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Abstract This paper develops a new solution of gravita-
tional vacuum star in the background of charged Kiselev
black holes as an exterior manifold. We explore physical
features and stability of thin-shell gravastars with radial per-
turbation. The matter thin layer located at thin-shell greatly
affects stable configuration of the developed structure. We
assume three different choices of matter distribution such as
barotropic, generalized Chaplygin gas and generalized phan-
tomlike equation of state. The last two models depend on
the shell radius, also known as variable equation of state.
For barotropic model, the structure of thin-shell gravastar is
mostly unstable while it shows stable configuration for such
type of matter distribution with extraordinary quintessence
parameter. The resulting gravastar structure indicates sta-
ble behavior for generalized Chaplygin gas but unstable for
generalized phantomlike model. It is also found that proper
length, entropy and energy within the shell show linear rela-
tion with thickness of the shell.

1 Introduction

The study of final outcomes of gravitational collapse is an
interesting topic that explores the formation of various com-
pact objects such as white dwarfs, neutron stars, naked sin-
gularities and black holes (BHs). The collapse end-state is a
widely accepted research field from many perspectives, both
theoretical and observational. The classical tgeneral relativ-
ity faces some major scientific issues precisely related to the
paradoxical characteristics of BHs and naked singularities.
An astronomical substance hypothesized as a substitute for
the BH is a gravastar (gravitational vacuum star) based on the
idea of Mazur’s and Motola’s theory [1,2]. The basic idea is
to prevent the formation of event horizons and singularities
by stopping the collapse of matter at or near the position of
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event horizon. A gravastar appears similar to a black hole but
does not contain event horizon and singularity.

Gravastars are of purely theoretical interest and can be
described in three different regions with the specific equa-
tion of state (EoS). The first region is referred to as an inte-
rior (0 < r < ry), second is the intermediate (r; < r < rp)
and third is denoted as an exterior region (r, < r). In the
first region, the isotropic pressure (p = —o, where o rep-
resents the energy density) produces a repulsive force on
the intermediate thin-shell. It is assumed that the interme-
diate thin-shell is protected by ultrarelativistic plasma and
fluid pressure (p = o). The exterior region has zero pressure
(p = 0 = o) and can be supported by the vacuum solution of
the field equations. It contains a stable thermodynamic solu-
tion and maximum entropy for small fluctuations. Visser’s
cut and paste method provides a general formalism for the
construction of thin-shell from the joining of two different
spacetimes at hypersurface [3]. Mazur and Mottola [2] con-
sidered this approach to construct thin-shell gravastar from
the matching of exterior Schwarzschild BH with interior de
Sitter (DS) spacetime. This approach is very useful to avoid
the presence of event horizon as well as central singularity
in the geometry of gravastars.

The matter surface at thin-shell creates a sufficient amount
of pressure to overcome the force of gravity effects that help
to maintain its stable configuration. For the description of
Mazur-Mottola scenario, Visser and Wiltshire [4] introduced
the simplest model from the matching of exterior and inte-
rior geometries through the cut and paste approach. They
also analyzed stable configuration of the developed structure
for suitable choice of EoS for the transition layers. Carter [5]
extended this concept by the joining of interior DS spacetime
and exterior Reissner—Nordstrom (RN) BH. They examined
the effects of EoS on the modeling of thin-shell gravastars.
Horvat et al. [6] presented theoretical model of gravastars
with electromagnetic field and studied the role of charge
on the stable configuration of gravastars. Rahaman et al.
[7,8] studied physical features like proper length, entropy
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and energy contents of charged and charged free thin-shell
gravastars in the background of (2+1)-dimensional space-
time. They claimed that the presented solutions are non-
singular and physically viable as an alternative to BH. Baner-
jeeetal. [9] investigated the braneworld thin-shell gravastars
developed by using braneworld BH as an exterior manifold
through cut and paste technique.

Rochaetal. [10-12] discussed stable configuration of thin-
shell gravastars with perfect fluid distribution in Vaidya exte-
rior spacetime. They proposed a dynamical model of proto-
type gravastars filled with phantom energy. It is found that the
developed structure can be a BH, stable, unstable or “bounded
excursion” gravastar for various matter distributions at thin-
shell. Horvat et al. [13] studied the geometry of gravastars
with continuous pressure by using the conventional Chan-
drasekhar approach and derived EoS for the static case. Lobo
and Garattini [14] investigated the stability of noncommuta-
tive thin-shell gravastar and found that stable regions must
exist near the expected position of the event horizon. Ovgiin
et al. [15] developed thin-shell gravastar model from the
matching of exterior charged noncommutative BH with inte-
rior DS manifold. They found that the developed structure
follows the null energy condition and shows stable behav-
ior for some suitable values of physical parameter near the
expected event horizon. Recently, we have developed regular
thin-shell gravastars in the background of Bardeen/Bardeen
DS BHs as exterior manifolds through cut and paste method
[16]. The stable configuration of the developed structure is
explored through radial perturbation. It is found that stable
regions decrease for large values of charge and increase for
higher values of the cosmological constant.

The theoretical modeling of gravastar could be helpful for
the better understanding of dark energy role in the acceler-
ated expanding behavior of the universe. Ghosh et al. [17]
examined physical characteristics of gravastar model with
Kuchowicz metric potential. They claimed that this model
overcomes the singularity problems that occurred for the
geometry of BH in general relativity. Shamir and Ahmad
[18] investigated physical features of gravastar model in the
background of f(G, T') gravity. Yousaf et al. [19] explored
stable configuration of charged gravastar filled with isotropic
fluid in f(R, T') gravity. They found linear relation among
the physical features and thickness of the shell. Sharif and
Waseem [20] discussed charged gravastars with conformal
motion in f(R, T) gravity. There is a large body of liter-
ature [21-40] that explore the stable as well as dynamical
configuration of thin-shell wormholes constructed from the
matching various BHs with different EoS.

This paper presents the formalism of charged Kiselev thin-
shell gravastars to explore stable configuration with different
EoS. The paper has the following format. Section 2 explains
the formalism of thin-shell gravastars in the background of
charged Kiselev BH. In Sect. 3, we study the effects of
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barotropic and variable EoS on the stable configuration of
the developed structure through radial perturbation. Finally,
we summarize our results in the last section.

2 Gravastars formalism

This section explores the geometrical construction of thin-
shell gravstars from the joining of lower (Y ) and upper
(Y™) manifolds through cut and paste technique. For this
purpose, we consider DS spacetime as a lower manifold
and charged BH surrounded by the quintessence matter as
an upper manifold. The motivation behind the considera-
tion of this model can be explained as follows. The mat-
ter with negative pressure can be characterized for the cur-
rent evolutionary phase of the universe with cosmological
constant and quintessence [41]. The mathematical represen-
tation of quintessence matter distribution that linear relates
energy density (o, ) and pressure (py) is p, = woy, where @
denotes the quintessence parameter. This parameter explains
that the universe is in the phase of accelerated expansion if
—1 < w < —1/3, decelerates if ® > —1/3 and shows iner-
tial behavior (constant expansion rate) if @ = —1/3. This
means that observers must have future horizons in all accel-
erated models [42]. In an accelerated expanding universe,
two objects separated with a relative fixed distance r must
achieve relative speed to the speed of light after some time
and will no longer communicate. For the case of decelerated
expansion, the breakdown of such a communication does not
happen whereas it becomes less relativistic with time. How-
ever, the speed of relative moving observers must be constant
for the case of w = —1/3. They can communicate but cannot
maintain this forever as they recede away from each other.

Kiselev [43] introduced uncharged and charged BH sur-
rounded by the quintessence matter distribution as a static
spherically symmetric solution of the field equations. The
line element of charged Kiselev BH is given as

ds? = —W(ry)de* + W(ry) 'dr? +r2do?

+r2 sin” 0, d¢?, (1
where

2m o Q2
Vrp)=1—-——-———=+ =,
(ry) e et 2

m is the mass of BH, Q denotes the charge of BH, « stands for
the Kiselev parameter and w is the quintessence parameter
with —1 < w < —1/3. The boundary values of EoS parame-
ter recover the case of cosmological constant (extraordinary
quintessence) for o = —1 and w = 0 is referred to as the dust
fluid. If Q = 0, then it reduces to Kiselev BH and RN BH
is recovered when Kiselev parameter vanishes. The charged
Kiselev BH reduces to Schwarzschild BH in the absence of
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both charge and Kiselev parameter. The corresponding met-
ric function of Kiselev BH has the following form

W) = 1 2m o
T = —_——_———_—
+ ry o et

Extreme BHs are expected to have both stable and unstable
properties, this makes their analysis very interesting and chal-
lenging. We consider ® = —2/3 € (-1, —1/3) to observe
the event horizon of Kiselev BH. The corresponding event
horizons are given as

1+ 1 —8am
20 ’
It is found that

rp, =

e for o« = 1/8m, it denotes extreme Kiselev BH,
e fora < 1/8m,itrepresents the non-extreme Kiselev BH,
e for o > 1/8m, it shows naked singularity.

Since the charged Kiselev BH metric function is much com-
plicated than RN and Kiselev BH, so its event horizon for
w = —2/3 has much complicated expression. Thus we only
discuss values of the parameter for which it shows different
geometrical structure. It follows that

o for Q? = 27 55 (=2 + 18ma — 2(1 — 6ma)*/?), it
denotes extreme charged Kiselev BH,

o for 0% > ( 2+ 18ma — 2(1 — 6ma)>/?), it rep-
resents the non extreme charged Kiselev BH,

o for 02 < 525 (=2 + 18ma — 2(1 — 6ma)*/?), itshows
naked smgulanty.

The line element of DS geometry is given as

ds* = —®d(r_)dt*> + &~ (ro)dr? 4 r2d6?
+r2 sin 6_d¢?>, )

where ®(r_) = 1 — r2/B? and B is a nonzero positive con-
stant. We use cut and paste method to obtain the geometry
of thin-shell gravastars from the matching of two distinct
spacetimes Y~ and Y. These manifolds have the metric
functions defined by glfu (x!!) with independent coordinates
x{ and bounded by the hypersurfaces dY* with induced
metrics hf; respectively. According to the Darmoise junc-
tion conditions, the induced metrics are isometric and follow
the relation hjj' &H = hij (&) = hl_j (€"), where &' represents
the coordinates of dY*. These geometries are glued at the
hypersurface to obtain the single manifold T = Y+ U Y~
with boundary 3Y = dY* = 3. Mathematically, these
spacetimes can be described as

TE = (ff|e > Te(r) and r > b(1)},

where 7 and b(t) denote the proper time and radius of
thin-shell. The corresponding hypersurface that linked these
geometries can be parameterized as

Y = (£t > Tu(z) and r = b(1)).

The induced 3D metric at hypersurface (h;;) can be
expressed as

dsjy = hijd&'d&) = —dt® + b(1)*d6* + b(1)” sin® 0d¢?,

where Si = (7, 0, ¢). The normal vector components of g,
on the Y are defined as
" £, b))
Lf (r, (D)) f (r, b(T)) V|12
where f(r,b(t)) = r — b(r) = 0O represents the function
of Y and b(t) = b denotes the shell’s radius. The com-

ponents of normal vectors corresponding to upper and lower
spacetimes are

nM b
+ = 2m QZ ’
1= — g +

2m o Q 2

3

b / b2
/32

respectively. Here, dot represents derivative with respect to
7. The normal vector satisfies the condition n*n;, = 1 for
spherical symmetric manifolds. The discontinuity in the sec-
ond fundamental form (extrinsic curvature) exist due to the
presence of matter surface at Y. The extrinsic curvature
components for both geometries are

aBw + D3¢ 4 2bm — 202 + 2bb3

Kt = ) Q)
2 .
b3\/1—27m—b33ﬁ+§—2+b2
1 2m o oz .
0+ __ 2
Ko ‘Z/“T‘W*Tz“” ©
— %2
K- =——fF )
,u—y+w
1 b2
@_
K 1 FH} (8)
Kj;i = sin? ngi, ©)

The matter surface at thin-shell produces discontinuity in
the extrinsic curvatures of both spacetimes. If K lJJr -K i; # 0,
then it represents the presence of matter thin layer on 9.
The components of energy-momentum tensor (Sj.) of such
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a matter surface are determined by the Lanczos equations.
Mathematically, it can be expressed as

St = lu
Jj = ]

where [Ki] = Kj“ — Kj—" and K = 1r[K;;] = [K}]. The
above equation in terms of perfect fluid distribution becomes
(1)

here v; denotes thin-shell velocity components. By consid-
ering Egs. (5)—(11), we obtain o and p in the following form

1 2m a 0z b2,
”:m{\/lbb&vﬂ+h2+b 17ﬁ+b ,

11— 8K}, (10)

S’/ = vivj (p+o0) +p5f.,

(12)
. . -3 %) 3 4p2
sz + 2bb + 0(30’_1)?) “—2m +2 2b= +2bb + 2 — ﬂiz
p= - :
2 2 . b2 )
8nb\/l—Tm—b35ﬁ+%+b2 8nb/l—ﬁ—2+b
(13)

Here, we assume that [90 = I;o = 0, where bg is the
position of equilibrium shell’s radius. This shows that shell’s
motion along the radial direction vanishes at b = bg. The
respective expressions for surface stresses at b = by yield

o(bg) = o9

_ 1 ] 2m o +Q2 { b%
T dmhg bo bt bg g2

(14)

pbo) = po

1 | a@Bo— Dby —2m+2by 287 — 4b}

- 8 by 2 2 2
bo\/l—r’g—b3$+l+% B2 1—%
(15)

The continuity of perfect fluid gives the relationship
between the surface stresses of thin-shell gravastars as

4ni(b2o) + 47'rpd—bz =0, (16)
dt dt

which can be expressed as

do 2

b = —E(U +p). )

The second order derivative of o with respect to b yields

d’c  2(p+o
= (3+25)
where ¢ = dp/do denotes the EoS parameter. Equations
(16)—(18) are very useful to explore the dynamics and stable
configurations of constructed geometry with different types
of matter distribution.

For the physical viability of a geometrical structure, some
constraints must be imposed known as energy conditions.

(18)
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The well-known energy conditions are null: og + po > 0;
weak: og > 0, 00+ po > 0; strong: op+3po > 0,00+ po >
0; dominant: op > 0, o9+ pg > 0. If these energy conditions
are verified then the developed model is physically viable.
Here, we are interested to check the null energy condition
that ensure the presence of normal or exotic matter at thin-
shell. It is interesting to mention here that the violation of
the null energy condition leads to the violation of remaining
conditions. We see that thin-shell gravastars follow the null
energy condition for different values of charge and mass of
BH as shown in Fig. 1. These values of physical parameters
have frequently been used in literature that examine the stable
as well as dynamical behavior of thin-shell constructed from
different singular and non-singular BHs [24-40]. Thus we
use them to determine the effects of charge and mass on the
energy conditions, physical features as well as stability of
thin-shell gravastars (see Appendix A).

3 Stability analysis

This section studies stability of thin-shell gravastars using
linear perturbation in the radial direction at b = by with
different variable EoS. The stable and unstable configurations
of thin-shell gravastars can be analyzed through the behavior
of effective potential of thin-shell. The equation of motion
of thin-shell that explains the stable as well as dynamical
characteristics of respective geometry is obtained directly

from Eq. (12) as
b+ Q) =0, (19)

here 2 (b) denotes the potential function of thin-shell gravas-
tar as

£(b)? 1
Qb) = SIS Eg(b) —47%b%o?, (20)
where .
ab! =3 — &5 +26m — Q*
£(b) = 7 :
) —ns —ab! =30 — By~ 2bm + Q2

b2

The stable behavior of thin-shell gravastars is studied by
using second derivative of the effective potential at b = by.
The basic conditions for the stable behavior can be written as
Q(bo) = 0= Q' (by) and Q" (by) > 0.1f Q" (bg) < 0, then it
shows unstable behavior and it is unpredictable if Q" (by) = 0
[30]. To check the stability through radial perturbation, we
linearize the potential function using Taylor series expansion
around equilibrium radius bg as follows

1
Q@=me+wwmwww+fwmw—mﬂ
+0L(b — bo)*].
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Fig. 1 Plots of the null energy condition for charged Kiselev thin-shell gravatars. We examine graphical behavior of o + p at b = b verses (bg, Q)

(left plot) and (bg, m) (right plot) forw = —2/3,« = 0.2 and g = 0.5

We examine that Q (bg) = 0 = Q' (by), hence it reduces to
_ 1 20/
QD) = E(b — bo)“$2"(bo). (21)

The corresponding second derivative of Q2(b) at b = by
becomes

2M (bo)M'(by) b (bo)§" (bo)

o) = b3 2M (bo)?
2638 (bo)M' (bo)§' (bo)
M (bo)?
_ M'(bo)*  bgE'(bo)*  3bE(bo)> M (bo)?
263 2M(bo)? 2M (bo)*
_ 2bo§ (bo)§' (bo)
M (bo)?
L8 bo) _ 3M(Bo)® | b5E(bo)* M (bo)
2 253 2M (bo)?
_ M(bo)M" (bo)
26}
§(bo)®  2bok(bo)*M'(bo)
- : (22)
2M (bo)? M (bo)?

where M (by) = 4nb(2)c70 denotes the total mass distribution
atequilibrium shell’s radius. The corresponding first and sec-
ond derivatives of the total mass with respect to b at b = by
become

M’ (bg) = —8m by po,

M"(bo) = =87 py + 167 53 (00 + o),

and ¢ = dp/do |p=p,.

Firstly, we begin with barotropic EoS to discuss the stabil-
ity of the developed geometry. It gives linear relation between
the surface stresses of thin-shell as p = yo with real con-
stant y. Consequently, the solution of conservation equation
(17) for barotropic EoS is given as

204
o= (bob ) 09. (23)
The corresponding potential function becomes
—4(y+1)
2 (b
2 6412b%0]
b\ 4+
_an?ho? (30) , 24)
which turns out to be zero at throat radius b = bg. The

corresponding first derivative of 2 (b) yields
£'(bo)  E(bo) (27§ (bo) + bog' (bo) + £ (b))
2 32n203b}
+87203 2y + Dby, (25)

Q' (bo) =

which vanishes only if

—2567%0 b — 167202b3¢! (bo) + bo& (b0 (bo) + & (bp)>
2 (256403 bg — £(bo)?) '

)/ =
(26)
The second derivative of Q2(b) at b = by yields

7" (bo)
2

1
— ot o) (By + HE (bo) + boe” (b
3272023 { 0 (bo) (By + 4§ (bo) + bog" (o))

Q" (bo) =

@ Springer
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+ (812 + 6y +1) £(b0)* + 3¢ (b0)?}

—87%03 2y + D@y +3), 27)

This equation explains stable and unstable configurations
of thin-shell gravastars for barotropic EoS. Due to com-
plexity of this expression, we use numerical approach to
observe the effects of physical parameters on the stability
of developed structure. We study the graphical behavior of
Q" (bg) by using Egs. (26) and (14). It is found that sta-
ble structure of thin-shell is greatly affected by the presence
of quintessence EoS parameter. We examine that thin-shell
expresses unstable behavior for every values of O, m, o and
B with @ = —2/3 as shown in the left plot of Fig. 2. We
obtain unstable configuration for every choice of @ except

for extraordinary quintessence parameter « = —1 (right plot
of Fig. 2). Hence, the barotropic type fluid distribution at
thin-shell shows stable behavior only for @ = —1 otherwise

gives unstable solutions.

Current observational data seem to point towards an accel-
erated expansion of the universe [44—46]. If general relativ-
ity is assumed to be correct theory of gravity describing the
large-scale behavior of the universe, then its energy density
and pressure should violate the strong energy condition. Sev-
eral models for the matter leading to such a situation have
been proposed [47-49]. One of them is the Chaplygin gas
[50-52], a perfect fluid satisfying the EoS po = n, where
n < 0. A remarkable property of the Chaplygin gas is that
the squared sound velocity vf = n/o? is always positive
even in the case of exotic matter. Varela [21] considered the
EoS of the type p = p(o, b) to discuss the stability of thin-
shell wormhole developed from two equivalent copies of the
Schwarzschild BH. Such type of EoS is known as variable
EoS. The generalized form of the Chaplygin gas presents the
mathematical formulation in which surface pressure depends
on the radius of the shell.

Therefore, we consider general form of Chaplygin EoS
(p = p(o, b)) to study the stable behavior of the respective

a=0.2, v=-2/3

0.0002
0.0001F
0.0000
—0.0001F
—0.0002F
—0.0003 F
—0.0004

Q"(bo)

0 200 400 600 800 1000
by

geometry, i.e., p = bing withreal constants n < Oandn [21].
It is observed that the Chaplygin gas model is recovered for
n = 0 [53]. The respective solution of conservation equation
for such a model can be written as

GL_M—Qﬁ%“M+MM%—MM%

b HAbL(n — 4) (28)

The effective potential for this model turns out to be

4m2b=" by " (bgb" ((n — 4)ogby — 4n) + 4b*nbfy)
n—4

Qb) = —
{(b)

2
(n — Hb"2E (D)D)

- . 29
6472 (bib" ((n — H)ogbl — 4n) + 4b*nbl) @)

It is observed that 2 (bg) = 0 and ' (bg) becomes

nby "3 (bo)?

Q' (by) = — + 1672nb) "
(%0) 16720 0
CEDOE (o) E(bo)?
32n20by  32m203by
/
b
+8n2o§b0 + ¢ (20).
a=0.2, w=-1
0.00025
0.00020
:\E 0.00015}
S
0.00010F
0.00005 |
0.00000

o F

200 400 600 800 1000
by

Fig. 2 Stability of thin-shell gravastars with barotropic EoS for § = 0.5 = m = Q with different values of w. The left plot shows unstable

behavior and right plot expresses the stable structure

@ Springer
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For Q'(by) = 0, we have

_ ogbl (256m*agby + 167203 by¢  (bo) — bok (bo)&’ (bo) — E(bo)?)
B 2 (256m4 by — £(bo)?)

(30)
Consequently, " (bg) has the following form

n2ba2(n+2)g(bo)2 - nb8_2(n+2)+1§(b0)5/(b0)

Q// b - _
(bo) 271205’ 471’203

-2 2

L "2 e (by)?
167'[2(761
—2(n+2

Ty e R s a2
1671206‘ 0

2 n—2(n+2)+4
—16m“nnb,,

b(2)n72(n+2)+2$ (bO)E” (bo)

32712002
by e o)E (bo)
SnZGg
- bSan(nJr2)+2§/(bo)2 - b(2)n72(n+2)§(b0)2
32n20} 3220
_247_[20,02b(2)n*2(7!+2)+4
1 5,_
+§bgn 2(n+2)+4§”(b0). (31)

Now, we observe the effects of the generalized Chaply-
gin gas EoS on the stability of developed geometry. In this
regard, we observe the graphical behavior of Q" (bg) for this
model. It is found that thin-shell expresses stable behavior
for every choice of the physical parameters except w = —1
when n = 0 (Fig. 3). This shows that thin-shell becomes
stable for the choice of Chaplygin gas model (n = 0) and
represents unstable behavior only for @ = —1 (left plot of
Fig. 4). It is also analyzed that the general case of Chaplygen
EoS (n # 0) shows stable behavior for every choice of w
with n = 1 (right plot of Fig. 4). We see that stable behavior
(2" (bg) > 0) increases for higher values of n as shown in
Fig. 5.

Finally, we study the effects of generalized phantomlike
variable EoS on the stability of thin-shell [21] whose EoS
isp = % with real constants ® and n. The phantomlike
EoS is recovered if n = 0 [54]. By using this expression in
Eq.(17), we have

Sl
o = bib *ape i , (32)
and it follows that

20(by"—b7")

DY)
647 200b]

Qb) =

20(b~" by ")

drlogble N z(b)
b? 2

It is noted that € (by) = 0 and by considering ©'(bg) = 0,

we obtain

b (25671405173 + 1672 00b3 ¢’ (bo) — bo& (bo)E' (bg) — s(b0)2)

@ == B

256m403 by — £(b)?

(33)

(34)
and hence
®2b_2n_4$(b0)2
Q// b — 0 _ 16 2@2 b—zn
(bo) 167200 0%
_ ®by" T E(bo)E' (o)
8720y
_®by"YE(bo)? O —mby" (ko)
167‘[20’0 327‘[200
—1672@0gb,"
_n E(B)E" (bo)
+8720(—n — 3)oghy "t — 2 2
7@ (—n — 3)oph, 327120019%
_£o)§'(bo) £/ (bo)?
8n2ogby  32n200b;
£(bo)? o ¢ (bo)
— > 24 > 35
2nloby 0+ (33)

For the general form of phantomlike EoS, we see that thin-
shell shows initially stable behavior then expresses unstable
configuration for every choice of physical parameters (Figs. 6
and 7). We conclude that the constructed geometry is neither
stable nor unstable completely for the choice of both phan-
tomlike and general form of phantomlike EoS.

4 Final remarks

This paper investigates the construction of thin-shell gravas-
tars from the matching of two different spacetimes, i.e., DS
as a lower spacetime and charged Kiselev BH as an upper
manifold. These geometries are connected through the well-
known cut and paste method. We match these manifolds at
r = b with b > ry, to avoid the presence of event horizon (r;,)
and singularity in the developed structure. The presence of
matter thin layer at the joining surface produces discontinu-
ity in the extrinsic curvature. It is found that the null energy
condition is verified for the developed structure (Fig. 1). We
have studied stable characteristics of thin-shell gravastars
with barotropic type fluid distribution and two variable EoS,
i.e., generalized Chaplygin gas and phantomlike EoS.

For barotropic model, we have obtained stable solution
for the choice of @ = —1 and unstable solution for any other
choice of w (Fig. 2). It is interesting to mention here that this
model mostly indicates unstable behavior for thin-shell WHs

@ Springer
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Fig. 4 Stability of thin-shell gravastars with generalized Chaplygin gas EoS with different values of n. For ® = —1, the left plot shows unstable

behavior for n = 0 and right plot expresses the stable structure for n = 1
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Fig. 5 Stable behavior of thin-shell gravastars for different values of n. The stability of developed structure is enhanced for large values of n

in several spacetimes [21-23,37—40]. These results express
that the stable solution can be obtained through barotropic
model for some suitable choice of physical parameters. The
stable structure is obtained for Chaplygin gas model (n = 0)
for every choice of w other than extraordinary quintessence
parameter @ = —1. For generalized Chaplygin gas EoS,
we have obtained stable solution for every values of phys-
ical parameter and found more stable structure for higher
values of n (Figs. 3, 4, 5). Finally, for generalized phan-

@ Springer

tomlike EoS, thin-shell shows initially stable behavior and
then expresses unstable configuration for every choice of the
physical parameters (Figs. 6 and 7).

We conclude that charged Kiselev thin-shell gravastars
are more stable for the choice of generalized Chaplygin gas
model. It is worthwhile to mention here that this model is
more stable with considered EoS than thin-shell WHs in the
background of various BHs [21-23,37-40]. This shows com-
pletely stable structure of thin-shell gravastar with extraor-
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initially then expresses unstable configuration for every choice of w

a=0.2, w=-2/3,n=5

T T T T

150000

T

T

100000
50000

Q"(bo)

0

-50000¢

~100000F, ‘ ‘ ‘ ]
0.20 0.25 0.30 0.35 0.40

by

a=0.2, w=-1,n=5
60000+ 1

400001 1
20000 1

-20000¢ 1

~40000}, ‘ ‘ ‘ i
0.20 0.25 030 0.35 0.40
by

Fig. 7 Stable and unstable behavior of thin-shell gravastars for generalized phantomlike EoS with different values of

dinary quintessence parameter for both barotropic and gen-
eralized Chaplygin gas model.
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Appendix A

We also explore some physical features of the developed
structure, i.e., proper length, entropy and energy contents
within the shell’s region. Since the constructed geometry is
the matching of two different spacetimes, so the stiff perfect
fluid moves along these spacetimes through the shell region.
The lower and upper boundaries of the shell are » = b and
r = b + €, respectively. The proper thickness of the shell
is denoted by ¢ which is a very small positive real number
(0 < & <« 1). The proper thickness of such a region that
connects lower and upper spacetimes can be obtained as [17]

2 0
- = Of+l +

— r_z

(36)

b+e€ b+e
1=/ \/\I/_l(r)drzf dr
b b \/1

r PR

This integral cannot be solved analytically due to the compli-
cated expression of W (r). Therefore, we solve it by assuming

— dij
JYI () = 40 a5

b+e g
1=/ Mafr:j(bJre)—j(b)
b dr

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

47 Page 10of 11

Eur. Phys. J. C (2021) 81:47

a=0.2, m=0.5, w=-2/3

0.020} ]
0.015} ]
w2 _
0.010f ® Q=05 4
® Q=08
0.005} \ ]
° ol
0.000% A ‘ ‘ J
0.0000 00005 _ 00010 _ 00015 _ 0.0020
€

a=0.2, Q=0.5, w=-2/3

T T

0.025
0.0201

v 0.015F
0.010F ® m=0.2 ]

@ m=0.3
0.005¢ > m=0.5 |
0.000t . . . A
0.0000 0.0005 0.0010 0.0015 0.0020
€

Fig. 8 Behavior of entropy versus thickness of the shell with § = 0.5 and by = 1

a=0.2, w=-2/3, m=0.5

0.0012F ]
00010f © Q03 ]
0.0008 | . Q=038 ]
© 00006f &l 1
0.0004 f ]
0.0002 ]
0.0000 ‘ ‘ ‘ ]
0.0000  0.0005 00010  0.0015  0.0020
€

a=0.2, w=-2/3, Q=0.5

0.00025 ]
0.00020 | ]
0.00015 | ]
W
0.00010 f ® m=02 ]
0.00005 F ® m=03
® m=0.5
0.00000 £ A A A .
0.0000  0.0005 0.0010  0.0015  0.0020
€

Fig. 9 Behavior of the energy within the shell verses thickness of the shell with 8 = 0.5 and by = 1

dj(r) [
~e dr lr=p = €3/ Y (b),

where € < 1 so that its square and higher powers can be
neglected. The corresponding expression for proper length
becomes

(37)

(38)

It is noted that the proper length of the shell clearly depends
on the charge as well as the mass of the BH. Equation (38)
shows that the proper length and thickness of the shell are
proportional. It is found that the length of the shell decreases
by an increasing charge of the geometry and increases by
increasing the mass of the BH.

Entropy is related to the measure of disorderness or dis-
turbance in a geometrical structure. We study the entropy
of thin-shell gravastars that explains the disorderness in the
geometry of gravastar. According to the theory of Mazur and
Mottola, charged gravastar has zero entropy density for the
interior region. Using the concept of Mazur and Mottola,
we evaluate the entropy of thin-shell gravastar through the
expression [17]

b+e
S:/ 4 r?h(r)y/ W1 (r)dr.
b

(39)

@ Springer

The entropy density for local temperature can be expressed
as

(40)

where ¢ is a dimensionless parameter. Here, we take Planck
units (Kp = 1 = 7) so that the shell’s entropy becomes [17]

S = evb?, /8 p(b)¥—1(b).

It is shown that entropy of the shell’s region is also pro-
portional to the shell’s thickness. We use this equation to
examine the contribution of charge and mass of BH on the
entropy of shell graphically. Figure 8 shows the linear rela-
tion between entropy and thickness for different values of the
physical parameter. It is found that the entropy of shell region
increases by increasing Q and decreases for large values of
m. The interior region of gravastars obeys the EoS p = —o
which represents negative energy zone with non-attractive
force. The energy distribution in the shell’s region can be
determined as [17]

(41)

b+e
&= / Anr’o (r)dr ~ 4enb’o (b). (42)
b
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The energy contents depend on the thickness of the shell,
mass and charge of the geometry. We see that energy within
the shell decreases for large values of charge and increases
for large values of mass as shown in Fig. 9.

It is concluded that these features are proportional to the

thickness of the shell and are greatly affected by the charge
and mass of the BH which is consistent with the literature

[17-19].
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