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Abstract In this paper, we investigate the effect of the Gen-
eralized Uncertainty Principle (GUP) in the Casimir worm-
hole spacetime recently proposed by Garattini (Eur Phys
J C 79: 951, 2019). In particular, we consider three types
of GUP relations, firstly the Kempf, Mangano and Mann
(KMM) model, secondly the Detournay, Gabriel and Spin-
del (DGS) model, and finally the so-called type II model
for the GUP principle. To this end, we consider three spe-
cific models of the redshift function along with two different
equations of state (EoS), given by Pr (r) = ωr (r)ρ(r) and
Pt (r) = ωt (r)Pr (r) and obtain a class of asymptotically flat
wormhole solutions supported by Casimir energy under the
effect of GUP. Furthermore we check the null, weak, and
strong condition at the wormhole throat with a radius r0, and
we show that in general the classical energy conditions are
violated by some arbitrary quantity at the wormhole throat.
Importantly, we examine the wormhole geometry with semi-
classical corrections via embedding diagrams. We also con-
sider the ADM mass of the wormhole, the volume-integral
quantifier to calculate the amount of the exotic matter near
the wormhole throat, and the deflection angle of light.

1 Introduction

The search for a theory of exotic objects through Einstein’s
general theory of relativity has received a lot of interest in the

a e-mail: kimet.jusufi@unite.edu.mk
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c e-mail: mjamil@zjut.edu.cn (corresponding author)

literature. A black hole, e.g. the Schwarzschild black hole,
possesses one of the possible solutions to Einstein’s field
equations; see Ref. [1]. The recent detection of gravitational
waves (GWs) [2] demonstrated that stellar-mass black holes
really exist in Nature. Interestingly, the author of Ref. [3]
realized in 1916 that another solution was viable which is
presently known as a “white hole”.

In 1935, Einstein and Rosen used the theory of general rel-
ativity to propose the existence of “bridges” through space-
time [4]. These bridges connecting two different points in
spacetime enable one to create a shortcut called Einstein–
Rosen bridges, or wormholes. However, the existence of
wormholes needs to be experimentally observed. Moreover,
Morris and Throne [5] demonstrated that wormholes are solu-
tions of Einstein field equations. Hypothetically, they connect
two spacetime regions of the universe by a throat. The first
type of wormhole solution was the Schwarzschild worm-
hole [6] which would be present in the Schwarzschild metric
describing an eternal black hole. However, it was found that
it would collapse too quickly. In principle, it is possible to
stabilize the wormholes if there exists an exotic version of
matter with negative energy density.

In order to maintain the structure of the wormhole, we
need the version of exotic matter which satisfies the flare-out
condition and violates the weak energy condition [7,8]. Clas-
sically, there are no traversable wormholes. However, it has
been recently shown that quantum matter fields can provide
enough negative energy to allow some wormholes to become
traversable. As a result, to construct such a traversable worm-
hole requires an exotic matter with a negative energy density
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and a large negative pressure, which should have a higher
value than the energy density.

In the literature, many authors have intensively stud-
ied various aspects of traversable wormhole (TW) geome-
tries within different modified gravitational theories [9–35].
Recently the shadows of wormholes and Kerr-like worm-
holes was investigated in Refs. [36–41]. These include f (R)

and f (T ) theories; see, e.g., [42–45]. Among them, in view
of the possibility of phantom energy, this presents us with a
natural scenario for the existence of traversable wormholes
[46]. In addition, the wormhole construction in f (R) gravity
is studied in Refs. [43,47]. Interestingly, the Casimir effect
also provides a possibility to produce a negative energy den-
sity and this can be used to stabilze tranversable wormholes.

The main aim of this paper is to investigate the effect of
the Generalized Uncertainty Principle (GUP) in the Casimir
wormhole spacetime recently proposed by Garattini [48].
In particular, we consider three types of the GUP relations:
(1) the Kempf, Mangano and Mann (KMM) model, (2) the
Detournay, Gabriel and Spindel (DGS) model, and (3) the
so-called type II model for the GUP principle. We study a
class of asymptotically flat wormhole solutions supported by
Casimir energy under the effect of GUP.

This paper is organized as follows: in Sect. 2, we take a
short recap of the Casimir effect under the GUP and consider
three models with the generic functions f

(
p̂2

)
and g

(
p̂2

)
.

In Sect. 3, we construct the GUP Casimir wormholes by par-
ticularly focusing on three types of GUP relations. We then
examine the energy conditions of our proposed models in
Sect. 6 and quantify the amount of exotic matter required for
wormhole maintenance in Sect. 7. Furthermore, we study
the gravitational lensing effect in the spacetime of the GUP
Casimir wormholes in Sect. 8. We finally conclude our find-
ings in the last section.

In this work, we use the geometrical units such that G =
c = 1.

2 The Casimir effect under the generalized uncertainty
principle

The Casimir effect manifests itself as the interaction of a
pair of neutral, parallel conducting planes caused by the dis-
turbance of the vacuum of the electromagnetic field. The
Casimir effect can be described in terms of the zero-point
energy of a quantized field in the intervening space between
the objects. It is a macroscopic quantum effect which causes
the plates to attract each other. In his famous paper [49],
Casimir derived the finite energy between plates and found
that the energy per unit surface is given by

E = − π2

720

h̄

a3 , (1)

where a is a distance between plates along the z-axis, the
direction perpendicular to the plates. Consequently, we can
determine the finite force per unit area acting between the
plates to find F = − π2

240
h̄
a4 . Notice that the minus sign

corresponds to an attractive force. The resolution of small
distances in the spacetime is limited by the existence of a
minimal length in the theory. Note that the prediction of a
minimal measurable length of the order of the Planck length
in various theories of quantum gravity restricts the maxi-
mum energy that any particle can attain to the Planck energy.
This implied the modification of linear momentum and also
quantum commutation relations and results in the modified
dispersion relation, e.g., gravity’s rainbow [50]; there are par-
ticular cosmological [51–53] and astrophysical implications
[54–58]. Moreover, this scale naturally arises in theories of
quantum gravity in the form of an effective minimal uncer-
tainty in the positions �x0 > 0.

For instance, in string theory, it is impossible to improve
the spatial resolution below the characteristic length of the
strings. As a result, a correction to the position–momentum
uncertainty relation related to this characteristic length can
be obtained. In one dimension, this minimal length can be
implemented adding corrections to the uncertainty relation;
we obtain

�x�p ≥ h̄

2

[
1 + β (�p)2 + γ

]
, β, γ > 0, (2)

where a finite minimal uncertainty �x0 = h̄
√

β in terms
of the minimum length parameter β appears. As a result,
the modification of the uncertainty relation Eq. (2) implies
a small correction term to the usual Heisenberg commutator
relation of the form
[
x̂, p̂

] = i h̄
(

1 + β p̂2 + · · ·
)

. (3)

It is worth noting in these theories that the eigenstates of
the position operator are no longer physical states whose
matrix elements would have the usual direct physical inter-
pretation as regards positions. Therefore, one introduces the
“quasi-position representation”, which consists in projecting
the states onto the set of maximally localized states. Interest-
ingly, the usual commutation relation given in Eq. (3) can be
basically generalized. In n spatial dimensions, the general-
ized commutation relations leading to the GUP that provides
a minimal uncertainty are assumed to be of the form [59]

[
x̂i , p̂ j

] = i h̄
[
f
(
p̂2

)
δi j + g

(
p̂2

)
p̂i p̂ j

]
, (4)

where i, j = 1, . . . n and the generic functions f
(
p̂2

)
and

g
(
p̂2

)
are not necessarily arbitrary. Note that the relations

between them can be quantified by imposing translational
and rotational invariance on the generalized commutation
relations. As mentioned in Ref. [59], the specific form of
these states depends on the number of dimensions and on
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the specific model considered. For example, when n > 1 the
generalized uncertainty relations are not unique and differ-
ent models may be obtained by choosing different functions
f
(
p̂2

)
and/or g

(
p̂2

)
, which will yield different maximally

localized states.

2.1 Model I (KMM)

The specific form of these states depends on the number
of dimensions and on the specific model considered. In the
literature there are at least two different approaches to con-
structing maximally localized states: the procedure proposed
by Kempf, Mangano and Mann (KMM). This model cor-
respond to the choice of the generic functions f

(
p̂2

)
and

g
(
p̂2

)
given in Ref. [59]:

f
(
p̂2

)
= β p̂2

√
1 + 2β p̂2 − 1

, g
(
p̂2

)
= β. (5)

From now on we will remove the hat over the operator. Fol-
lowing the KMM construction, one obtains then the final
result with the first order correction term in the minimal
uncertainty parameter β introduced in the modified commu-
tation relations of Eq. (3):

E = − π2

720

h̄

a3

[

1 + π2

(
28 + 3

√
10

14

) (
h̄
√

β

a

)2
]

. (6)

The force per unit area relation in this model is given by

F = − π2

240

h̄

a4

[

1 + π2

(
10

3
+ 5

√
10

14

)(
h̄
√

β

a

)2
]

. (7)

2.2 Model I (DGS)

In this model the Casimir energy per unit surface is given by
[59]

E = − π2

720

h̄

a3

[

1 + π2 4
(
3 + π2

)

21

(
h̄
√

β

a

)2
]

. (8)

On the other hand, the finite force per unit area acting between
the plates

F = − π2

240

h̄

a4

[

1 + π2
(

20

21
+ 20π2

63

) (
h̄
√

β

a

)2
]

. (9)

2.3 Model II

The model proposed is completely different from that given
by Eq. (5). This model has the following functions f and
g [59]:

f
(
p2

)
= 1 + βp2, g

(
p2

)
= 0. (10)

One obtains then the final result [59]

E = − π2

720

h̄

a3

[

1 + π2 2

3

(
h̄
√

β

a

)2
]

. (11)

The first term in Eq. (11) is the usual Casimir energy reported
in Eq. (1) and is obtained without the cut-off function. The
second term is the correction given by the presence in the
theory of a minimal length. We note that it is attractive. The
force per unit area in this model is given by

F = − π2

240

h̄

a4

[

1 + π2 10

9

(
h̄
√

β

a

)2
]

. (12)

2.4 GUP corrected energy density

Let us know elaborate in more detail the GUP corrected
energy densities by writing first the renormalized energies
for three GUP cases

E = −π2S

720

h̄

a3

[

1 + Ci

(
h̄
√

β

a

)2
]

(13)

where S is the surface area of the plates and a is the separation
between them. Note that we have introduced the constant Ci

where i = 1, 2, 3. In particular we have the following three
cases:

C1 = π2

(
28 + 3

√
10

14

)

, (14)

C2 = 4π2
(

3 + π2

21

)
, (15)

C3 = 2π2

3
. (16)

Then the force can be obtained with the computation of

F = −dE

da
= −3π2S

720

h̄

a4

[

1 + 5

3
Ci

(
h̄
√

β

a

)2
]

(17)

Thus, using

P = F
S

= −3π2

720

h̄

a4

[

1 + 5

3
Ci

(
h̄
√

β

a

)2
]

= ωρ. (18)

At this point we note that in the case of Casimir energy
there is a natural EoS establishing a fundamental relationship
by choosingω = 3. From the last equation we obtain the GUP
corrected energy density in a compact form:

ρ = − π2

720

h̄

a4

[

1 + 5

3
Ci

(
h̄
√

β

a

)2
]

. (19)
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Setting β = 0, we obtain the usual Casimir result. In this way
we can introduce a new constant Di = 5Ci/3; however, the
GUP extension seems to be not uniquely defined, therefore
different extensions lead to different Di . This, on the other
hand, suggests a possible extension of energy density. For
example, one can postulate the following extension:

ρ = − π2

720

h̄

a4

[

1 + Ai

(
h̄
√

β

a

)2

+ Bi

(
h̄
√

β

a

)4

+ · · ·
]

,

(20)

where Ai and Bi are some constants. In the present work we
shall use Eq. (19) for the energy density and leave Eq. (20)
for future work.

3 GUP Casimir wormholes

We consider a static and spherically symmetric Morris–
Thorne traversable wormhole in the Schwarzschild coordi-
nates given by [5]

ds2 = −e2	(r)dt2 + dr2

1 − b(r)
r

+ r2
(

dθ2 + sin2 θdφ2
)

,

(21)

in which 	(r) and b(r) are the redshift and shape functions,
respectively. In the wormhole geometry, the redshift function
	(r) should be finite in order to avoid the formation of an
event horizon. Moreover, the shape function b(r) determines
the wormhole geometry, with the condition b(r0) = r0, in
which r0 is the radius of the wormhole throat. Consequently,
the shape function must satisfy the flaring-out condition [5]:

b(r) − rb′(r)
b2(r)

> 0, (22)

in which b′(r) = db
dr < 1 must hold at the throat of the worm-

hole. With the help of the line element (21), we obtain the fol-
lowing set of equations resulting from the energy-momentum
components:

ρ(r) = 1

8πr2 b
′(r), (23)

Pr (r) = 1

8π

[
2

(
1 − b(r)

r

)
	′

r
− b(r)

r3

]
, (24)

Pt (r) = 1

8π

(
1 − b(r)

r

)[
	′′ + (	′)2 − b′r − b

2r(r − b)
	′

− b′r − b

2r2(r − b)
+ 	′

r

]
, (25)

where Pt = Pθ = Pφ .
Having used the energy density, we can find the shape

function b(r) and then we can use the EoS with a specific
value for ω to determine the redshift function. However,
in general, it is well known that most of the solutions are
unbounded if r is very large. Hence such corresponding solu-
tions may not be physical. In the present paper, we are inter-
ested in deriving the equation of state (connecting pressure
with density) for a given wormhole geometry. In other words,
we fix the geometry parameters using different redshift func-
tions of a wormhole and then ask what the EoS parameter in
the corresponding case is. Moreover, we also need to check
the behavior of energy conditions near the throat. In order to
simplify the notation from now on, we shall set the Planck
constant to one, i.e., h̄ = 1.

3.1 Model 	 = constant

To simplify our calculations, we are going to introduce Di

and the replacement a → r in the expression for the energy
density. In that case, using Eq. (19) the energy density rela-
tions can be rewritten

ρ = − π2

720r4

[

1 + Di

(√
β

r

)2
]

, (26)

where i = 1, 2, 3. In particular we have the following three
cases:

D1 = 5 π2

(
28 + 3

√
10

42

)

, (27)

D2 = 20 π2
(

3 + π2

63

)
, (28)

D3 = 10π2

9
. (29)

The simplest case is a model with 	 = constant, namely a
spacetime with no tidal forces, namely 	′(r) = 0. In other
words, this is asymptotically flat wormhole spacetime. We
find

b(r) = C1 + π3

90r
+ π3Diβ

270r3 . (30)

Finally we use b(r0) = b0 = r0, to calculate the constant
C . Thus by solving the last differential equation we find the
shape function to be

b(r) = r0 + π3

90

(
1

r
− 1

r0

)
+ π3Diβ

270

(
1

r3 − 1

r3
0

)

. (31)
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Fig. 1 The shape function of the GUP wormhole against r . We use
h̄ = 1 and β = 0.1

Fig. 2 We check the flare-out condition. Variation of b′(r) against r .
We have used r0 = 1, h̄ = 1 and β = 0.1

In Fig. 1, we have plotted the shape function b(r).
Introducing the scaling of coordinate exp(2	)dt2 → dt2

(since exp(2	) = const), the wormhole metric reads

ds2 = −dt2 + dr2

1 − r0
r − π3

90r

(
1
r − 1

r0

)
− π3Diβ

270r

(
1
r3 − 1

r3
0

)

+r2(dθ2 + sin2 θ dφ2). (32)

Clearly, in the limit r → ∞, we obtain

lim
r→∞

b(r)

r
→ 0. (33)

The asymptotically flat metric can be seen also from Fig. 2.
Using the EoS Pr (r) = ω(r)ρ(r), one can easily see that
when 	(r) = 0 (tideless wormholes) we obtain

8ω(r)ρ(r)πr3 + b(r) = 0. (34)

Solving this equation for the EoS parameter we obtain

ω = −βDiπ
3(r3 − r3

0 ) + 3r2
0r

2((π3 − 90r2
0 )r − π3r0)

3(Diβ + r2)π3r3
0

.

(35)

Fig. 3 The EoS parameter ω for the GUP wormhole with 	 = 0 as a
function of r . We use r0 = 1, h̄ = 1 and β = 0.1

In Fig. 3, we have shown the behavior of ω.

3.2 Model with 	(r) = r0
r

3.2.1 EoS: Pr (r) = ωr (r)ρ(r)

We shall begin our analysis by considering the EoS Pr (r) =
ωr (r)ρ(r). From the Einstein field equations (25), we find

	′(r) = −8ωr (r)ρ(r)πr3 + b(r)

2r(−r + b(r))
. (36)

Now considering the model function

	(r) = r0

r
, (37)

we obtain the following equation:

(r − 2r0)b(r) + 8ω1(r)ρ(r)r4π + 2r0r

8πr4 = 0.

Finally using the shape function (28) for the EoS parameter
we obtain

ωr (r) = −β
[
Diπ

3(r4 − 2r3r0 − rr3
0 + 2r4

0 )
] + F

3(Diβ + r2)rπ3r3
0

, (38)

where

F = 3π3r4r2
0 − 9π3r3r3

0 + 6π3r2r4
0 − 810r4r4

0

+540r3r5
0 . (39)

In Fig. 4, we have plotted the parameter ωr .

3.2.2 EoS: Pt (r) = ωt (r)Pr (r)

Let us now consider the scenario in which the EoS is of
the form Pt (r) = ωt (r)Pr (r), where ωt (r) is an arbitrary
function of r . In this case, combining the second and the
third equation in (25) we find the following equation:
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Fig. 4 The EoS parameter ωr (r) against r . We use r0 = 1, h̄ = 1 and
β = 0.1 along with a non-constant redshift function 	 = r0/r

Fig. 5 The EoS parameter ωt (r) for the GUP wormhole with a non-
constant redshift function 	 = r0/r as a function of r . We use r0 = 1,
h̄ = 1 and β = 0.1. We consider only the case D1

2r(r + 1)(r − b(r))	′′(r) + 2r2(r − b(r))(	′(r))2

−r	′(r) [(−4ω2(r) + r − 1)b(r) + 4ω2(r)r ]

+b(r)(2ωt (r) − r + 1) = 0. (40)

Using the shape function (31) along with Eq. (37) from the
last equation we obtain

ωt (r) =
(r − r0)

[
βDiπ

3(r2 + rr0 + r2
0 )H + 3r2

0r
2G

]

2r
[
βDiπ3(r4 − 2r3r0 − rr3

0 + 2r4
0 ) + F] ,

(41)

where

H = 2r2
0 + r0(4 + 5r − r2) + r2(r − 1), (42)

G = 180rr3
0 + r2

0 (2π3 − 90r3 + 450r2 + 360r) − π3

×r0(r
2 − 5r − 4) + r2π3(r − 1), (43)

F = 3π3r4r2
0 − 9π3r3r3

0 + 6π3r2r4
0 − 810r4

0r
4

+540r3r5
0 . (44)

Finally the GUP Casimir wormhole metric can be written
as

Fig. 6 The EoS parameter ωr (r) against r using the model

exp(2	(r)) = 1 + γ 2

r2 for different values of γ . We use r0 = 1, h̄ = 1
and β = 0.1. Here we consider the case D1

ds2 = − exp

(
2r0

r

)
dt2+ dr2

1 − b(r)
r

+r2
(

dθ2 + sin2 θdφ2
)

,

(45)

with the shape function given by Eq. (12) satisfying the EoS
with the parameter ω and n, given by Eqs. (38) and (41),
respectively.

3.3 Model exp(2	(r)) = 1 + γ 2

r2

Our second example is the wormhole metric given by

ds2 = −
(

1 + γ 2

r2

)
dt2+ dr2

1 − b(r)
r

+r2
(

dθ2 + sin2 θdφ2
)

,

(46)

where γ is some positive parameter and r ≥ r0. As in the
last section, we can assume the EoS Pr (r) = ωr (r)ρ(r) then
solve Eq. (38) for the EoS parameter ωr (r). Due to the lim-
itation of space, here we can simply skip the full expression
for ωr (r) and give only the plot for a domain of ωr (r) as a
function of r , illustrated in Fig. 6. Finally, we can use the
EoS of the form Pt (r) = ωt (r)Pr (r), and obtain an expres-
sion for ωt (r). As we already pointed out, we can simply
skip the full expression and it is straightforward to check the
dependence of ωt (r) against r given by Fig. 7.

3.4 Isotropic model with ωr (r) = const.

From the conservation equation ∇μTμν = 0, we can obtain
the hydrostatic equation for equilibrium of the matter sus-
taining the wormhole

P ′
r (r) = 2(Pt (r) − Pr (r))

r
− (ρ(r) + Pr (r))	

′(r), (47)
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Fig. 7 The EoS parameter ωt (r) against r using the model

exp(2	(r)) = 1 + γ 2

r2 and different values of γ . We use r0 = 1,
h̄ = 1 and GUP parameter β = 0.1 and D1

where we have considered a perfect fluid with Pt = Pr , and
assumed the EoS Pr (r) = ωrρ(r), where ω is a constant
parameter this time. Then it can be reduced to

ωrρ
′(r) = −(1 + ωr )ρ(r)	′(r), (48)

in whichρ(r) is given by Eq. (26). Solving the last differential
equation by setting ρ(r) → −|ρ(r)|, we obtain the following
result:

	(r) = C + ωr

ωr + 1

[
ln

(
r6

r2 + βDi

)]
. (49)

Absorbing the constant C via the scaling dt → Cdt , the
wormhole metric element can be written as

ds2 = −
(

r6

r2 + βDi

) 2
1+1/ω

dt2 + dr2

1 − b(r)
r

+r2
(

dθ2 + sin2 θdφ2
)

, (50)

where r ≥ r0. It is easy to see that the above solution is finite
at the wormhole throat with r = r0, provided ωr �= −1.
Note that the redshift function 	 is unbounded for large r as
a result one cannot construct asymptotically flat GUP worm-
holes with isotropic pressures and, in general, such solutions
may not be physical.

3.5 Anisotropic model with ωr = const.

As we have observed, the isotropic model is of very lim-
ited physical interest. In this final example we shall elabo-
rate an anisotropic GUP Casimir wormhole spacetime. To
do so, one can use the relations Pt (r) = n ωr ρ(r), and
Pr (r) = ωrρ(r), where n is some constant. We get the fol-
lowing relation:

ωr ρ′(r) = 2 ωr ρ(r) (n − 1)

r
− (1 + ωr )ρ(r)	′(r). (51)

Fig. 8 We plot exp(2	(r)) for the anisotropic case. We have used
r0 = 1, h̄ = 1, β = 0.1, n = −1 and ω = 1

Solving this equation for the redshift function, we obtain

	(r) = C + ωr

ωr + 1

[

ln

(
r2(n+2)

r2 + βDi

)]

. (52)

We obatain the metric

ds2 = −
(

r2(n+2)

r2 + βDi

) 2
1+1/ωr

dt2 + dr2

1 − b(r)
r

+r2
(

dθ2 + sin2 θdφ2
)

, (53)

provided r ≥ r0. Notice that we recover an isotropic case
(49) here when setting n = 1 and a singularity at ωr = −1.
In the anisotropic case it is not difficult to show that one can
construct asymptotically flat spacetime. Setting n = −1 and
ωr �= −1, the above metric reduces to

ds2 = −
(

1

1 + βDi
r2

) 2
1+1/ωr

dt2 + dr2

1 − b(r)
r

+r2
(

dθ2 + sin2 θdφ2
)

, (54)

which is asymptotically flat spacetime. In fact, it is easy to
check that the case n = −1 gives the only asymptotically at
flat solution. As we can see from Fig. 8, in the limit r → ∞
we obtain exp(2	(r)) = 1, as was expected.

4 Embedding diagram

In this section we discuss the embedding diagrams to rep-
resent the GUP corrected Casimir wormhole by considering
an equatorial slice θ = π/2 at some fix moment in time
t = constant. The metric can be written as

ds2 = dr2

1 − b(r)
r

+ r2dφ2. (55)
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Fig. 9 The GUP Corrected
Casimir wormhole embedded in
a three-dimensional Euclidean
space. Left panel: we have used
r0 = 1, h̄ = 1, β = 0.06. Right
panel: we have used r0 = 1,
h̄ = 1, β = 0.18. In both plots
we have used D1

We embed the metric (55) into three-dimensional Euclidean
space to visualize this slice and the spacetime can be written
in cylindrical coordinates as

ds2 = dz2 + dr2 + r2dφ2. (56)

From the last two equations we find that

dz

dr
= ±

√
r

r − b(r)
− 1, (57)

where b(r) is given by Eq. (31). Note that the integration
of the last expression cannot be accomplished analytically.
Invoking numerical techniques allows us to illustrate the
wormhole shape given in Fig. 9. From Fig. 9 we observe
the effect of GUP parameter on the wormhole geometry.

5 ADM mass of GUP wormhole

Now let us compute the ADM mass for GUP Casimir worm-
hole. We consider the asymptotic flat spacetime

ds2
 = ψ(r)dr2 + r2χ(r)

(
dθ2 + sin2 θdφ2

)
, (58)

where we have identified

ψ(r) = 1

1 − b(r)
r

, and χ(r) = 1. (59)

In order to compute the ADM mass, we use the approach via
the following relation (see [36]):

MADM = lim
r→∞

1

2

[
−r2χ ′ + r(ψ − χ)

]
. (60)

On substituting the values in (60) and after computing the
limit we get the ADM mass for the wormhole,

MADM = r0 − π3

90r0
− βDiπ

3

270r3
0

. (61)

Note that this is the mass of the wormhole as seen by
an observer located at the asymptotic spatial infinity. It is
observed that the GUP effect decreases the ADM mass.
Notice that the ADM mass (61) consists of three terms: the
geometric term r0 given by the first term, a semiclassical
quantum effect of the spacetime given by the second term,
and finally the GUP effect given by the third term. Related
to the GUP parameter, let us point our that in Ref. [60] the
authors have speculated about the possibility to predict upper
bounds on the quantum gravity parameter in the GUP, com-
patible with experiments at the electroweak scale.

6 Energy conditions

Given the redshift function and the shape function, we can
compute the energy-momentum components. In particular
for the radial component we find

Pr = βDiπ
3(r4 − 2r3r0 − rr3

0 + 2r4
0 ) + F

2160r7r3
0π

, (62)

where F is given by Eq. (42). On the other hand for the
tangential component of the pressure we find the following
result:

Pt = (r − r0)
[
βDiπ

3(r2 + rr0 + r2
0 )H + 3r2

0r
2G]

4320r3
0πr8

, (63)
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Fig. 10 The variation of ρ + Pr as a function of r using 	 = r0/r .
We use r0 = 1, h̄ = 1, β = 0.1 and D1

in which H and G are given by Eqs. (42) and (43), respec-
tively.

With these results we can continue our discussion of the
issue of energy conditions and make some regional plots to
check the validity of all energy conditions. In particular we
recall that the WEC is defined by TμνUμU ν ≥ 0, i.e.,

ρ(r) + Pr (r) ≥ 0, (64)

where Tμν is the energy-momentum tensor and Uμ denotes
the timelike vector. In other words, the local energy density
is positive and it gives rise to the continuity of NEC, which
is defined by Tμνkμkν ≥ 0 i.e.,

ρ(r) + Pr (r) ≥ 0, (65)

where kμ is a null vector. On the other hand the strong energy
condition (SEC) stipulates that

ρ(r) + 2Pt (r) ≥ 0 (66)

and

ρ(r) + Pr (r) + 2Pt (r) ≥ 0. (67)

We see from Figs. 5, 6, 7, 8, 9, 10, 11 and 12, and similarly
Figs. 13, 14 and 15, NEC, WEC, and SEC are not satisfied at
the wormhole throat r = r0. In fact one can check numeri-
cally that in all plots at the wormhole throat r = r0, we have
(ρ + Pr ) |r0=1 < 0, along with (ρ + Pr + 2Pt ) |r0=1 < 0,
by small values.

However, from quantum field theory it is well known that
quantum fluctuations violate most energy conditions without
any restrictions and this opens the possibility that quantum
fluctuations may play an important role in the wormhole sta-
bility. For instance, one can examine the consequences of the
constraint imposed by a Quantum Weak Energy Condition
(QWEC) given by [48]

ρ(r) + Pr (r) < f (r), f (r) > 0, (68)

Fig. 11 The variation of ρ + 2Pt against r and 	 = r0/r . We use
r0 = 1, h̄ = 1, β = 0.1 and D1

Fig. 12 The variation of ρ + Pr + 2Pt against r and 	 = r0/r . We
use r0 = 1, h̄ = 1, β = 0.1 and D1

Fig. 13 The variation of ρ +Pr as a function of r using exp(2	(r)) =
1 + γ 2

r2 . We use r0 = 1, h̄ = 1 and β = 0.1

where r ∈ [r0,∞). Thus such small violations of energy
conditions due to the quantum fluctuations are possible in
quantum field theory.

7 Amount of exotic matter

In this section we shall briefly discuss the “volume-integral
quantifier,” which basically quantifies the amount of exotic
matter required for wormhole maintenance. This quantity is

123



127 Page 10 of 14 Eur. Phys. J. C (2020) 80 :127

Fig. 14 The variation of ρ+2Pt as a function of r using exp(2	(r)) =
1 + γ 2

r2 . We use r0 = 1, h̄ = 1 and β = 0.1

Fig. 15 The variation of ρ + Pr + 2Pt as a function of r using

exp(2	(r)) = 1 + γ 2

r2 . We use r0 = 1, h̄ = 1 and β = 0.1

related only to ρ and Pr , not to the transverse components,
and is defined in terms of the following definite integral:

IV =
∮

[ρ + Pr ] dV = 2
∫ ∞

r0

(ρ + Pr ) dV, (69)

which can be written also as

IV = 8π

∫ ∞

r0

(ρ + Pr ) r
2dr. (70)

As we already pointed out, the value of this volume integral
encodes information about the “total amount” of exotic mat-
ter in the spacetime, and we are going to evaluate this integral
for our shape function b(r). It is convenient to introduce a
cut-off such that the wormhole extends from r0 to a radius
situated at ‘a′ and then we get the very simple result

IV = 8π

∫ a

r0

(ρ + Pr ) r
2dr. (71)

In the special case a → r0, we should find
∫

(ρ + Pr ) →
0. In the specific case having 	 = r0/r , the Casimir worm-
hole is supported by arbitrarily small quantities of exotic
matter. Evaluating the above integral we find that

Fig. 16 The variation of IV against r and a of the case 	 = r0/r . We
use r0 = 1, h̄ = 1 and β = 0.1

Fig. 17 The variation of IV against r and a of the case exp(2	(r)) =
1 + γ 2

r2 . We use r0 = 1, γ = 2, h̄ = 1 and β = 0.1

IV = βDiπ
3(a − r0)M + 18a2r2

0N
1620a4r3

0

, (72)

where

M = 6a4 ln

(
a

r0

)
− 17a4 + 12a3r0 + 8ar3

0 − 3r4
0 (73)

and

N = ln

(
a

r0

)
(π3 − 270r2)

−3(a − r0)[(π3 − 60r2
0 )a − π3r0]. (74)

From Fig. 16, we observe that the quantity IV is negative,
i.e., IV < 0. On the other hand we can also use the redshift

exp(2	(r)) = 1+ γ 2

r2 to obtain an expression for the amount
of exotic matter. Due to the limitation of space, we are going
to skip the full expression for IV and give only the depen-
dence of IV against r and a, given by Fig. 17. Hence one
demonstrates the existence of spacetime geometries contain-
ing traversable wormholes that are supported by arbitrarily
small quantities of “exotic matter”. Such small violations of
this quantity can be linked to the quantum fluctuations. We
leave this interesting topic for further investigation.
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8 Light deflection by GUP Casimir wormhole

8.1 Case with 	(r) = const.

In this section we shall proceed to explore the gravitational
lensing effect in the spacetime of the GUP Casimir wormhole
with 	(r) = const. The optical metric of GUP wormhole,
in the equatorial plane, is simply found by letting ds2 = 0,
yielding

dt2 = dr2

1 − r0
r − π3

90r

(
1
r − 1

r0

)
− π3Diβ

270r

(
1
r3 − 1

r3
0

)

+r2dφ2. (75)

In the present paper, we are going to use a recent geomet-
ric method based on the Gauss–Bonnet theorem (GBT) to
calculate the deflection angle. Let AR be a non-singular
domain (or a region outside the light ray) with boundaries
∂AR = γg(op) ∪ CR , of an oriented two-dimensional surface

S with the optical metric g(op). Furthermore let K and κ be
the Gaussian optical curvature and the geodesic curvature,
respectively. Then the GBT can be stated as follows [19]:

∫∫

AR

K dS +
∮

∂AR

κ dt +
∑

k

θk = 2πχ(AR). (76)

In this equation dS is the optical surface element, θk gives
the exterior angle at the kth vertex. Basically the GBT pro-
vides a relation between the geometry and the topology of the
spacetime. By construction, we need to choose the domain
of integration to be outside of the light ray in the (r, φ) opti-
cal plane. Moreover, this domain can be thought to have
the topology of disc having the Euler characteristic number
χ(AR) = 1. Next, let us introduce a smooth curve defined
as γ := {t} → AR , with the geodesic curvature defined by
the following relation:

κ = g(op) (∇γ̇ γ̇ , γ̈
)
, (77)

along with the unit speed condition g(op)(γ̇ , γ̇ ) = 1, and γ̈

being the unit acceleration vector. Now if we consider a very
large, but finite radial distance l ≡ R → ∞, such that the
two jump angles (at the source S, and observer O), yields
θO+θS → π . Note that, by definition, the geodesic curvature
for the light ray (geodesics) γg(op) vanishes, i.e. κ(γg(op) ) = 0.
One should only compute the contribution to the curve CR .
That being said, from the GBT we find

lim
R→∞

∫ π+α̂

0

[
κ

dt

dφ

]

CR

dφ = π − lim
R→∞

∫∫

AR

K dS. (78)

The geodesic curvature for the curve CR located at a coor-
dinate distance R from the coordinate system chosen at the
ringhole center can be calculated via the relation

κ(CR) = |∇ĊR
ĊR |. (79)

With the help of the unit speed condition, one can show that
the asymptotically Euclidean condition is satisfied:

lim
R→∞

[
κ

dt

dφ

]

CR

= 1. (80)

From the GBT it is not difficult to solve for the deflection
angle:

α̂ = −
π∫

0

∞∫

r= b
sin φ

KdS, (81)

where the equation for the light ray is r(φ) = b/ sin φ. The
Gaussian optical curvature takes the form

K = 3r2
0r

2[(π3 − 90r2
0 )r − 2π3r0] + βDiπ

3(r3 − 4r3
0 )

540r6r3
0

.

(82)

Approximating this expression in leading order, the deflec-
tion angle reads

α̂ = −
π∫

0

∞∫

b
sin φ

[
− r0

2r3 + π3(r − 2r0)

180r4r0

]
rdrdφ. (83)

Solving this integral, we find the following solution:

α̂ � r0

b
− π3

90r0b

(
1 − πr0

4 b

)
. (84)

We see that the first term is due to the wormhole geometry,
while the second term is related to the semiclassical quantum
effects of the spacetime.

8.2 Case with 	(r) = r0/r

In this case, the optical metric in the equatorial plane takes
the form

dt2 = exp[− 2r0
r ]dr2

1 − r0
r − π3

90r

(
1
r − 1

r0

)
− π3h̄3Diβ

270r

(
1
r3 − 1

r3
0

)

+ r2dφ2

exp
[

2r0
r

] . (85)
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The Gaussian optical curvature in leading order terms is
approximated as

K � r0

2r3 − r2
0

2r4 + π3(3r3 + 9r2r0 − 14r3
0 )

540r6r0
. (86)

Approximating this expression in leading order, the deflec-
tion angle reads

α̂ � −
π∫

0

∞∫

b
sin φ

[
r0

2r3 − r2
0

2r4 + π3(3r3 + 9r2r0 − 14r3
0 )

540r6r0

]

rdrdφ.

(87)

Solving this integral we find the following solution:

α̂ � −r0

b
+ πr2

0

8b2 − π3

90r0b

(
1 + 3πr0

8b

)
. (88)

One can infer from the above result that, since the deflection
of light is negative, it indicates that light rays in this case
always bend outward from the wormhole due to the non-
zero redshift function. Of course, the resulting negative value
should be taken as an absolute value |α̂|.

8.3 Case with exp(2	(r)) = 1 + γ 2

r2

In this particular case the optical metric in the equatorial
plane reads

dt2 =
(

1 + γ 2

r2

)−1
dr2

1 − r0
r − π3

90r

(
1
r − 1

r0

)
− π3Diβ

270r

(
1
r3 − 1

r3
0

)

+ r2dφ2

1 + γ 2

r2

. (89)

The Gaussian optical curvature in leading order terms is
approximated as

K � − r0

2r3 + π3(r − 2r0)

180r4r0

+γ

[
180r2r0 + (3π2 − 270r0)r − 4π3r0

90r6r0

]
.

(90)

With this result in hand, in leading order the deflection angle
is written as

α̂ � −
π∫

0

∞∫

b
sin φ

[
− r0

2r3 + π3(r − 2r0)

180r4r0

]
rdrdφ

− γ

π∫

0

∞∫

b
sin φ

[
180r2r0 + (3π2 − 270r0)r − 4π3r0

90r6r0

]
rdrdφ.

(91)

Solving this integral we find the following solution:

α̂ � r0

b
− γπ

2b2 − π3

90r0b

(
1 − πr0

4 b

)
. (92)

As was expected, in the limit γ → 0, we recover the deflec-
tion angle given by Eq. (84). In other words, the presence of
the parameter γ decreases the deflection angle as compared
to Eq. (84). The first and the second term are related to the
geometric structure of the wormhole, while the third term
encodes the semiclassical quantum effects.

8.4 Case with exp(2	(r)) =
(

1
1+ βDi

r2

) 2
1+1/ω

In this particular case the optical metric in the equatorial
plane reads

dt2 =

(
1

1+ βDi
r2

)− 2
1+1/ω

dr2

1 − r0
r − π3

90r

(
1
r − 1

r0

)
− π3Diβ

270r

(
1
r3 − 1

r3
0

)

+ r2dφ2

(
1

1+ βDi
r2

) 2
1+1/ω

. (93)

Let us consider the special case with ω = 1. The Gaussian
optical curvature in leading order terms is approximated as

K � − r0

2r3 + π3(r − 2r0)

180r4r0

+βDi [π3r3 − 1080r2r3
0 + J r + 20π3r3

0 ]
540r3

0r
6

, (94)

where

J = 1620r4
0 − 18π3r2

0 . (95)

With this result in hand, in leading order the deflection angle
is written as

α̂ � −
π∫

0

∞∫

b
sin φ

[
− r0

2r3 + π3(r − 2r0)

180r4r0

]
rdrdφ

−βDi

π∫

0

∞∫

b
sin φ

[π3r3−1080r2r3
0+J r+20π3r3

0 ]
540r3

0r
6

rdrdφ.

(96)
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Fig. 18 The deflection angle against the impact parameter b using Eqs.
(84), (88), (92) and (97), respectively. We use r0 = 1, h̄ = 1 and
β = 0.1, and γ = 1 for the case D1. The blue curve corresponds to Eq.
(88) showing that the light rays bend outward the wormhole. On the
other hand, the effect of γ decreases the deflection angle (black curve)
compared to (84) (red curve). The deflection angle (97), corresponds to
the anisotropic wormhole (green curve)

Solving this integral we find the following solution:

α̂ � r0

b
+ βDiπ

2b2 − π3

90r0b

(
1 − πr0

4 b

)
. (97)

In this case, beside the first term which is related to the worm-
hole geometry, we find an effect of GUP parameter β in
leading order terms on the deflection angle encoded in the
second term, while the third term is related to the semiclas-
sical quantum effects. We show graphically the dependence
of deflection angle against the impact parameter in Fig. 18.

9 Conclusion

In this paper, we have explored the effect of the General-
ized Uncertainty Principle (GUP) on the Casimir wormhole
spacetime. In particular, we have constructed three types of
the GUP relations, namely the KMM model, DGS model,
and finally the so called type II model for GUP principle. To
this end, we have used three different models of the redshift
function, i.e., 	(r) = constant, along with 	(r) = r0/r and

exp(2	(r)) = 1 + γ 2

r2 , to obtain a class of asymptotically
flat wormhole solutions supported by the Casimir energy
under the effect of GUP. Having used the specific model
for the wormhole geometry, we then used two EoS models
Pr (r) = ωr (r)ρ(r) and Pt (r) = ωt (r)Pr (r) to obtain the
specific relations for the EoS parameter ωr (r) and ωt (r),
respectively. In addition, we have considered the isotropic
wormhole and found an interesting solution describing an
asymptotically flat GUP wormhole with anisotropic matter.

Furthermore, we have checked the null, weak, and strong
conditions at the wormhole throat with a radius r0, and shown
that in general the classical energy conditions are violated by

some small and arbitrary quantities at the wormhole throat.
However, we have also highlighted the quantum weak energy
condition (QWEC) according to which such small violations
are possible due to the quantum fluctuations. In this direc-
tion, we have also examined the ADM mass of the wormhole
and the volume-integral quantifier to calculate the amount of
the exotic matter near the wormhole throat, such that the
wormhole extends from r0 to a cut-off radius located at ‘a’.
We studied the embedding diagram to show that with the
increase of the GUP parameter there is an effect on the effec-
tive geometry of the GUP wormhole.

Finally, we have used the GBT to obtain the deflection
angle in three wormhole geometries. We argued that the
deflection angle in leading order terms is affected by the
semiclassical quantum effect as well as the wormhole throat
radius. As an interesting observation, we have found that
the choice of the redshift function plays a significant role
in determining the deflection angle. For example, in the

case 	 = constant and exp(2	(r)) = 1 + γ 2

r2 the light
rays bend towards the wormhole, while, in contrast, having
	(r) = r0/r we discovered that light rays bend outward
from the wormhole. We also found that the deflection angle
depends upon the parameter γ , while there is an effect of the
GUP parameter in leading order terms only in the case of
anisotropic GUP wormhole. However, a thorough analysis
of these effects will be intentionally left for further investi-
gation.
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