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Abstract We investigate the stability and enhancement of
the physical characteristics of compact, relativistic objects
which follow a quadratic equation of state. To achieve this, we
make use of the Vaidya–Tikekar metric potential. This gravi-
tational potential has been shown to be suitable for describing
superdense stellar objects. Pressure anisotropy is also a key
feature of our model and is shown to play an important role in
maintaining stability. Our results show that the combination
of the Vaidya–Tikekar gravitational potential used together
with the quadratic equation of state provide models which
are favourable. In comparison with other equations of state,
we have shown that the quadratic equation of state mimics
the colour-flavour-locked equation of state more closely than
the linear equation of state.

1 Introduction

Compact objects such as neutron stars and the more spe-
cialised strange quark stars are ideal candidates for applying
Einstein’s theory of general relativity and for studying matter
under extreme conditions. Such compact systems also draw
attention to the characteristics and interactions of quarks and
how this manifests itself within the physical properties of
these stars. The pioneering works of Witten [1] and more
recently that of Weber [2] include in-depth studies into the
stability and properties of quark matter and the possibility
for the existence of strange-matter stars. From the point of
view of the microphysics of compact matter, the basic fea-
tures of the theory of quantum chromodynamics (QCD) have
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been used to assist in formulating equations of state (EoS)
[3]. In the context of massive compact objects such as quark-
stars, the large masses, high energy densities and pressures
involved require relativistic treatments using Einstein’s the-
ory of general relativity (GR) or the more recent higher-order
gravity theories such as Einstein–Gauss–Bonnet gravity [4].

Equations of state remain a key aspect in the study of com-
pact objects. In work involving GR, equations of state have
been used in setting gravitational potentials and also ensuring
that physical viability is maintained. In particular, the linear
equation of state, p = α(ρ − ρs) has been popular and suc-
cessful in numerous studies [5,6]. The colour-flavour-locked
equation of state has also recently been actively utilised [7],
allowing for a more in-depth description of the microphysics
of highly compact material which has surpassed the nuclear
saturation density. If strange stars have a non-homogeneous,
shell-type internal structure, as proposed for neutron stars,
then different regions within the quark matter might invite
the use of say region-specific equations of state as opposed
to using a single EoS for the entire description of the star.
This has already been considered in so-called hybrid stars
[8] in which the high pressures and energy densities of the
quark core might be underestimated by the simplistic linear
equation of state. Thus for neutron stars of the order of 2M�
or greater, a quadratic equation of state offers the possibility
for augmenting the pressures and densities within the core of
these more massive stars. The quadratic EoS has been inves-
tigated and found to offer exact solutions to the Einstein–
Maxwell field equations which are physically acceptable [9–
11]. Physical characteristics within a star could include addi-
tional processes such as the production of hyperons and gen-
eration of condensates, and an environment for the produc-
tion of hyperons and generation of condensates would be
favoured by higher core densities and pressures. A recent
method in which a quadratic EoS is employed for taking into
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account the distinguishing features of the core of massive rel-
ativistic stars is the core-envelope method [11,12]. Although
we do not employ this method in our study, it nevertheless
promotes the use of the quadratic equation of state for super-
dense, massive objects.

In considering highly compact matter from the view-
point of GR, it is necessary to employ gravitational poten-
tials suited to superdense matter. The Vaidya–Tikekar poten-
tial which is known to generate superdense stellar mod-
els, is favourable in this case [13]. Within the ansatz is the
spheroidal parameter K which was originally set at K = −2
by Vaidya and Tikekar. This however can be adjusted to
improve the computed physical characteristics for the star,
should certain quantities such as pressure anisotropy and
sound speed show unreasonable behaviour or if the system
shows marked instability. Other metric potentials such as that
of Finch and Skea [14] have also been employed in com-
pact systems governed by a quadratic equation of state [15]
although the extension back to the linear regime might not
be possible. Such a restriction does not arise in our study.

Pressure anisotropy is also a key feature of our model.
Since the pioneering work of Bowers and Liang [16], the
benefits of considering systems which incorporate anisotropy
have been well-noted [17,18]. In this paper, the method used
and solutions obtained are similar to those of Maharaj and
Takisa [20] with the emphasis being on application to stars of
known masses and well-predicted radii. This is achieved via
the Vaidya–Tikekar potential. Realistic estimates of energy
density, anisotropic pressures and stability parameters are
sought through variation of the equation of state parameters
in the quadratic EoS of the form, p = αρ2 + βρ − γ .

2 The field equations

We assume the spacetime manifold to be static and spher-
ically symmetric. This assumption is consistent with the
development of models used to study the physical behaviour
of relativistic astrophysical objects such as neutron stars and
other similarly compact objects. The interior geometry of
a spherically symmetric static star is described by the line
element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2), (1)

in Schwarzschild coordinates (xa) = (t, r, θ, φ). We take the
energy momentum tensor for an anisotropic neutral imperfect
fluid sphere to be of the form

Ti j = diag (−ρ, pr , pt , pt ) , (2)

where ρ is the energy density, pr is the radial pressure and
pt is the tangential pressure. These quantities are measured

relative to the comoving fluid 4-velocity ui = e−νδi0. For the
line element (1) and matter distribution (2) the Einstein field
equations can be expressed as

ρ = 1

r2

[
r(1 − e−2λ)

]′
, (3)

pr = − 1

r2

(
1 − e−2λ

)
+ 2ν′

r
e−2λ, (4)

pt = e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
, (5)

where primes denote differentiation with respect to r and
our choice of units are such that 8πG/c4 = 1. The system of
equations (3)–(5) governs the behaviour of the gravitational
field for an anisotropic imperfect fluid. The mass contained
within a radius r of the sphere is then given by

m(r) = 1

2

∫ r

0
ω2ρ(ω)dω. (6)

The field equations can be cast in a different but equivalent
form by introducing the transformation

x = Cr2, Z(x) = e−2λ(r), y2(x) = e2ν(r) (7)

where C is a positive real constant. This transformation was
first suggested by Durgapal and Bannerji [21]. Under this
transformation, the system (3)–(5) is described by

1 − Z

x
− 2Ż = ρ

C
, (8)

4Z
ẏ

y
+ Z − 1

x
= pr

C
, (9)

4x Z
ÿ

y
+ (4Z + 2x Ż)

ẏ

y
+ Ż = pt

C
, (10)

where dots denote differentiation with respect to the vari-
able x . The mass function (6) as computed under the above
transformation is given by

m(x) = 1

4C3/2

∫ x

0

√
wρ(w)dw. (11)

For a physically realistic relativistic star we expect that
the matter distribution should satisfy a barotropic equation
of state pr = pr (ρ) and in this study we proceed with a
quadratic equation of state of the form

pr = αρ2 + βρ − γ, (12)

where α, β and γ are real constants. Then it is possible to
write the system (8)–(10) in the simpler form

ρ

C
= 1 − Z

x
− 2Ż , (13)

pr = αρ2 + βρ − γ, (14)
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Table 1 Model parameters (K = −5)

NS/SS M/M� R (km) C α β γ

Cen X-3 1.49 9.18 0.0015660 0 1/3 0.004149

Vela X-1 1.77 9.56 0.0018318 0.25 1/3 0.004204

PSR J1614-2230 1.97 9.69 0.0021241 0.5 1/3 0.004332

pt = pr + Δ, (15)
Δ

C
= 4x Z

ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+ 1 − Z

x
, (16)

ẏ

y
= αC

4Z

[
1 − Z

x
− 2Ż

]2

+ β

4Z

[
1 − Z

x
− 2Ż

]

+1 − Z

4x Z
− γ

4CZ
, (17)

where the quantity Δ = pt − pr is a measure of the
pressure anisotropy. A similar approach has been followed
based on a linear equation of state [22]. The above system of
equations governs the behaviour of the gravitational field for
an imperfect fluid source.

3 Exact models

In the system (13)–(17), there are six independent variables
(ρ, pr , pt ,Δ, y, Z) and only five independent equations.
This suggests that it is possible to specify one of the quanti-
ties involved in the integration process. Equation (17) is the
master equation in the integration process. In this treatment
we specify the gravitational potential Z so that it is possible
to integrate (17). The explicit solution of the field equations
(13)–(17) then follows. We choose

Z = (1 − x)

(1 − Kx)
, (18)

where K is a real constant. The gravitational potential Z was
originally used by Vaidya and Tikekar [13] and more recently
by Bhar [27] to study superdense stars, and the form of (18)
has been found to be physically reasonable. Substituting (18)
into (17) we obtain

ẏ

y
= αC(1 − K )2

4

(3 − Kx)2

(1 − x)(1 − Kx)3 + β(1 − K )(3 − Kx)

4(1 − x)(1 − Kx)

+ (1 − K )

4(1 − x)
− γ (1 − Kx)

4C(1 − x)
(19)

On integrating (19) we then obtain

y = d(1 − x)
αC(3−K )2

4(K−1)
− β(3−K )

4 + (K−1)(C−γ )
4c (1 − Kx)

αC(3−K )2

4(1−K )
+ β

2

× exp

[
αC(K − 1)

2(1 − Kx)2 − αC(2 − K )

(1 − Kx)
− γ Kx

4C

]
, (20)

Fig. 1 Density profiles

where d is the constant of integration. Hence an exact model
for the system (13)–(17) is as follows:

e2λ = (1 − Kx)

(1 − x)
(21)

e2ν = (1 − x)
αC(3−K )2

2(K−1)
− β(3−K )

2 + (K−1)(C−γ )
2C (1 − Kx)

αC(3−K )2

2(1−K )
+β

× d2 exp

[
αC(K − 1)

(1 − Kx)2 − 2αC(2 − K )

(1 − Kx)
− γ Kx

2C

]
(22)

ρ = C(1 − K )(3 − Kx)

(1 − Kx)2 (23)

pr = αρ2 + βρ − γ, (24)

pt = C

[
4x(1 − x)

(1 − Kx)

ÿ

y
+

(
4 − 2(3 + K )x + 4Kx2

(1 − Kx)2

)
ẏ

y

+ K − 1

(1 − Kx)2

]
. (25)

The solution (21) – (25) may now be applied to modelling
an anisotropic, relativistic star according to a quadratic equa-
tion of state. Applying the solution to (11), the mass function
takes the form

m(x) = (1 − K )x3/2

2
√
C(1 − Kx)

. (26)

The surface redshift is given by

zs = eλ − 1. (27)
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(a) (b)

Fig. 2 Pressure profiles (K = −5)

Fig. 3 Anisotropy profiles

which can be expressed in terms of the Vaidya–Tikekar
potential to yield

zs =
√

1 − Kx

1 − x
− 1. (28)

The proper radius is given by

Rp =
∫

eλ(r)dr. (29)

4 Physical constraints

In assessing the physical viability of solutions to Einstein’s
field equations, the following conditions are tested, and
implemented in the case of boundary conditions, for com-
pact, anisotropic fluid spheres [17,18]:

(i) non-negative values for the energy density ρ and the
radial pressure pr inside the star;

(ii) monotonically decreasing profiles of the energy den-
sityρ, the radial pressure pr and the tangential pressure
pt from centre to surface;

(iii) vanishing radial pressure pr at the surface boundary;
(iv) subluminal sound speeds within the static configura-

tion,

i.e., 0 ≤ V 2
rs = dpr

dρ
≤ 1 and 0 ≤ V 2

ts = dpt
dρ

≤ 1;

(v) stability condition,
i.e., −1 ≤ V 2

ts − V 2
rs ≤ 0;

(vi) constraints for the energy-momentum tensor: ρ− pr −
2pt ≥ 0 and ρ + pr + 2pt ≥ 0;

(vii) smooth matching of the interior metric with the exte-
rior Schwarzschild metric at the boundary of the star
r = R,

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2

+r2(dθ2 + sin2 θdφ2),

where M is the total mass of the sphere.

5 Physical application

Three well-studied systems, Cen X-3, Vela X-1 and PSR
J1614-2230 [19], were selected with evenly spaced masses
above 1.4M� as shown in Table 1. Stars of lower mass were
avoided as the lower central densities and pressures expected
for such systems would be less suited to our gravitational
model.
The value of β was set at 1/3 which is consistent with the
MIT Bag model equation of state (EoS). For the model in
which α = 0, corresponding to a linear EoS, the value of γ

used corresponds to a Bag constant of B = 93.5 MeV/fm3.
The quadratic term in the EoS was then applied and the coef-
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(a) (b)

Fig. 4 Speed of sound squared

Fig. 5 Stability condition

ficient α increased for more massive stars. It is noteworthy
that the surface density, as determined by γ , varied little so
that the effect of α is highlighted. The effect of the quadratic
term in the EoS is shown in Figs. 1 and 2. The spheroidal
parameter, K , was set at K = −5 which provides for a more
marked spatial variation within the metric in comparison with
the original value used by Vaidya and Tikekar of K = −2.
A value of −2 was initially investigated in our study and
significantly lower densities and pressures were obtained. In
addition, the anisotropy profiles for K = −2 displayed some
unphysical characteristics, especially for lower mass stars.
The anisotropy profiles for our systems utilising K = −5
are more typical in both magnitude and curve progression as
shown in Fig. 3.

6 Discussion

We now provide further discussion of the trends and physical
viability of our models. In Fig. 1 we observe that the density
profiles are smooth, monotonically decreasing functions of

the radial coordinate. As the quadratic parameter α increases,
the magnitude of the density increases at each interior point
of the compact object. Figure 2 (left panel) displays the radial
pressure as a function of the radial coordinate. As expected,
the radial pressure decreases monotonically from some finite
value at the centre and vanishes at the boundary of the star.
It is interesting to note that an increase in α supports con-
figurations with larger radii. This confirms the trend in the
density profiles - larger values of α lead to higher densities.
We observe that the tangential pressure (Fig. 2, right panel) is
well-behaved. Higher contributions from the quadratic term
lead to higher tangential pressures. The anisotropy parame-
ter is plotted in Fig. 3. For each interior point of the stellar
configuration, Δ > 0. This means that tangential pressure
dominates the radial pressure everywhere inside the star. A
positive anisotropy parameter leads to a repulsive contribu-
tion from the anisotropic force which may lead to more mas-
sive and stable configurations. Figure 4 (left and right panels)
indicate that our model obeys the causality requirements. An
interesting feature is the minima which appear in the tangen-
tial sound speed. This could model an additional anisotropy
which distinguishes material closer to the surface from that of
the core. The cracking method due to Herrera ascertains that
if the tangential speed of pressure wave vt exceeds the radial
speed vr , then the model is potentially stable. This require-
ment can be articulated mathematically as v2

t − v2
r < 0. We

observe from Fig. 5 that the interior of our stellar model is
stable. We further observe that this stability is enhanced with
an increase in the quadratic contributions from the EoS. Our
model obeys the energy conditions as revealed in Fig. 6. In
addition, we have plotted the stability index, Γ in Fig. 7.
We note that Γ > 4/3 everywhere inside the stellar fluid.
We have compared the quadratic EoS to the colour-flavour
locked (CFL) EoS and the linear EoS in Fig. 8. Similar plots
and comparisons have been found in the literature for linearly
approximated EoS’s [23] and the more recently pursued CFL
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(a) (b)

Fig. 6 Energy conditions

Fig. 7 Adiabatic index profiles

EoS [24–26]. It is interesting to note that the quadratic EoS
mimics the CFL EoS more closely than the linear EoS. This
is a new and interesting observation. Thirukannesh et al. [7]
recently showed that the linear EoS closely resembles the
CFL EoS. Our study shows that a better approximation to
the CFL EoS is the quadratic EoS. The surface redshift is
plotted in Fig. 9. We observe that the redshift increases with
an increase in radius and that our results compare well with
other studies [27–29]. Furthermore, we observe higher sur-
face redshifts for larger values of α. This ties in with our
earlier observation that larger values of α lead to higher den-
sities.

7 Conclusion

We have shown that the quadratic equation of state is well-
suited to the description of highly dense and massive neu-
tron stars, strange-matter stars and possibly the more exotic
hybrid stars for which higher core densities and pressures
are sought. Our results have shown the effectiveness of the

Fig. 8 Comparison of equations of state

Fig. 9 Surface redshift with respect to proper radius

quadratic term in achieving the higher densities and pressures
while maintaining stability of the core. Pressure anisotropy is
a key feature of our models and the anisotropy parameter dis-
played radial profiles which were favourable and comparable
to other studies. The Vaidya–Tikekar potential used, with the
spheroidal parameter (K = −5) used, resulted in the pos-
sibility of an additional inhomogeneity as suggested by the
minima in the tangential sound speed profiles. According to

123



Eur. Phys. J. C (2021) 81 :62 Page 7 of 7 62

the sound speed stability criterion, our models appear to be
stable except possibly near the surface which could result in
a crust which exhibits cracking. The phenomenon of crack-
ing and its relationship to inhomogeneity and anisotropy has
been studied by Herrera et al. [18] and the necessity for pres-
sure anisotropy appears to be of central importance in the
stability of compact, relativistic objects. The possible insta-
bility near the surface as shown in our results may however
be reduced by increasing the effect of the quadratic term in
the EoS used in this study. Hence the benefit of the quadratic
term is highlighted. Comparison of the quadratic equation
of state with the linear and the CFL equations of state show
that the quadratic term is to some extent a perturbation, fea-
turing more prominently in the core, and that the values of
α used serve as adjustments where linearity is likely to fail.
The quadratic term also shows enhancements of the surface
redshift. Lastly, the adiabatic index shows that the configu-
rations are stable and that increasing α results in a reduction
in the rate of decline in stability, albeit the index remain-
ing above Chandrasekhar’s limit (Γ ≥ 4/3). The apparent
reverse trend in stability as compared to the potential insta-
bility analysis as given by the sound speed anisotropy results
in Fig. 5, are no doubt a result of the different masses and
radii of the candidate stars used in our investigation. In light
of this, it is proposed that for a future investigation of the
quadratic equation of state with the Vaidya–Tikekar poten-
tial, a single candidate star be chosen and studied with respect
to variation in the spheroidal parameter.
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