4anT
lim /—gg"" g™ = oL (25)
u—0 3

Substituting Egs. (18), (24), and (25) into the on-shell
boundary action (7), one obtains,

1 [d
SO 40) = -5 f ﬁ [—ia) (Ag*(w)Ag(w)
+A9 (@) 4)(@))
—iwp (Afg *(@)A () — A *(w)Ag(w))] ,
(26)

ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh(u)

from which, by following the prescription of Ref. [31], one
extracts the following nontrivial retarded correlators in the
bulk diluted phase,

GRdil () — G(y1;>,dil(w) — —iw  and Gil;),dil _ _G<y1§>,di1 — —iwh.

27)

From linear response theory, one has the following Kubo
formulas for the diagonal and Hall electric conductivities [7],

(R),dil

dil dil (w)
o (@) = opl () = —’”‘T =1 and
(R),dil
. . G
o (@) = —o (@) = — T © . (28)

These results for the diagonal conductivities were first
obtained in Refs. [33,34], and for the Hall conductivities,
in Ref. [7]. Since these AC conductivities are frequency-
independent, they coincide with the corresponding DC con-
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Fig. 5 Real and imaginary parts of the diagonal AC conductivity as
functions the 6-angle and the dimensionless frequency variable, v =
3w/4n T, for CA = AL/2 = 1 (dimensionless combination involv-

ductivities, given by the zero frequency limit of the AC con-
ductivities.

3 Hall and diagonal conductivities in the bulk
magnetically condensed phase

Now I consider the case with a condensate of magnetic
monopoles in the bulk in the presence of a 8-term. The case
with no f-term was originally presented in Ref. [6], where a
vanishing DC conductivity at the boundary QFT was identi-
fied as an universal phenomenon dual to a bulk condensate
of magnetic monopoles.

By including magnetic defects with charge g into the
Maxwell strength tensor and considering a complete con-
densation of the monopoles in the bulk, one obtains through
the JTM [6],

_~ cond

F;,w = 8[MA\)] — 8 Xuy — K,uv: (29)
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ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh (2)

where ), is the Chern—Kernel localizing the Dirac brane
whose border corresponds to the physical monopole current
in the bulk. The condensation of the monopoles leads to the
emerging massive 2-form Kalb-Ramond field K,,,, where
the Chern—Kernel and, therefore, the Kalb—Ramond field,
are subjected to the following boundary condition [6],

lim ¥, = 0= lim K, (u, t, w)
u—0 u—0
= lim 3, Ay (u, 1, ) = K} (@)
u—0

= —iwAY, (a))afisj](”, (30)

meaning that the monopole current vanishes at the boundary
and the Kalb—Ramond field reduces to the Maxwell strength
tensor without defects at the boundary. This boundary condi-
tion is chosen in order to have the boundary value of the bulk
massive 2-form field K, sourcing a vector current operator
at the boundary, since it is written in terms of the boundary
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Fig. 6 Real and imaginary parts of the Hall AC conductivity as func-
tions the f-angle and the dimensionless frequency variable, o =
3w/4n T, for CA = AL/2 = 1 (dimensionless combination involv-

value of a Maxwell field. The physical interpretation of this
picture, detailed discussed in Ref. [6], is that the conductiv-
ity associated to the vector current operator sourced by the
boundary value of the Maxwell field can be calculated in
different holographic phases. For the bulk diluted phase, the
results reviewed in the previous section implied constant and
finite conductivities given by Eq. (28). On the other hand, in
the bulk magnetically condensed phase without the 6-term,
the (diagonal) AC conductivity must be obtained numerically
for a given background metric, but for any isotropic black
hole metric it can be analytically shown that in the ultravi-
olet limit of large frequencies the AC conductivity reduces
to the same value obtained in Maxwell theory, while in the
deep infrared the DC conductivity exactly vanishes [6].
Now I want to investigate the effects of the 6-term on the
diagonal AC conductivity, and also evaluate the Hall (off-
diagonal) AC conductivity (which trivially vanishes in the
absence of the f-term) in the bulk magnetically condensed
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ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh (2)

phase. For this sake, as done in Ref. [6], one substitutes the
JTM prescription (29) into the Maxwell action (1), and in
order to complete the construction of a low-energy effec-
tive field theory for the magnetically condensed phase, one
supplies a dynamics for the emerging massive Kalb—-Ramond
field K, by considering a derivative expansion and retaining
only the term with lowest order in derivatives, which gives
the dominant contribution at low energies,

1 1
Sgond[KIW] = 4 AA d*x { V8 |: F; B +Kﬁvi|
4

3m2(u) H“

0
+58wﬂ1<wzcaﬁ} , G1)

where Fjop = 0uKop + 0o Kpu + 05K uq is the Kalb—
Ramond strength tensor and m () is aradial-dependent effec-
tive mass for the Kalb—Ramond field. As detailed discussed in
Ref. [6], this radial-dependent mass actually corresponds to a
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Fig. 7 Real and imaginary parts of the diagonal AC conductivity as
functions the #-angle and the dimensionless frequency variable, v =
3w/4n T, for Cx = AL/2 = 2 (dimensionless combination involv-

scalar field whose excitations describe the monopoles (which
are themselves higher energy excitations in the condensed
phase, while the lowest-lying modes in this phase correspond
to spin 1 particles associated to the massive Kalb-Ramond
field). In the low-energy effective action (31) one neglects
the dynamics of this scalar field and takes it as a prescribed
profile associated to some specific condensation process in
the bulk (which, in turn, corresponds to some specific choice
for the potential of this scalar field in the ultraviolet com-
pletion of the action (31), as discussed in Ref. [6]). Notice
that the boundary condition (30) actually follows by impos-
ing that the effective mass m (1) must vanish at the boundary,
since the requirement of finiteness of the effective action (31)
implies that, in this case, Fj,og = 0 at the boundary, which
is identically satisfied as the Jacobi identity by taking (30).
Therefore, any prescribed profile one uses for the effective
mass in this work will be such that it vanishes at the boundary
(while also being regular at the black hole horizon).
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ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh(u?)

Let me now work out the action (31) to identify its bor-
der terms and the equation of motion for the massive Kalb—
Ramond field in the presence of a 6-term,

1 1
S(?Ond[KlLV] = _Z /M4 d4x {\/jg [mT(M)BMKuﬂg”‘pgakgﬂUFp)\v

9
+K0,,3g“#gﬂ“KW] + EKaﬂe“"“ﬂKuv}

1 4 V=g A )
=—- d*x{d K., gghP o oBV
4//\/14 x{”(mz(u) ap& 8 E T ohy

—Kap [% ( 4 g"pg“'\gﬂ"pru) - («/—gg““gﬂ“r

m? (i)
¢ nvap
+58 Ky
1 3. V78 uu_axr pv EH
=—- dox ——— K,gF,
4-/;./\/14 xmz(u)g 88 ap Fuiv e
1 4 V=g 2 )
- d*xK P) np o0k BV
+4[M4 } “ﬁ["<m2(u)g s fow )
%]
_( /_ggalf«gﬂ" + Eé‘”vaﬂ> K;w] . (32)
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Fig. 8 Real and imaginary parts of the Hall AC conductivity as func-
tions the f-angle and the dimensionless frequency variable, o =
3w/4n T, for Cx = AL/2 = 2 (dimensionless combination involv-

By varying the bulk piece of Eq. (32), one gets the equations
of motion for the massive Kalb—Ramond field in the presence
of the 6-term,

( V=8
2(u)
- <«/—_gg“"gﬁ” +

g0 g gPV Fyp, )

0
ESMW) Ky =0. (33)

As before, by discarding the border piece of the action (32)
evaluated at the horizon, one obtains the following on-shell
boundary action,

RACIT e 1 — P Kap
cond [K;Lv] - Z /@;M‘td xuhg gguu ¢ 'BU 2( ) (BMK)‘V
infalling
+0. Koy + 0vKup) (34)
on-shell

ing the characteristic mass scale A of the bulk monopole condensate).
These results were generated with the mass function M (1) = tanh (u?)

It is interesting to note that, contrary to what happened in the
diluted phase discussed in the previous section, where the 6-
term had no effect on the Maxwell equations and contributed
directly to the boundary action in the form of a 3D Chern—
Simons term, in the condensed phase one sees from Egs. (33)
and (34) that the 6-term modifies the equation of motion
for the massive Kalb—-Ramond field, while the form of the
off-shell boundary action is identical to the one obtained in
Ref. [6] in the absence of the O-term; however, the on-shell
boundary action (34) does depend on the 6-term through the
on-shell values of the components of the Kalb—Ramond field
which solve Eq. (33) with infalling wave condition at the
black hole horizon.

Let us analyze the components of the equations of motion
(33). There are 3 second order ODE’s for 3 independent
dynamical variables, K, K;y, and K, (with the ODE’s for
K,y and K, being coupled by the 6-term), and 3 constraints
that express K, as function of Ky, K, as function of K,

@ Springer



470 Page 12 of 20 Eur. Phys. J. C (2020) 80:470

i
T 10/ ‘ 1
‘ \
8! i Ch=0 — — Cp=15
1
3 I ---- CA=05 - Cp=2
b 6 LI R— - Cp=1
) N ]
4/ A
2 :'\‘- I |': I|‘\ 1
o \\L \'l‘ \'\*‘
0 / R T
0 1 2 3 4 5 6
w=3wlianT
LY
AT 4 ll"‘
/// ‘x " “‘ )
g 2 A ‘\\
NN
—- 0 A O Dl
>< WTAS H
§ VY
, Rd K N, 1
= g -2 N K
Im{od °} B AW
5‘[ / -4 Yo |: Cr=0 == G=15
-5 / 1
Y 4 VM --- Cr=05 - Cr=2
0.0
= w = 3w/AnT -6 '.J' ..... - Cp=1
1.0 .
Ch | 0 1 2 3 4 5 6
I 70 w=3wlianT

Fig. 9 Real and imaginary parts of the diagonal AC conductivity as functions of (Cp = AL/2, 10 = 3w/4xT) at fixed 0 = 1. These results were
generated with the mass function M (#) = tanh(u)

. : ] 2.2 tx
the Fourier mode K, (u, 1, w) = ¢ '“' K, (u, w) into Eq. 2o 28uu @7 —m=Wgn \8u  mu)

(33), one obtains the following set of constraints,® 4 Buu [a)2 —m2w)gn (1 + 62)] Kix+

. e 2
and K/, and K,y as function of K, and K7, By substituting ~  _ K+ {g,’, 8 )7 (gfé, N 2m/(u))i| «

8tt
[ iwOm () [m@u)g], +2m’ (u)gs ]
21t 8un + /== Kiy, 39)
Kyt =0 UL Kxy, (35) 81t ? —m>(u)gr Y
. K/xx 0 /211 G 2( 'K 0=K" + g;t g{m + mz(“)gﬁ (g;t + 2m/(u)> /
Lw - m=(u = —r . —oHr -~ 7o |28
ux = omtx VB S &8 (36) D7 200 2gu @ —mPwgn \ga | m) ) |07
@ —m=(u)gt ¢
© int/y +6 /;gttguumz(u)Ktx (37) + ﬁ [a)z — mz(u)g[t(l + 62)] Kty+
uy = 2 _ 2 ’ i
@ = m W)gn G 100 () [m(u)g), +2m' ()81 ] "
Sy e K. (40)
8t = —m=(u)g
while the dynamical equations of motion read as follows,
p Sor G & 2w, One sees that the equations of motion (39) and (40) for
0= Ky — |22 4 Sl _ SIL 4 Ky : :
8xx  28uu  28u m(u) the variables K, and K;, are coupled in the presence of
the O-term. One also sees from the above equations that
+ S [0 - e (1467 Ky, (38) a
1t

Ky and, therefore, K,;, are decoupled from K;y(y), con-

sequently, these components of the Kalb—Ramond field are
6 As before, I recall that the 7z-component of the metric is —g,, with irrelevant for the calculation of the conductivities. On the

g > 0, and since I consider an isotropic metric, gyy = gxx- other hand, the constraints for K, (y) must be used to intro-
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Fig. 10 Real and imaginary parts of the Hall AC conductivity as functions of (Cp = AL/2,w = 3w/4nT) at fixed & = 1. These results were

generated with the mass function M («) = tanh(u)

duce in the on-shell action all the terms depending on

Kix(y) and their derivatives. Since K;y(yy(u = 0,0) =
0 _ 40 .

Ktx(y)(w) = za)Ax(y)(w), one needs to collect in the

0% KO

tx(y) " x(y)

in order to obtain the diagonal conductivi-

on-shell action all terms proportional to K

2 A0% 0
0" AL Ax(y)

ties aggnd(w) and ayc;md(w), while for the calculation of
cond

the Hall conductivities Ufyond(w) and oy}
to collect in the on-shell action all terms proportional to
Kgc”zy)K?y(x) = a)2A2(*y)Ag(x). Since Kt/x(y)(u = 0, w) may
depend both on K tox (w) and K ?y (w) due to the coupled equa-
tions of motion (39) and (40), which need to be solved
numerically, it is not immediately obvious how to disen-
tangle the contributions for the diagonal and Hall conduc-
tivities. However, from the above considerations, one may
already identify the specific sector of the on-shell boundary
action (34) relevant for the evaluation of these conductivi-

ties,’

(w), one has

7 Since I am going to consider again the propagator evaluated at zero
spatial momentum, I already set to zero all the spatial derivatives.

6.,bdy 0 1 3 . \/jgguu N XX /
S K, ,]=- d 1 =2 [2(— K:ix (K 0K
cond | uu] 4/8/\/14 xuzlgnlo m2 () [( g)g t}c( T 0 xu)
+2(=g")g" Kuy (K, + 0Ky ) +
infalling
+ 2" g K\ K,

Yy
on-shell

1

1
= Bx lim —— K, (K. — %K,
2/3/\44 R Mmz(u)[ i (Kfx — 8 Kux)

infalling
+Kiy (Kt/v — 0 Kuy)] +
: on-shell
| —— uu (g xx\2 infalling
L! / Px tim VTS e . (4D
2 aMy u=e—0 m=(u) " lon-shell

One sees that the last term in the action above is completely
decoupled from the relevant sector for the calculation of the
conductivities, therefore, one can ignore it in these calcula-
tions and work only with the following sector of the on-shell
boundary action,?

8 T already write down the relevant action in momentum space.
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Fig. 11 Real and imaginary parts of the diagonal AC conductivity as functions of (Cp = AL/2,10 = 3w/4nT) at fixed 6 = 1. These results

were generated with the mass function M (u) = tanh (u2)

.bd 1 fdo | . 1 )
sodyy g0 K%]:——/ { 1 (K7 (Kpy + ioKux)

R — im ————
cond " 2 27 (u=e—>0 v/ guugttm2 (u)

infalling
+K7, (K,’y + inuy)]}

on-shell

1 / dw i o (Ki}K{x + K?‘yK{y)
~ 2] 2x im0 G 02 —m2u) g

iwb (K;;Kty — K;‘},Km)j| infal]ing} (42)

+

2 2
w"—=m (u)g,, on-shell

where in the last line I imposed the on-shell constraints (36)
and (37). Notice that for & = 0 the above action reduces to the
same one evaluated in Ref. [6]. For m (u) = 0, since itimplies
Kix(y) = 01Ax(y)] = —iwA,(y), one can easily check that
the results reviewed in section 2 are fully recovered.

Now the final task is to numerically solve the coupled
ODE’s (39) and (40) for the AdS4-Schwarzschild back-
ground (15) with the Dirichlet boundary conditions (30) and

@ Springer

infalling wave conditions for K, and K;, at the horizon,
then substitute these solutions back into the boundary on-
shell action (42), and finally identify the diagonal and non-
diagonal Hall conductivities. This task may be accomplished
by using the technique of holographic operator mixing dis-
cussed in Refs. [27-30]. Below I closely follow the general
approach of Ref. [29] (the interested reader should consult it
for a detailed discussion).

3.1 Holographic operator mixing

The ultraviolet asymptotics of the massive Kalb—Ramond
field subjected to the boundary condition (30) is the very
same one of the Maxwell field,? which in a four dimensional
bulk goes like,

9 As long as the prescribed profile for the effective mass field m (u) is
chosen such that m(u — €) ~ €4, witha = 1 ora > 3/2, as originally
discussed in Ref. [6].



Eur. Phys. J. C (2020) 80:470

Page 15 0of 20 470

w =3w/anT

4 5 ]
[
3 a
1 ‘\
N N |
2 ',.L ~ :~\
> 1 -"-L!—:: ~~~~ =
b" ! ! l:'
T 0wt I 1
(14 \_\\\l E
RUEERVY Cr=0 — — Cp=15
-2 " S 6 P - Je— Ch= ]
1
-3 v - Ca=t
0 1 2 3 4 5
1
— VA
> 1
B -4 Vi ]
Rl 1
E |
1
-6 i Ch=0 — — Cp=15 ]
i e CA=05 mmm- Cp=2
_8 I|lI C _1 1
- - Cp=
0 1 2 3 4
w=3w/l4nT

Fig. 12 Real and imaginary parts of the Hall AC conductivity as functions of (Cp = AL/2,1w = 3w/4xT) at fixed 6 = 1. These results were

generated with the mass function M (1) = tanh (u2)

therefore, it already goes to a constant at the boundary and
no field redefinitions are needed on the lines of the method
discussed in Ref. [29]. The effective action (42) may be recast
in the following form,

0.bdyr -0 -0 1 [do )
st hi= = [ 52| i [kt
infalling
+K Bap K} | : (44)
on-shell

where the indexes a, b € {1 =tx,2 = ty} and,

8t Sab
Bop(u,0) = | 7——F—5—.
¢ 8uu w? — mz(u)gtt

(45)

iwb eqp
Ap,w) = 4——5—,
‘ w? — m2(u) g

Now one needs to expand the fields K, = (K,x, Kty)T
near the horizon at # = uy and impose the infalling wave
condition, whose ansatz reads as follows,

Ko — up, 0)=(uy — )" [0y (0)+@a (@) (upy —u) +---],
(46)

where with the choice of the infalling wave condition at the
horizon I fixed two boundary conditions, and there are still
two boundary conditions to be fixed at the horizon (since
there are two second order coupled ODE’s for K;, and
K ,y).lo This is done by fixing two linearly independent sets

10 Notice that by taking the infalling wave condition one sets to zero
the two leading coefficients close to the horizon corresponding to the
outgoing modes. The other two leading coefficients that remain to be
fixed are the ¢, (@) in (46). The subleading coefficients ¢, (w) (and also
the other subleading coefficients omitted in the expansion) can be fixed
in terms of ¢, (@) by substituting the infrared expansion (46) back into
the equations of motion (39) and (40), and then setting to zero each
power of (uy — u) in the resulting algebraic equations.
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of initial conditions ¢,(;), (i) = 1, 2, which can be chosen
as follows [29],!!

1 1
¢ay = (L DT = <1> va = (1. =D = (_1>,

(47)

where the index a € {1 =tx,2 = ty} denotes the line and
the index (i) = 1, 2 denotes the column of the 2 x 2 matrix
of initial conditions,

11
Paiiy = (Ya1)s Pa)) = <1 _1) . (48)

Near the boundary (u = € — 0), according to Eq. (43),
the solutions are then expanded as follows,

Kuiy(w — 0, w) = Syy (@) + Ouy(@u + - -+, (49)

and the general solution is then a linear combination of the
solutions (49),

Ka(u, ) = Kagiy(u, 0)cpy (@). (50)
The (radial) constants c¢(;) must be chosen such that the com-

bined sources coincide with the boundary values J, of the
bulk fields,

0
T = Sarey = (K,g) _ (Sm) S1<2)) (cm)) 6D
Ky Sa) S22)) \c)

Thus, one needs to read off the answer of K/ (u — 0) ~
Qu i)y with respect to Jg, that is, one needs to figure out
how the derivatives K’ () relate to the sources K° 1x(y)" When
there are no constraints regarding some residual diffeomor-
phism invariance (as in the present case), one can fix ¢(;) by
simply inverting Eq. (51), since in this case det(S) # 0 [29],
therefore,

ciy = (S_1>(i)a L. (52)

In this way, one may write down the following relation close
to the boundary,

BusKj(u — 0) = BupOsi (S7')  Ja, (53)

()d
where, from Eq. (49), Sqi) = Ka@)(u = 0) and Ogy) =
a(l)(u = 0). Notice the numerical integration of the coupled

11 As discussed in Ref. [29], the results are independent of the specific
chosen sets, the only requirement is that these sets must be linearly
independent.

@ Springer

equations of motion (39) and (40) must be done from the hori-
zon to the boundary. If no relevant constraints are being inad-
vertently neglected, when substituting the infrared expan-
sions (46) into the equations of motion and then fixing the
expansion coefficients as discussed before, there should be
left unspecified two independent coefficients in this infrared
analysis [29], ¢, = @1 = ¢ and @, = @2 = @;y. These
coefficients are then fixed by choosing two different sets of
initial conditions according to Eq. (47), which will then gen-
erate the required numerical solutions K ;).

From the above developments, one can now rewrite the
effective action (44) as follows,

SOPdY 0 0 dw .
cond Ky K; ]_ __/EJ* {_uilérgo[Aad
infalling}
Ja,

on-shell

+BasOp(iy (Sl)md}

(54)

T
. 0 0
—iw (AX, Ay> , one
rewrites the above result in terms of the sources AS L of

the conserved vector currents at the boundary QFT in the
magnetically condensed phase as,

and since J, = (KO KO) =

x>

9 ,bdy (0 0 0 . 2
cond [Ax A __/ {—uiléll_l)oa) [Ajk
infalling
+B ;0 (S_l) _ ] A,?, (55)
Ok ] on-shell

where the indexes j, k,[ above run over {1 =x,2 = y},
while the index (i) = 1, 2 spans the different sets of initial
conditions (47). From the above result, one finally reads off
the formal result for the thermal retarded Green’s functions
in the bulk magnetically condensed phase,

®) J infalling
R),con
GFemo,

U=€—

_ 20 A Oy (S7!
a)) = hmow |:Ajk +le@[(1) (S >(i)k:|

on-shell

Then, from linear response theory, one has the following
Kubo formulas for the diagonal and Hall conductivities in
the magnetically condensed phase, respectively,

cond ____cond
oLy (G,w)_aw 0, w)

(R),cond
G 0, _
= G 00 lim B |:(O)x(1) (S 1)(1)
X

1w u=e—>

infalling

(57)

+®X(2) (S_l (2)xi|

on-shell
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Gy M. 0)

-ond -ond
(r;;f" @, w) = —a;,;?“ @, w) = o

=i lim_ {A” 4By, [@x(,) (S*')(l)y

U=€—>

+0:2) (S_l)a»} }

3.1.1 Numerical results

infalling

(58)

on-shell

The AC conductivities (57) and (58) generally have nontriv-
ial real and imaginary parts, and they need to be numerically
evaluated for different values of frequency w, #-angle, and
mass profiles m (u). For numerical calculations one needs to
specify a background, and here I will work with the AdSy-
Schwarzschild metric given by Eq. (15) (as done in Ref. [6]).
In order to express the results in terms of dimensionless quan-
tities, I am going to work with the following dimensionless
frequency (as also used in Ref. [6]),

o (59)
" 4nT’

and mass profiles given by,

m(u) = AM(u), (60)

where A is the mass scale of the bulk monopole conden-
sate [6] and I consider here numerical solutions for M (i) =
tanh(«) and M (u) = tanh(u«?), with different values of the
dimensionless combination Cp = AL/2 =0, 1, 2, as done
in Ref. [6].

The main steps involved in the numerical routine I devel-
oped are schematically as follows:

i. I substitute the AdS4-Schwarzschild background (15)
and some chosen profile for M («) in (60) back into the
coupled ODE’s (39) and (40), which are then written in
terms of the control parameters (Cx, 6, t0);

ii. Ichoose to work here with second order infrared expan-
sions in (46) and algebraically fix all the subleading
infrared coefficients in terms of the leading ones, as
discussed before;

iii. NextI fix the two free leading infrared coefficients using
the first set of initial conditions in Eq. (47), specifying
@11y and @o(1;

vi. With this I calculate the numerical values of Kj(y),
Ki(l), K> (1), and Ké(l) truncated at second order close
to the horizon, which are the required set of horizon con-
ditions needed to initialize the numerical integration of
the equations of motion;

v. Since the horizon and the boundary are singular points
of the ODE’s, I initialize the numerical integration
slightly beyond the horizon, at ugat = 1 — €, and end

the integration slightly below the boundary at the ultra-
violet numerical cutoff € = 1073,

vi. I use the small value Wy = 107> as a proxy for the
DC limit and run loops in (8, tv) with 6 varying from 0
to 2 in steps of 0.1 and 1 ranging from 1o,y to 12 also
in steps of 0.1 (clearly, other values may be chosen as a
matter of convenience);

vii. I repeat the previous step for Cx = 0, 1, 2 and store
the values of {Cjp, 0, v, Kl(l)(E), K{(])(E), Kz(l)(E),
Ké(] ) (e}

viii. Next I repeat items iii to vii, but now for the second set
of initial conditions in Eq. (47), and store the values of
{Ca. 0,10, Ki2)(€), K| (5)(€), Ka2)(€), K)o ()}

ix. From the previous results, for each value of Cy, I
construct the matrices S,y = Kqqy(€) and Qyy =
K ;(i)(e) (there will be one of such matrices for each
value of the control parameters (6, w)), and also invert
all the generated matrices Sq(;) to obtain (S7') . :

x. With all these results at hand, I finally calculate the real
and imaginary parts of the diagonal and Hall conductiv-
ities for each value of the control parameters (Cp, 6, 1v0)
using the holographic Kubo formulas (57) and (58).

The numerical robustness and accuracy of the method
implemented above has been nontrivially checked in many
different ways. First, the numerical results obtained at
Cp = 0 (corresponding to no monopoles in the bulk)
coincide with the analytical results of the Maxwell the-
ory with the O-term reviewed in Sect. 2, as it should
be. Second, for Cp # 0 (corresponding to the magneti-
cally condensed phase) the results for the real and imag-
inary parts of the diagonal and Hall conductivities con-
verge to the analytical results of the Maxwell theory in
the ultraviolet regime of large frequencies, as expected.
Moreover, for & = 0 I was able to reobtain the numeri-
cal results of Ref. [6], which were computed using a com-
pletely different method based on first order flow equa-
tions.

The results for the real and imaginary parts of the diagonal
and Hall conductivities for different effective mass profiles
m(u) are displayed in Figs. 1, 2, 3,4, 5, 6, 7 and 8.

The main conclusion of the present work, drawn from
the analysis of these plots, is that the real and imaginary
parts of the diagonal and Hall conductivities in all the cases
vanish in the DC limit (v — 0) when there is a magnetic
monopole condensate in the bulk (Cp # 0). This general-
izes the conclusion of Ref. [6], showing that not only the
diagonal, but also the Hall DC conductivity in the strongly
coupled QFT vanishes as a consequence of the presence
of a magnetic monopole condensate in the bulk. Notice
also that the inclusion of the topological 6-term does not
change this conclusion for the DC limit of the diagonal
conductivity, even though at finite frequencies the results
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are sensitive to the value of the #-angle. Therefore, we
see that a magnetic monopole condensate in the bulk pro-
vides a fairly general and robust mechanism for generat-
ing strongly coupled QFT’s with vanishing DC conductiv-
ities.

The regime of intermediate frequencies also unveils some
interesting features. Notice from the pairs of Figs. 1, 2,
3, 4,5, 6,7 and 8, that for a fixed effective mass pro-
file m(u) = AM (u), around the regions where the oscil-
lation amplitudes of the AC conductivities are larger, the
real part of the Hall conductivity is pretty similar to the
imaginary part of the diagonal conductivity, while the real
part of the diagonal conductivity is very similar to minus
the imaginary part of the Hall conductivity, even though
they clearly differ in the ultraviolet limit of large frequen-
cies.

Moreover, by looking at the pairs of Figs. 1, 2, 3, 4, 5, 6,
7 and 8, one also notices that the regions where the oscilla-
tion amplitudes of the AC conductivities are larger tend to
be shifted toward larger values of the frequency for increas-
ing values of the characteristic mass scale of the monopole
condensate. This is more clearly illustrated in Figs. 9, 10, 11
and 12, where the conductivities are plotted as functions of
the monopole condensate scale and the frequency.

4 Conclusion

In this work I investigated the effects caused by the topolog-
ical #-angle in the diagonal and Hall AC conductivities of
strongly coupled 3-dimensional QFT’s holographically dual
to a 4-dimensional bulk condensate of magnetic monopoles.
In this way, I generalized the work of Ref. [6], whose results
constitute a particular case of the present work with 6 = 0.
This generalization not only allowed for the numerical cal-
culation of nontrivial profiles for the AC Hall conductivity,
but it also uncovered how the diagonal AC conductivity is
affected by the 9-angle.

The main conclusion of the present work regards the
infrared limit of zero frequencies. In fact, it was concluded
that a monopole condensate in the bulk constitutes a fairly
general and robust holographic mechanism to generate dual
strongly coupled QFT’s with vanishing DC diagonal and Hall
conductivities.

In the opposite, ultraviolet limit of large frequencies, the
diagonal and Hall conductivities converge to the analytical
results of the Maxwell theory. This can be physically traced
back to the fact that while perturbations of very low frequen-
cies are sensitive to the magnetically condensed phase in the
bulk, very high frequency disturbances are not. In fact, in
the DC limit of zero frequencies the bulk monopole conden-
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sate can be effectively seen as a macroscopically continuous
dual superconducting medium, and the implied confinement
of electric flux tubes within the bulk makes the transport
of electric charges — seen as the intersection of these bulk
flux tubes with the boundary, as discussed in Refs. [1,4] —
negligible, therefore leading to a vanishing DC conductiv-
ity. On the other hand, since very high frequency perturba-
tions can microscopically resolve the structure of the con-
densate of magnetic monopoles and probe distances much
smaller than the characteristic distance scale of the mag-
netic condensate, A !, charge transport at the boundary in
this ultraviolet limit takes place as in the diluted (Maxwell)
phase.

In between, for intermediate frequencies, the interplay
between these frequencies, the 6-angle, and the characteris-
tic mass scale of the monopole condensate A unveiled strong
correlations between the profiles for the real part of the Hall
the conductivity and the imaginary part of the diagonal con-
ductivity, and also between the profiles for the real part of the
diagonal conductivity and (minus) the imaginary part of the
Hall conductivity, specially within the region of parameters
where the oscillation amplitudes of the AC conductivities are
larger.

I worked here in the probe approximation with a fixed
black hole background, and I intend to generalize in the future
the calculations pursued here by considering the backreac-
tion of the matter action describing the monopole condensate
into a dynamical background.
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5 Appendix A: Hall and diagonal conductivities in the
bulk electrically condensed phase

In this appendix I discuss the case with a condensate of elec-
tric charges in the bulk. The case with no 6-term was origi-
nally presented in Ref. [6] and gives qualitatively the same
results obtained for the holographic superconductor proposed
in Ref. [35].

As detailed discussed in Ref. [6], in the electrically con-
densed phase the effective action for the vector field sector
is the Proca action with a radial-dependent mass which van-
ishes at the boundary (where the massive Proca field reduces
to the massless Maxwell field sourcing a conserved vector
current operator in the dual QFT). In an ultraviolet com-
pletion of such action the radial-dependent mass, which I
take as a prescribed profile here, corresponds to a dynamical
scalar field associated to the electric condensate (the poten-
tial of this scalar field may be chosen such as to produce
some prescribed profile used for the radial-dependent mass
in the effective Proca action). By including a 6-term, the low
energy effective action describing the lowest-lying modes of
the electrically condensed phase in the bulk reads,

1 m?(u)
0,elt 4 2 2
SeondlApl = — /M4 d*x/—g [ZF”“ + 5 As

6 ~

4 My

1 u=upy

[ R A Ry 0 A8, 4y
IMy u=e

1

+ ) /M d4XAv [ap. (\/jgguagvﬂFa/s) +
4

e A, (A1)

where one sees by comparing the above action with Eq. (1)
that the off-shell border terms have the same functional form
as in the diluted phase described by Maxwell theory!? with
the 6-term, but now the equation of motion is given by Proca
equation,

0y (V=88"“g" Fup) — V—gm*(w)g"" A, =0.  (A2)
The v = x(y) component of Proca equation (A2) reads in
momentum space,13

8 8
Ou (,/i ;(v)> +. /= [“’2 - m2(u)gn] Ax =0,
Suu i 8t

(A3)

while the v = # component gives a constraint expressing A,
as function of A}, and the remaining equation, after using the

12 Without fixing the radial gauge in Maxwell theory.

13 [ consider again the limit of zero spatial momentum, which is enough
for the calculation of the conductivities.

constraint for A,, gives a decoupled equation of motion for
A;. Since the relevant components of the vector field for the
calculation of the conductivities, A, and Ay, satisfy the same
decoupled equation of motion (A3), which is also the same
one obtained in Ref. [6] for the Proca theory without the 6-
term, the numerical solutions are also the same which were
derived in Ref. [6]. Moreover, as A, and A; do not couple
to Ay and Ay (neither in the equations of motion, nor in the
boundary action), the relevant sector of the boundary action
for the calculation of the diagonal and Hall conductivities
has the same off-shell functional form of Eq. (7),

6.eltbdy, ,0 ,0 1 (do _ A
Stagtal =3 [ 52 {‘uifio[\/—*gg“"g” (434,
infalling
+A;A;) tiod (A;Ay _ A;‘,Ax) }
) on-shell
(A4)

But one notes that the on-shell action (A4) will be actu-
ally different from Eq. (26) (valid for the diluted Maxwell
phase), because the on-shell components of the Proca field
solve Eq. (A3) instead of Maxwell equations (8) or (9). Since
m(u = 0) = 0, one recovers in the ultraviolet limit of high
frequencies the results for the Maxwell theory with the 6-
term revised in Sect. 2. In particular, since the terms propor-
tional to 6 in the on-shell boundary action (A4) do not depend
on the radial derivative of A, (y), the AC Hall conductivities
in the electrically condensed phase are exactly the same ones
obtained for the diluted phase in Eq. (28). On the other hand,
the diagonal AC conductivities in the electrically condensed
phase are given by the same numerical results derived in Ref.
[6] for the Proca theory without the 6-term. In this way, the
addition of the 0-term to the Proca theory does not mod-
ify the diagonal conductivities of the latter, which therefore
still diverge in the DC limit of zero frequency [6], indicat-
ing a superconducting state at the boundary QFT in the same
lines of Ref. [35], while such addition does provide finite and
constant Hall conductivities which coincide with the result
for Maxwell theory with the 6-term [7]. Strongly coupled
holographic superconducting states with nonzero Hall con-
ductivity have been previously considered, for instance, in
Refs. [36,37].
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