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Abstract We study a matrix model that has φi
a (a =

1, 2, . . . , N , i = 1, 2, . . . , R) as its dynamical variable,
whose lower indices are pairwise contracted, but upper ones
are not always done so. This matrix model has a motivation
from a tensor model for quantum gravity, and is also related
to the physics of glasses, because it has the same form as what
appears in the replica trick of the spherical p-spin model for
spin glasses, though the parameter range of our interest is
different. To study the dynamics, which in general depends
on N and R, we perform Monte Carlo simulations and com-
pare with some analytical computations in the leading and
the next-leading orders. A transition region has been found
around R ∼ N 2/2, which matches a relation required by the
consistency of the tensor model. The simulation and the ana-
lytical computations agree well outside the transition region,
but not in this region, implying that some relevant configu-
rations are not properly included by the analytical compu-
tations. With a motivation coming from the tensor model,
we also study the persistent homology of the configurations
generated in the simulations, and have observed its grad-
ual change from S1 to higher dimensional cycles with the
increase of R around the transition region.

1 Introduction

Quantization of gravity is one of the major fundamental
problems in theoretical physics. The quantization of gen-
eral relativity by the standard perturbative methods of quan-
tum field theory fails due to non-renormalizable divergences.
Various approaches have been proposed and being stud-
ied to solve the fundamental problem, depending on views
of authors. In one approach, general relativity (with higher
derivative terms) is directly quantized as quantum field the-
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ory with the modern technique of the functional renormal-
ization group [1]. In other approaches, fundamental discrete-
ness is introduced to represent spacetimes, which include
(causal) dynamical triangulations [2], loop quantum gravity
[3], causal sets [4], quantum graphity [5], matrix models [6–
10], tensor models [11–14], and so on. In these discretized
approaches, an important criterion for success is whether
macroscopic spacetimes are generated, or in other words,
whether there exist appropriate continuum limits that recover
the usual continuum picture of spacetime with dynamics
described by general relativity as low-energy effective the-
ory.

The criterion above can in principle be checked by
studying the properties of a wave function of each the-
ory. If the wave function has a peak at a configuration
that can well be described by a macroscopic spacetime pic-
ture, then the model can be considered to be potentially
successful. An indirect motivation for the present paper
is to understand the properties of the wave function [15]
that is an exact solution to a tensor model in the Hamil-
ton formalism [16,17] (see “Appendix A” for the tensor
model.). It has been argued and shown for some simple
cases that the wave function has peaks at the tensor val-
ues that are invariant under Lie groups [18]. By using the
correspondence developed in Ref. [19] between tensor val-
ues and spaces with geometries, this would imply that the
spacetimes symmetric under Lie groups are favored quan-
tum mechanically. However, the main difficulty in argu-
ing this is that only little part of the peak structure (often
called landscape in such contexts) of the wave function
is known, not enough to discuss “probabilities of space-
times”.

To simplify the problem keeping the main structure from
the tensor model as much as possible, one of the authors of
the present paper and his collaborators considered the fol-
lowing two simplifications in the former papers. One is that
they considered a toy wave function rather than the actual
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wave function of the tensor model [20]. The actual wave
function is expressed by a certain power, say R-th, of a func-
tion expressed by an integration over N + 1 variables, but,
in the toy wave function, the function is simplified to the
one expressed by an integration over N variables by fix-
ing a certain integration variable to a constant. While this
substantially simplifies the analysis, the toy wave function
keeps the most crucial property mentioned above that there
appear peaks at the tensor values that are symmetric under
Lie groups as the actual wave function of the tensor model
does [20].

Though this toy wave function is simpler than the actual
one, it is still difficult to perform thorough analyses, because
the dimension of the argument (a symmetric tensor with
three indices) of the wave function is very large with the
order of ∼ N 3/6. Therefore, as an additional simplifica-
tion, the authors in Ref. [21] considered a model that can
be obtained by integrating over the argument of the toy wave
function. This gives a dynamical system of a matrix, say
φi
a (a = 1, 2, . . . , N , i = 1, 2, . . . , R), rectangular in gen-

eral, where the lower indices are pairwise contracted, but the
upper ones are not always done so. While this model does
not fall into the known solvable models such as the rectan-
gular matrix models [22–24] or the vector models [25,26], it
has the same form as what appears when the replica trick is
applied to the spherical p-spin model for spin glasses [27,28],
where R plays the role of the replica number. Here, though
the form is exactly so, the concerned ranges of the dynamical
variables and the parameters are different between our model
and the spin glass model, and it seems reasonable to reana-
lyze the matrix model with fresh eyes: (1) while the replica
number R is taken to the vanishing limit in the replica trick,
it takes a finite value R ∼ N 2/2 in the correspondence to
the tensor model, and should rather be taken to infinity in
the thermodynamic limit N → ∞; (2) a coupling constant1

takes the opposite sign in our model compared to the spin
glass model; (3) there is a spherical constraint on the dynam-
ical variable in the spherical p-spin model, but there is none
in our model.

In this paper, we numerically study the matrix model by
the Monte Carlo simulation with the standard Metropolis
update method. This contrasts with the perturbative ana-
lytical computations performed in the previous paper [21].
We also perform some additional analytical computations to
compare with the numerical results. We have obtained the
following main results:

• The expectation values of some observables are com-
puted by the numerical simulations, and it is observed

1 More specifically, λ in (1). This sign difference originates from the
pure imaginary value of the tensor coupling in (59), which is real in the
spherical p-spin model.

that there exists a transition region around R ∼ N 2/2.
Intriguingly, the location is in good coincidence with
R = (N + 2)(N + 3)/2 that is required by the con-
sistency of the tensor model (Namely, the hermiticity of
the Hamiltonian constraints. See “Appendix A” for more
details.) [15,18,29]. Presently, this coincidence is mys-
terious, since there are no apparent connections between
the transition and the consistency. The observables seem
to continuously but substantially change their behavior
at the transition region, but it has not been determined
whether this transition is a phase transition or a crossover
in the thermodynamic limit N → ∞. The method for
the Monte Carlo simulations performed in this paper is
not powerful enough for the determination because of an
issue explained below.

• The expectation values of some observables are ana-
lytically computed in the leading order, mostly based
on the treatment in the previous paper [21], and are
compared with the numerical results. Good agreement
between them is obtained outside the vicinity of the tran-
sition region, while there exist deviations in the transition
region. The deviations are such that they soften the transi-
tion to make it look more like a crossover. A next-leading
order computation has also been performed, but this does
not well correct the deviations.

• The tensor model suggests the presence of topological
characteristics for the dominant configurations of the
matrix φi

a (see Sect. 7 and “Appendix A”). Therefore,
we have studied topological characters of the configura-
tions that are generated in the simulations by using the
modern technique called persistent homology [30] in the
topological data analysis. This technique extracts homol-
ogy groups possessed by a data, which is a value of the
matrix φi

a in our case. The dominant topology gradually
changes from S1 to higher-dimensional cycles with the
increase of R in the vicinity of the transition region.

• The Monte Carlo simulation becomes substantially diffi-
cult in the region with R � N 2/2 and large λ/k3, where
λ and k are the parameters of our model (1). In the region,
the step sizes of the Metropolis updates chosen for rea-
sonable acceptance rates become too small to reach ther-
mal equillibriums in ∼ 1010 Metropolis updates.

• A characterization of the transition can be done by the
sizes of the matrix elements, which take relatively large
values at the region with R � N 2/2 and large λ/k3, but
otherwise fluctuate around small values. In the former
case, our model may behave like the spherical p-spin
model, since the matrix elements are effectively con-
strained to non-zero sizes, which would approximately
realize the spherical constraint in the spherical p-spin
model. This may partly explain the bad performance
of the Monte Carlo simulation in the region, seemingly
reflecting the high viscous nature of glassy fluids.
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This paper is organized as follows. In Sect. 2, we define
the model and summarize the previous results [21] that are
relevant to the present paper. In Sect. 3, some observables are
introduced and the analytical expressions of their expectation
values are obtained in a leading order. In Sect. 4, the details
of the computation in the leading order are given. The result
of the next-leading order is also presented, while the details
of the computation are given in “Appendix D”. In Sect. 5, we
perform a saddle point analysis of the expectation values of
the observables in the leading order. This describes the tran-
sition as a continuous phase transition in the large N limit,
where the first derivatives of the expectation values of the
observables with respect to R are discontinuous. In Sect. 6,
we compare the Monte Carlo and the analytical results. They
agree well outside the transition region. In the transition
region, however, there exist deviations, which smoothen the
transition to make it look more like a crossover. In Sect. 7, we
analyze the homology structure of the configurations gener-
ated by the simulations. The preference changes from S1 to
higher-dimensional cycles with the increase of R in the vicin-
ity of the transition region. The last section is devoted to a
summary and future prospects. In “Appendix A”, the motiva-
tion for the matrix model is explained from the viewpoint of
the tensor model. In “Appendix B”, an instructive computa-
tion of the partition function for R = 2 is given. In “Appendix
C”, “Appendix D”, and “Appendix E”, some equations used
in the main text are explicitly derived. In “Appendix F”, a
brief introduction to persistent homology is given.

2 The model

The partition function of our matrix model is given by

ZN ,R(λ, k) :=
∫
RN R

dφ exp
(−λU (φ) − kTr(φtφ)

)
, (1)

where λ and k are the coupling constants assumed to be pos-
itive, φ is a (generally rectangular) real matrix, φi

a (a =
1, 2, . . . , N , i = 1, 2, . . . , R), and dφ := ∏N ,R

a,i=1 dφi
a . The

integration is over the N R-dimensional real space denoted
by R

N R . The coupling terms are defined by

U (φ) :=
R∑

i, j=1

(
φi
aφ

j
a

)3
,

Tr(φtφ) :=
R∑

i=1

φi
aφ

i
a,

(2)

where the repeated lower indices are assumed to be summed
over. We use this standard convention for the lower indices
throughout this paper, unless otherwise stated. On the other
hand, we do not use this convention for the upper indices:

A sum over them must always be written explicitly.2 The
background motivation for the matrix model is explained
in “Appendix A” from the viewpoint of the tensor model.

In (2), the lower indices are contracted pairwise, while
the upper indices are not necessarily so. Therefore the model
has the symmetry of the O(N ) transformation on the lower
indices, but only the permutation symmetry SR of relabeling
{1, 2, . . . , R} on the upper indices. These symmetries are not
enough to diagonalize φi

a in general, and therefore this model
cannot be solved in a similar way as the usual matrix model.

In the previous paper [21], we considered an expression
which can just be obtained by separating the radial and angu-
lar part of the integration in (1): By the change of variable,
φi
a = r φ̃i

a , with r2 = ∑R
i=1 φi

aφ
i
a and φ̃ representing the

angular coordinates, we obtain

ZN ,R(λ, k) = VNR−1

∫ ∞

0
dr r N R−1 fN ,R(λ r6) e−k r2

, (3)

where

fN ,R(t) := 1

VNR−1

∫
SN R−1

dφ̃ e−t U (φ̃) (4)

with VNR−1 = ∫
SN R−1 dφ̃, the volume of the N R − 1-

dimensional unit sphere.
This rather trivial change of expression is actually very

useful, because fN ,R(t) can be shown to be an entire func-
tion of t and therefore has a Taylor expansion in t with the
infinite convergence radius around t = 0 (actually around
arbitrary t �= ∞). Therefore, in principle, the dynamics
can be solved by obtaining the entire perturbative series of
fN ,R(t). Note that the corresponding perturbative expansion
of ZN ,R(λ, k) in λ around λ = 0, often obtained by per-
turbative methods, is merely an asymptotic series, because
ZN ,R(λ, k) has an essential singularity at λ = 0. The fN ,R(t)
has also the property that it is a decreasing positive function
of t with fN ,R(0) = 1 for real t . This property provides a
good criterion for assessing the validity of an approximation
of fN ,R(t). In the previous paper [21], fN ,R(t) in the leading
order of 1/R has been determined by a Feynman diagram-
matic method with the result,

f 1/R,leading
N ,R (t) =

(
1 + 12t

N 3R2

)− N (N−1)(N+4)
12

×
(

1 + 6(N + 4)t

N 3R2

)− N
2

. (5)

2 One can avoid this unusual convention by introducing some external
variables. An example is U (φ,C) ≡ Ci1i2i3C j1 j2 j3φ

i1
a1φ

j1
a1φ

i2
a2φ

j2
a2φ

i3
a3

φ
j3
a3 , which reproduces U (φ) by putting Ci1i2i3 = δi1i2 δi1i3 .
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In particular, (5) indeed satisfies the properties above: It is
a decreasing function for real t with f 1/R,leading

N ,R (0) = 1,
and is almost an entire function, since the locations of the
singularities are far away from the relevant region t ≥ 0 for
large N , R.

Since there are two parameters N , R, which can be taken
large, the range of validity of (5), which was derived in the
leading order of 1/R, is not obvious. However, in later sec-
tions, we will find that (5)3 will give results which agree
well4 with those of the numerical simulations except in the
transition region around R ∼ N 2/2.

3 Observables

The purpose of this section is to introduce some observables,
say O(φ), and discuss the expectation values defined by

〈O(φ)〉 := 1

ZN ,R(λ, k)

∫
RN R

dφ O(φ) e−λU (φ)−kTr(φtφ).

(6)

The observables must respect the symmetry O(N )×SR men-
tioned in Sect. 2. Among various possibilities, we consider
Tr(φtφ) and U (φ) in (2), and also

Ud(φ) :=
R∑

i=1

(
φi
aφ

i
a

)3
. (7)

The last one is the diagonal part of the sum in U (φ) in (2).
Since these observables are some parts contained in the expo-
nent of (1), they can be implemented in the numerical simu-
lations with little additional computational costs.

To compute the expectation values of these observables,
it is convenient to extend (1) by introducing the coupling
constant λd conjugate to Ud(φ) as

ZN ,R(λ, λd , k) :=
∫
RN R

dφ e−λU (φ)−λdUd (φ)−kTr(φtφ). (8)

Then the expectation values can respectively be expressed
as

3 More precisely, because of the difference of our strategy of compu-
tations taken in this paper, the expression (17) is slightly different from
(5) obtained in Ref. [21]. However, the difference is negligible for large
N , R, and is not essential.
4 In fact, the expression (5) cannot be correct for small R such as
R = 2. This is explicitly shown in “Appendix B”. However, the differ-
ence shown there in the asymptotic region t ∼ ∞ is not relevant for
the thermodynamic properties, since for small R, the dominant contri-
butions come from t ∼ 0, as can be explicitly observed in the Monte
Carlo simulations in Sect. 6.

〈Tr(φtφ)〉 = ∂

∂k
FN ,R(λ, λd = 0, k),

〈U (φ)〉 = ∂

∂λ
FN ,R(λ, λd = 0, k),

〈Ud(φ)〉 = ∂

∂λd
FN ,R(λ, λd , k)

∣∣∣∣
λd=0

,

(9)

where FN ,R(λ, λd , k) := − log ZN ,R(λ, λd , k), which is the
free energy of the model. Here we have put λd = 0 at last,
since our interest is in (1) corresponding to λd = 0 of (8).

To compute the partition function (8), it is convenient to
first separate the radial and the angular part as in (3):

ZN ,R(λ, λd , k) = VNR−1

∫ ∞

0
dr r N R−1 fN ,R,λ,λd (r

6) e−kr2
,

(10)

where

fN ,R,λ,λd (t) := 1

VNR−1

∫
SN R−1

dφ̃ e−λ t U (φ̃)−λd t Ud (φ̃).

(11)

The fN ,R,λ,λd (t) has the similar properties as fN ,R(t)
explained in Sect. 2: It is an entire function of t ; For
λ > 0, λd ≥ 0, it is positive and decreasing in t for real
t ; fN ,R,λ,λd (0) = 1. With fN ,R,λ,λd (t), the observables (9)
can be expressed by

〈Tr(φtφ)〉 = 1

N f

∫ ∞

0
dr r N R+1 fN ,R,λ,0(r

6) e−kr2
,

〈U (φ)〉 = − 1

N f

∫ ∞

0
dr r N R−1 ∂

∂λ
fN ,R,λ,0(r

6) e−kr2
,

〈Ud (φ)〉 = − 1

N f

∫ ∞

0
dr r N R−1 ∂

∂λd
fN ,R,λ,λd (r

6)

∣∣∣∣
λd=0

e−kr2
,

(12)

where the normalization is given by

N f =
∫ ∞

0
dr r N R−1 fN ,R,λ,0(r

6) e−kr2
. (13)

From the leading order computation, which is detailed in
Sect. 4, we obtain

f leadingN ,R,λ,λd
(t) = hN ,R(λRt + λd t) hN ,R(λd t)

R−1 (14)

with

hN ,R(x) :=(1 + 12γ3x)
− N (N−1)(N+4)

12 (1 + 6(N+4)γ3x)
− N

2 ,

(15)

where

γn := �
( N R

2

)
2n�

( N R
2 + n

) . (16)
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When λd = 0 is taken, (14) becomes

f leadingN ,R,λ,0(t)

= (1 + 12γ3λRt)
− N (N−1)(N+4)

12 (1 + 6(N + 4)γ3λRt)
− N

2 .

(17)

This could be expected to agree with (5), but there is a slight
difference coming from (16) with n = 3. This difference
originates from the fact that the strategy of the computation
we take in Sect. 4 is different from the one taken previously
in Ref. [21], and therefore the expressions of the leading
orders are slightly different from each other. However, they
agree with each other in the leading order of 1/R, since γn ∼
(N R)−n for N R 
 n, as expected.

By putting these expressions into (12), we obtain

〈Tr(φtφ)〉leading = 1

N f

∫ ∞

0
dr r N R+1 f leadingN ,R,λ,0(r

6) e−kr2
,

〈U (φ)〉leading = − R

N f

∫ ∞

0
dr r N R+5

× h′
N ,R(λRr6)

hN ,R(λRr6)
f leadingN ,R,λ,0(r

6) e−kr2
,

〈Ud(φ)〉leading = − 1

N f

∫ ∞

0
dr r N R+5

×
(
h′
N ,R(λRr6)

hN ,R(λRr6)
+ (R − 1)

h′
N ,R(0)

hN ,R(0)

)

· f leadingN ,R,λ,0(r
6) e−kr2

, (18)

whereN f is given by (13) with f leadingN ,R,λ,0(t). The actual values
of these integrations can be obtained numerically.

4 Computations of fN,R,λ,λd (t) in the leading and the
next-leading orders

In this section, we will compute fN ,R,λ,λd (t) in the leading
order of t , and will also show the result in the next-leading
order, whose detailed computations are given in “Appendix
D”. In Ref. [21], the computation in the leading order of 1/R
has been performed by using the Feynman diagrams for the
φi
a variables. In this paper, however, we will take a different

strategy. This is because the new strategy makes more trans-
parent the rather complicated counting of combinatorics per-
formed in Ref. [21], and make it straightforward to include
the extra coupling λdUd(φ) and also to consider the next
order in t . For λd = 0, the new strategy gives essentially the
same result as Ref. [21] in the leading order, as commented
below (17).

Let us define

fN ,R,�i j (t) := 1

VNR−1

∫
SN R−1

dφ̃ e−t U�i j (φ̃)
, (19)

where

U�i j (φ̃) :=
R∑

i, j=1

�i j

(
φ̃i
aφ̃

j
a

)3
(20)

with a real symmetric matrix �i j . The eigenvalues of
the matrix �i j are assumed to be non-negative for the
convergence of the corresponding partition function. The
fN ,R,�i j (t) also has the same nice properties as fN ,R(t) that
it is an entire function, which has a Taylor series expan-
sion in t with the infinite convergence radius around t = 0,
and is a decreasing positive function of t for real t and
� �= 0 with fN ,R,�i j (0) = 1. If we take �i j = λ + λdδi j ,
(19) gives fN ,R,λ,λd (t) in (11). By introducing a new vari-
able Pi

abc (a, b, c = 1, 2, . . . , N , i = 1, 2, . . . , R), which
is symmetric for the lower indices, one can rewrite (19)
as

fN ,R,�i j (t) = const.
∫
SN R−1

dφ̃

∫ ∞

−∞

R∏
i=1

N∏
a≤b≤c=1

dPi
abc

exp

⎛
⎝−

R∑
i=1

Pi
abc P

i
abc + 2I

√
t

R∑
i, j=1

�̃i j P
i
abcφ̃

j
a φ̃

j
b φ̃

j
c

⎞
⎠ ,

(21)

where I denotes the imaginary unit and �̃i j is a symmetric
matrix satisfying,5

�i j =
R∑

k=1

�̃ik�̃k j . (22)

The constant prefactor in (21) can be determined by
fN ,R,�i j (0) = 1.

To compute (21), let us first integrate over φ̃. This change
of the order of the integrations can be done, because the inte-
gration over Pi

abc with the infinite integration region con-
verges uniformly for any φ̃ ∈ SN R−1. Then our task is to
compute

〈
e2I

√
t Pφ̃3

〉
φ̃

= 1

VNR−1

∫
SN R−1

dφ̃ e2I
√
t Pφ̃3

, (23)

5 In general, such a matrix �̃ can be obtained as �̃ = Mt
√
DM by

diagonalizing the matrix � as � = Mt DM with a diagonal matrix D
and an orthogonal one M .
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where we have used a short-hand notation,

Pφ̃3 :=
R∑

i, j=1

�̃i j P
i
abcφ̃

j
a φ̃

j
b φ̃

j
c , (24)

and 〈·〉φ̃ denotes the expectation value for the uniform prob-

ability distribution on the unit sphere SN R−1.
For further computations, let us introduce the cumulants

〈On〉c defined by6

log〈esO〉 =
∞∑
n=1

sn

n! 〈O
n〉c (25)

with arbitrary s. Then (21) can be rewritten as

fN ,R,�i j (t) = const.
∫ ∞

−∞

R∏
i=1

N∏
a≤b≤c=1

dPi
abc e

−Sef f (P)

(26)

with

Sef f (P) =
R∑

i=1

Pi
abc P

i
abc −

∞∑
n=1

(2I
√
t)n

n! 〈(Pφ̃3)n〉c
φ̃
, (27)

where Sef f (P) can be regarded as an effective action of Pi
abc

after integrating out φ̃, and it is given in terms of the pertur-
bative expansion in t . Due to the form (24), the n-th order
cumulant gives the n-th order interaction term of Pi

abc, and all
the terms with odd n vanish because of the obvious invariance
of the integration over φ̃ under φ̃ → −φ̃.

Let us compute the quadratic term with n = 2 in (27).
Since 〈Pφ̃3〉φ̃ = 0, we obtain

〈(Pφ̃3)2〉c
φ̃

= 〈(Pφ̃3)2〉φ̃

=
R∑

i, j,i ′, j ′=1

�̃i j �̃i ′ j ′ P
i
abc P

i ′
a′b′c′ 〈φ̃ j

a φ̃
j
b φ̃

j
c φ̃

j ′
a′ φ̃

j ′
b′ φ̃

j ′
c′ 〉φ̃

(28)

The integral over φ̃ on SN R−1, which is a curved compact
space, is not easy to handle, so we use a formula which maps
this integration to the Gaussian integral:

〈φ̃i1
a1

φ̃i2
a2

· · · φ̃im
am 〉φ̃ = (2β)

m
2 γm

2
〈φi1

a1
φi2
a2

· · ·φim
am 〉φ, (29)

6 Cumulants are more familiar as connected correlation functions in
particle physics, because they can be computed by summing over con-
nected Feynman diagrams. However, we do not use this terminology
here, because we will rewrite the cumulants for φ̃ in terms of φ as in
(29), and one can explicitly see that these cumulants contain some dis-
connected diagrams in terms of the Feynman diagrams of φ in general,
because of the extra factor γm/2 in (29).

where γn is defined in (16), and

〈φi1
a1

φi2
a2

· · ·φim
am 〉φ

:= 1∫
RN R dφ e−βTrφtφ

∫
RN R

dφ φi1
a1

φi2
a2

· · · φim
am e−βTrφtφ.

(30)

Here β is a sort of dummy variable, which can be chosen
freely with β > 0, and does not appear in the final expres-
sions. In fact, as shown below, the factor (2β)

m
2 in (29) is

exactly canceled by the same factor from the Wick contrac-
tion (31). The formula (29) was previously used in [21], and
is proven in “Appendix C” so that the present paper be self-
contained.

Through the replacement (29), (28) can be computed by
the standard procedure using the Wick theorem and Feynman
diagrams. A Wick contraction is performed by

〈φi
aφ

j
b 〉φ = 1

2β
δabδ

i j , (31)

which can be derived by an explicit computation of (30). The
Feynman diagram for the vertex

∑R
i, j=1 �̃i j Pi

abcφ
j
aφ

j
bφ

j
c is

shown in the left figure of Fig. 1. Each leg is supposed to
bring the two indices of φi

a , and a Wick contraction connects
two legs with the identification of their indices as in (31).
A caution is that each leg on one vertex brings independent
lower indices, but a common upper index.

Now let us apply the Wick contractions to what is obtained
by replacing (28) with (29). We find the two diagrams shown
in the right figure of Fig. 1. Their degeneracy factors are 6
and 9, respectively, by counting the numbers of the ways
to connect the legs of the two vertices. Since j and j ′ in
(28) are identified by the Wick contractions, we also get∑R

j=1 �̃i j �̃i ′ j = �i i ′ as a factor (see 22). Thus, we obtain

〈(Pφ̃3)2〉c
φ̃

= γ3

R∑
i, j=1

�i j

(
6Pi

abc P
j
abc + 9Pi

aab P
j
bcc

)
, (32)

where one notices that the factor (2β)3 coming from the
replacement (29) is exactly canceled by the factors of the
three Wick contractions (31) performed for the evaluation.
Putting the result (32) into (27), one obtains the effective
action in the second order of Pi

abc as

Fig. 1 Left: the diagram for the interaction vertex
∑R

i, j=1 �̃i j Pi
abcφ

j
a

φ
j
bφ

j
c . Right: the diagrams obtained by evaluating (28) through (29)
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S(2)
e f f (P) =

R∑
i, j=1

×
(
δi j P

i
abc P

j
abc + 2γ3�i j t

(
6Pi

abc P
j
abc + 9Pi

aab P
j
bcc

))
.

(33)

The computation of (26) has now been reduced to diago-
nalizing the quadratic expression (33). The upper and lower
indices can independently be diagonalized, because (33) has
the form of the direct product with respect to these indices.
More explicitly, since �i j is real and symmetric, we can con-
sider the following decomposition into the eigenspaces:

�i j =
∑
λev

λev v
λev
i v

λev
j , (34)

where vλev are the orthonormal eigenvectors, and the sum is
over all the eigenvalues (with their degeneracies). By putting
this and

∑
λev

v
λev
i v

λev
j = δi j into (33), we obtain a decom-

position,

S(2)
e f f (P) =

∑
λev

×
(
Pλev
abc P

λev
abc + 2γ3λevt

(
6Pλev

abc P
λev
abc + 9Pλev

aab P
λev
bcc

))
,

(35)

where Pλev
abc := ∑R

i=1 v
λev
i Pi

abc.
Next let us diagonalize the lower index part in (35),

Pabc Pabc + 2γ3λev t (6Pabc Pabc + 9PaabPbcc) , (36)

where for brevity we omit λev from Pλev
abc . Let us separate

Pabc into the tensor part PT
abc and the vector part PV

abc, which
are defined by7

Pabc = PT
abc + PV

abc,

PV
abc = 1

N + 2
(Paddδbc + Pbddδca + Pcddδab) .

(37)

It is easy to check that PT
abc P

V
abc = 0 and PV

abc P
V
abc =

3
N+2 PabbPacc. In particular, the former identity implies that

PT
abc and PV

abc are independent degrees of freedom. Then, by
using (37) and the identities above, (36) can be expressed as

(1+12γ3λev t)P
T
abc P

T
abc+(1+6(N + 4)γ3λev t) P

V
abc P

V
abc.

(38)

7 This decomposition can be understood as follows. First Pabb repre-
sents the O(N )-vector part of Pabc. Its embedding to Pabc is given by an
expression proportional to (37). Then the coefficient can be determined
by the condition that PT

abc does not contain the vector part: PT
abb = 0.

The number of independent components contained in PT
abc

and PV
abc are #PT = N (N + 1)(N + 2)/6 − N = N (N +

4)(N − 1)/6 and #PV = N , respectively. Therefore, by
putting this diagonal form into (26) and integrating over PV

and PT , we finally obtain the expression of fN ,R,�i j (t) from

the quadratic order S(2)
e f f (P) as

f (2)
N ,R,�i j

(t) = const.
∫

dPe−S(2)
e f f (P)

=
∏
λev

(1+12γ3λevt)
− N (N+4)(N−1)

12 (1+6(N+4)γ3λev t)
− N

2

=
∏
λev

hN ,R(λevt), (39)

where we have determined the overall factor by requiring
f (2)
N ,R,�i j

(0) = 1, the product is over all the eigenvalues of
the matrix �i j , and hN ,R(x) is defined in (15).

For the computation of the observables discussed in
Sect. 3, we consider �i j = λ + λdδi j . In this case, the
matrix �i j has one eigenvalue λR + λd with the eigen-
vector (1, 1, . . . , 1), and the eigenvalue λd with degeneracy
R − 1 with any of the vectors transverse to (1, 1, . . . , 1) as
the eigenvectors. Therefore, from (39), we obtain

f (2)
N ,R,λ+λdδi j

(t) = hN ,R(λRt + λd t) hN ,R(λd t)
R−1. (40)

This is the leading-order result shown in (14).
As we will see later in Sect. 6, there are some deviations

between the leading-order result above and the numerical
simulations. To see how the situation changes by adding some
corrections, we have also computed the next-leading order.
The details of the computation are given in “Appendix D”.
The final result is

f next−leading
N ,R,λ,λd

(t) = f leadingN ,R,λ,λd
(t)

(
1 − 〈S(4)

e f f (P)〉P
)

, (41)

where f next−leading
N ,R,λ,λd

(t) is the sum of the leading and the next-
leading orders, and

〈S(4)
e f f (P)〉P = −4t2

4!
[
γ6RG1(x1, y1)

− 3(γ 2
3 − γ6)

(
G2(x2, y2) + (λR + λd)

2G3(x3, y3)

+ (R − 1)λ2
dG3(x4, y4)

)]
(42)

with the definitions of Gi , xi , yi given by from (D.21) to
(D.31).

5 Saddle point analysis in the leading order

The integral expressions of the observables (18) in the leading
order do not seem to have explicit expressions with known
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functions. Therefore, a way to obtain their explicit values is to
numerically perform the integrations. This will be performed
in Sect. 6 to compare with the Monte Carlo results. In this
section, on the other hand, we will apply the saddle point
approximation to the integrals to obtain a qualitative global
picture of the phase structure of the model.

To discuss the saddle point approximation of the partition
function (3), let us consider the minus of the logarithm of the
integrand, which is given by8

FN ,R(λ, k, r)≡ f0−(N R − 1) log r−log fN ,R(λr6)+kr2.

(43)

with f0 = − log VNR−1. A saddle point r = r∗ of the integral
is determined by

∂

∂r
FN ,R(λ, k, r)

∣∣∣∣
r=r∗

= 0 (44)

with the second derivative being positive at the point. As
fN ,R , we take (5), which is the expression in the leading
order of 1/R:

F1/R,leading
N ,R (λ, k, r) := f0 − (N R − 1) log r

+ A0 log(1 + A1r
6) + B0 log(1 + B1r

6) + kr2
(45)

with

A0 = N (N − 1)(N + 4)

12
, A1 = 12λ

N 3R2 ,

B0 = N

2
, B1 = 6(N + 4)λ

N 3R2 .

(46)

In the saddle point approximation, the free energy of the
model is approximated by

F f ree
N ,R (λ, k) ∼ F1/R,leading

N ,R (λ, k, r∗) + unimportant terms,

(47)

where the unimportant terms contain log VNR−1, which does
not depend on λ or k, and also some lower order terms in
N , which will be discussed in the last paragraph of this sec-
tion.

Let us first show that there exists a unique solution to the
saddle point Eq. (44), for the leading order expression (45), in
the integration region r ≥ 0. To see this, it is convenient to use
a new parametrization of R in terms of α as R = Rc(1 + α)

with Rc = (N + 1)(N + 2)/2 and −1 < α. Then, by noting
N Rc = 6(A0 + B0), the saddle point equation (44) with (45)
can be written as

8 Namely, we rewrite the integral in the form,
∫
dre−FN ,R (λ,k,r), as

commonly performed in the saddle point approximation.

N Rcα − 1 + 6A0

1 + A1r6∗
+ 6B0

1 + B1r6∗
= 2kr2∗ . (48)

The lefthand side is obviously a decreasing function of r∗
with a maximum at r∗ = 0, while the righthand side is an
increasing function from zero to the infinity. Since the max-
imum on the lefthand side is N Rcα − 1 + 6A0 + 6B0 =
N R − 1, there always exists a unique solution of r∗ for
N , R ≥ 1. Moreover, the solution is smooth: r∗ does not
jump in a discrete manner, when the parameters are con-
tinuously changed, because the r∗-dependence of each side
continuously changes. This turns down the possibility that
the model has a discontinuous phase transition in this treat-
ment.

To discuss the solution more quantitatively with approx-
imations, let us restrict ourselves to the parameter range
of our interest: λ ∼ O(1), N � O(10), and k �
O(1). In addition, for the simplicity of the following
discussions, let us avoid the region around α ∼ 0.
By noting that N Rc, and A0 are of order O(103) or
larger, one can find that, for each case of α < 0 and
α > 0, there are only two relevant terms among all in
(48). For α < 0, the first and third terms on the left-
hand side are relevant, and for α > 0, the first term
on the lefthand side and the one on the righthand side
are relevant. By solving the equations under taking these
relevant terms only, the solutions are respectively given
by

r2∗ ∼

⎧⎪⎨
⎪⎩

(
1
A1

(
− 6A0

N Rcα
− 1

)) 1
3
, α < 0,

N Rcα
2k , α > 0.

(49)

The first case shows divergent behavior for α → −0. How-
ever, this should not be taken as it is, since the transition
should not have such an abrupt behavior as discussed above.
In fact, the simplification taken above brakes down in the
vicinity of α ∼ 0, and the real behavior is such that r2∗
smoothly interpolates between the two parameter regions in
the vicinity of α ∼ 0.

The r2∗ in (49) has different large-N behavior in the two

regions: N
7
3 for α < 0 and N 3 for α > 0. By normalizing r2∗

with the common factor (N Rc)
−1 for both the regions, we

obtain

r̃2∗ ∼
{

0, α ≤ 0,
α
2k , α > 0,

(50)

in the N → ∞ limit, where r̃2∗ := (N Rc)
−1r2∗ . See the left-

most figure in Fig. 2. This characterizes the transition at α =
0 as a continuous phase transition with 〈Tr(φtφ)〉/(N Rc) =
0 for α ≤ 0 and 〈Tr(φtφ)〉/(N Rc) = α

2k for α > 0 in the
thermodynamic limit.
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Fig. 2 The behavior of the
observables with respect to
α = (R − Rc)/Rc in the large N
limit, based on the saddle point
analysis with the use of the
leading order result of fN ,R .
The parameters are assumed to
be λ ∼ O(1) and k � O(1)

The other observables can be treated in similar manners.
By taking (18), putting r = r∗, and taking the leading order
in large N , one obtains

〈U (φ)〉leading ∼
{

N3

12λ
(1 + α), for α ≤ 0,
N3

12λ
, for α > 0,

〈Ud(φ)〉leading ∼
{

N3(1+α)
12λ(−α)

, for α ≤ 0,

N5

16k3
α3

(1+α)2 , for α > 0.

(51)

The divergence of 〈Ud(φ)〉leading in α → −0 should not
be taken as it is, because of the same reason mentioned
above for r2∗ . By normalizing Ũ (φ) := (N 3/12λ)−1U (φ)

and Ũd(φ) := (N 5/16k3)−1Ud(φ), one obtains

〈Ũ (φ)〉leading ∼
{

1 + α, for α ≤ 0,

1, for α > 0,

〈Ũd(φ)〉leading ∼
{

0, for α ≤ 0,
α3

(1+α)2 , for α > 0.

(52)

See the middle and rightmost figures in Fig. 2. The results
support the same conclusion that there is a continuous phase
transition at α = 0.

Let us finally comment on the consistency of the above
saddle point approximation in the large N case. From (45)
and (49), it is straightforward by some explicit computations
to find the expansion of F1/R,leading

N ,R around r ∼ r∗ as

F1/R,leading
N ,R ∼ a0 + a2(r − r∗)2 + a3(r − r∗)3 + · · · ,

(53)

where an := 1
n!

d
drnF

1/R,leading
N ,R (λ, k, r)|r=r∗ can easily be

estimated as a0 ∼ O(N 3), and

a2 ∼ O(N 2/3), a3 ∼ O(N−1/2), for α < 0,

a2 ∼ O(1), a3 ∼ O(N−3/2), for α > 0.
(54)

Therefore the integral is dominated by the saddle point value
a0, and the Gaussian integration around the saddle point9 and
the higher orders in r − r∗ are subdominant. In addition, the

9
∫
dr e−a2(r−r∗)2

generates a contribution proportional to log a2 �
O(log N ) to the free energy, and this is subdominant.

insertion of the observablesO as in (18) for the computations
of their expectation values does not change the location of
the saddle point in the leading order, because the additional
contribution logO to (53) is O(log N ), and cannot become
comparable to the leading O(N 3) terms.

6 Comparison with Monte Carlo simulations

In Sect. 4, we have computed the leading order approxima-
tion of fN ,R,λ,λd (t) defined in (11) in a perturbative method,
and have obtained the result (14) along with (15) and so on.
We have also derived the next-leading order correction (41)
with (42), the details of which are given in “Appendix D”.
With those results, we can numerically calculate the expec-
tation values (e.v.) of the observables given in (12) by the
expressions on the righthand sides. However, note that the
above approximations of fN ,R,λ,λd (t) are based on taking the
perturbative expansion of Sef f given in (27) up to the second
order in t . Therefore they seem to require the implicit assump-
tion of small values of t , and may not generally be trusted for
the computation of (12), because t is finally assigned with
r6, and r is integrated over zero to infinity.

In view of the question above, it would be interesting
to compute our model without any adoption of approx-
imation methods. More specifically, in this section we
compute the e.v. of the observables, (6) with O(φ) =
Tr(φtφ),U (φ),Ud(φ), by the Monte Carlo simulations, and
compare them with the analytical results obtained by numeri-
cally integrating the righthand sides of (12), where we put our
perturbative results for fN ,R,λ,λd (t). Note that, in our strat-
egy of the approximations, R is not an expansion parameter,
only t is, and therefore it is meaningful to compare the results
in the full range of R.

The results of the comparison are summarized in
Figs. 3, 4, 5 and 6. The points, each with an error bar (though
it’s very small), represent the Monte Carlo results. For the
information about the parameters taken in the Monte Carlo
simulations, refer to the captions. In particular, we take λ = 1
in all the computations, because λ in the model (1) can
be scaled out by a scale transformation10 φ → λ−1/6φ

so that it is absorbed into k as k/λ1/3. The dotted and

10 The change of the overall factor of the partition function caused by
the transformation is irrelevant in the Monte Carlo simulation.
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Fig. 3 The numerical results of e.v. of the observables discussed in
Sect. 3 for λ = 1, N = 5 and k = 0.1 (top three) and k = 1.0 (bot-
tom three) against R. Plotted points represent the Monte Carlo results
and ‘leading’ and ‘next-leading’ mean the evaluations based on Eq.
(12) with perturbatively evaluated fN ,R,λ,λd (t) in the leading and next-

leading orders, respectively. There are some small windows within the
figures, where one can see which of the leading and next-leading lines
exists above/below the other, and can also see more clearly the results for
〈Ud 〉 in the transition region around R = Rc. For the clarity of the small
R regions, which are unclear in some of the figures, we provide Fig. 4

Fig. 4 Magnification of the
small R regions that are unclear
in Fig. 3
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chained lines represent the values of the e.v. of the observ-
ables in the leading and the next-leading orders by adopt-
ing fN ,R,λ,λd (t)

leading/next−leading to (12), respectively. In
some figures, it is difficult to distinguish these two lines,

almost overlapping with each other. Therefore, we put some
small windows within the figures, where these two lines
can be distinguished, clearly showing which of them exists
above/below the other. In fact, the relative locations (namely,
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Fig. 5 λ = 1, N = 10 and k = 0.05 (top three), k = 0.10 (middle
three) and k = 1.00 (bottom three) against R. The same notations are
used, and some small windows are put for the same purposes as in Fig. 3.

For the clarity of the small R regions that are unclear in some of the
figures, we provide Fig. 6

above/below) of the two lines remain unchanged for each
observable throughout the parameters N , R and k in the fig-
ures. In the small windows within the figures of 〈Ud〉, one
can more clearly see the results in the vicinity of the transi-
tion region around R = Rc. In addition, for the clarity of the
small R regions of some of the figures, we provide Figs. 4
and 6, where one can in particular find that the analytical
and Monte Carlo results approach each other as R becomes
smaller.

An important thing that can be observed in the figures is
that, for each N , there exists a region of R that separates
the smaller and larger regions of R with different qualitative
behaviors of the observables. This is more clearly seen for
larger N and smaller k. The transition region we observe
indeed exists around the value Rc = (N + 1)(N + 2)/2,
which was obtained as the critical point from the saddle point
analysis in Sect. 5 (see Fig. 2).

It is an important physical question whether this transi-
tion of behavior is a phase-transition or just a crossover in

the thermodynamic limit N → ∞. However, we cannot cur-
rently answer this question for certain with the Monte Carlo
results presently available, and this would require larger scale
Monte Carlo simulations. It seems also difficult to answer this
question by our perturbative analytical methods because of
the following reason. In the figures, we can find good agree-
ment between the perturbative computations and the Monte
Carlo results in the regions away from the transition region.
This would support the validity of our perturbative calcu-
lations in those outside regions. On the other hand, we can
observe that there exist some deviations between the per-
turbative computations and the Monte Carlo results in the
transition region. The deviations appear in such a way that
the Monte Carlo results smoothen the transition to make it
more like a crossover. Therefore, it seems that the analytical
expressions we have obtained as approximations do not seem
to be reliable in the transition region.

We can further discuss this complication from another
view point as follows. Let us look at the figures more closely.
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Fig. 6 Magnification of the
small R regions that are unclear
in Fig. 5
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Then we can find that, as to the numerical relations among
〈Trφtφ〉, 〈U 〉, and 〈Ud〉 in the leading and the next-leading
orders, the following hold:

〈Tr φtφ〉 : including next-leading > leading,

〈U 〉 : including next-leading < leading,

〈Ud〉 : including next-leading < leading,

(55)

for all R. Therefore, while the next-leading order corrections
indeed improve the approximations so that they approach
the Monte Carlo results in the outside regions and this is
also so for 〈Tr φtφ〉 and 〈U 〉 in the transition region, the
last inequality about 〈Ud〉 is in the opposite direction. This
suggests that our perturbative treatment seems to have some
difficulties in correctly taking into account some configura-
tions that mainly contribute to Ud in the transition region.
It would be an interesting future problem to identify these
configurations.

Let us briefly explain our actual Monte Carlo simulations.
We have performed Monte Carlo simulations with the stan-
dard Metropolis update method for the model (1) by using
KEKCC, the cluster system of KEK. For each calculation
shown in the figures, we performed 2 billion sweeps, where
the time taken for this was generally about 7 and 23 hours
with R = 10 and 130, respectively. We stored the data of
the observables once per 400 sweeps, and computed their
mean values and the 1σ -errors by the Jackknife resampling
method. In each calculation we always set the acceptance
rate to be around 60%. However, to realize this 60%, we had

to tune the step sizes in our Metropolis method to quite small
values, especially in the region R � N 2/2.

Let us further comment on the last peculiar nature we
encountered in the simulations. We have performed the sim-
ulations for k = 1, 0.1 and 0.05 with N = 10 and k = 1.0
and 0.1 with N = 5, respectively, as shown in the figures. As
suggested by the results in the figures, the transition could
be sharpened, if we performed simulations with smaller val-
ues of k than those in the figures. However, when we tried
to do so, we encountered a serious difficulty in particular in
the region R � N 2/2. It was that the Metropolis step sizes
must be tuned to very small values to keep the reasonable
acceptance rate like 60%. Then, the performance of the sim-
ulations became so slow that we could not find the timing
when the system had reached thermodynamic equilibriums:
The system always looked like being in the middle stage of
moving very slowly toward thermodynamic equilibriums, at
least during one week of continuous running or so. Therefore
we took relatively large values of k as those in the figures to
avoid the serious difficulty that makes the simulations unre-
liable.

Finally, let us qualitatively explain why the analytical
results computed by the perturbative method and the Monte
Carlo results agree with each other outside the transition
region of R. Let us start with a qualitative estimation of the
effective action (27) with respect to the orders in R and t .
One can obtain

Sef f (P) ∼ (1 + b0 t)P
2 + b1 t

2P4 + · · · , (56)
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where we have ignored all the index structures of Pi
abc for

notational simplicity, and the dominant R-dependencies of
the coefficients are given by

b0 ∼ c0

R2 , b1 ∼ c1

R5
. (57)

Here the dominant R-dependence of b0 is obtained by putting
the eigenvalue λev ∼ R into (36) and recalling γ3 ∼ 1/R3,
as defined in (16); The estimation of b1 is also straightfor-
ward and is given in “Appendix E”. Then, normalizing the
quadratic part by rescaling P → P/

√
1 + b0t in (56), one

finds that the actual quartic coupling of Sef f is estimated as

b1 t2

(1 + b0t)2 ∼ c1t2

R(R2 + c0t)2 , (58)

which is different from the naive value b1 t2. When R is
small, r2 = Tr(φtφ) is dominated by small values as shown
in the Monte Carlo computations above. This means that,
since t ∼ r6 in the usage (3), (58) is also dominated by small
values, and therefor the quadratic term S(2)

e f f will give good
analytic estimations. On the other hand, when R is large, t ∼
r6 is dominated by large values as shown in the Monte Carlo
results. Nonetheless what is remarkable is that (58) is always
suppressed by 1/R irrespective of the values of t . Therefore
the leading order term S(2)

e f f will again give good estimations.
In the middle region, however, (58) could generally become
large, and higher order and/or non-perturbative corrections
may substantially contribute, as suggested by the deviations
between the Monte Carlo and analytical results.

7 Topological structure of configurations

In this section, we will explain our observation on the topo-
logical structure of the configurations generated by the Monte
Carlo simulations. Topology of a value of the matrix φi

a can
be analyzed by persistent homology [30], which is a modern
technique of the topological data analysis (see “Appendix
F” for a brief introduction of persistent homology.). More
specifically, we performed the Monte Carlo simulations for
N = 4 and R = 10, 15, 20, 25 with λ = 1, k = 0.01, and,
for each case, uniformly took 100 samples of the values of φi

a
during a large number of sequential updates of order 108 after
thermodynamic equilibriums were seen to be reached. Then,
the samples were analyzed in terms of persistent homology.
The analysis shows that the favored topology of the con-
figurations is S1 for R = 10, 15, but gradually changes to
higher dimensional cycles, when R is increased. We will first
explain the background motivation for this analysis, and will
then show the results.

One of the present authors and his collaborators have been
studying a tensor model in the canonical formalism, which

we call canonical tensor model [16,17], as a model of quan-
tum gravity. In Ref. [18], it has been shown that the exact
wave function of the tensor model has peaks at the configura-
tions that are invariant under Lie groups. This phenomenon,
which we call symmetry highlighting phenomenon, poten-
tially has an important physical significance, since this phe-
nomenon would imply the dominance of spacetimes symmet-
ric under Lie groups through the correspondence between
tensors and spaces developed in Ref. [19]. This symmetry
highlighting phenomenon has first been shown for a toy wave
function [20], which slightly simplifies the wave function of
the canonical tensor model. The toy wave function is given
by11

ϕ̃(P) =
∫
RN

N∏
a=1

dφa exp (I Pabcφaφbφc + (Iκ − ε) φaφa) ,

(59)

where I denotes the imaginary unit, and ε is a small positive
regularization parameter to assure the convergence of the
integral. The symmetry highlighting phenomenon is that the
wave function has large peaks at Pabc that are invariant under
Lie groups: Pabc = ha

′
a h

b′
b h

c′
c Pa′b′c′ under ∀h ∈ H , where

H is a representation of a Lie group. The phenomenon can
qualitatively be understood by the following rough argument:
If Pabc is invariant under a Lie group, the integration over
φa in (59) will contribute coherently along the gauge orbit
ha

′
a φa′ (∀h ∈ H), but, if this is not so, the contributions tend to

cancel among themselves due to the phase oscillations of the
integrand and the wave function takes relatively small values.
In Ref. [20], some tractable simple cases have explicitly been
studied, and the presence of the phenomenon has indeed be
shown.

Other than the simple case studies, the peak structure of
the toy wave function and that of the tensor model are largely
unknown. One reason is that the number of independent com-
ponents of Pabc, which is about ∼ N 3/6, is so large that it
is practically not possible to go over the whole configura-
tion space of Pabc. Rather, we will be able to obtain rough
knowledge by integrating over Pabc:

∫ ∞

−∞

N∏
a≤b≤c=1

dPabc ϕ̃(P)R exp (−αPabc Pabc)

= const. ZN ,R

(
1

4α
, k

)
, (60)

11 This wave function has actually the same form as the spherical p-
spin model [27,28] except for the following differences: The coupling
constants of the former are pure imaginary, while they are real for the
latter; There is a spherical constraint φaφa = const. in the latter, while
there is none in the former. In addition, R → 0 is taken in the study
of the latter in the replica trick, but we have to take R ∼ N 2/2 for the
consistency of the tensor model.
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where we have denoted k = −Iκ+ε, and we have considered
an arbitrary power R of the wave function, because the actual
wave function of the tensor model has the corresponding
power12 which specifically takes R = (N+2)(N+3)/2 [15,
18,29] (see “Appendix A”). In (60), we see that the integration
of a power of the wave function over Pabc with a Gaussian
weight produces the matrix model (1). If the integration is
dominated by such peaks associated to Lie groups, we can
expect that the N -dimensional vectors, φi

a (i = 1, 2, . . . , R),
in the matrix model tend to exist along some gauge orbits in
the vector space.

In general, there exist a number of peaks (or rather ridges)
associated with various Lie group symmetries and gauge
orbits for the wave function (59). As argued and shown
explicitly in Refs. [18,20], peaks associated with lower
dimensional Lie group symmetries generally exist more
abundantly than those with higher dimensional symmetries,
because the number of symmetry conditions that must be sat-
isfied by Pabc is smaller for the former than for the latter. On
the contrary, the peaks of the latter are generally higher than
those of the former, because the gauge orbits of the latter have
larger dimensions and provide more coherent contributions
than the former. Therefore, there are competitions between
height and abundancy, and it is generally a subtle question
which of lower or higher dimensional Lie group symmetries
is probabilistically favored in a given case.

Let us discuss this question in view of the correspondence
to the matrix model (60), especially by considering chang-
ing the value of R. As R is the power of the wave function
as in (60), larger R will enhance higher peaks compared to
the lower ones. Therefore we expect that, for larger R, the
contributions from peaks with higher dimensional symme-
tries will be more dominant. Otherwise, peaks with lower
dimensional Lie group symmetries will dominate because of
their abundant existence. In addition, when R is very small,
non-symmetric configurations will dominate, since they exist
most abundantly.

In the Monte Carlo simulation of our model, if a symmet-
ric peak dominates as explained above, the N -dimensional
vectors φi

a (i = 1, 2, . . . , R) will be randomly distributed
along the associated gauge orbit. A caution here is that the
gauge orbit can take any O(N )-transformed location in the
N -dimensional vector space due to the O(N ) symmetry of
the model. Therefore we should not simply plot all the sam-
ples of φi

a generated by the Monte Carlo simulations in the
N -dimensional vector space, since this will merely provide a
trivial O(N )-invariant spherical distribution of points with-

12 The corresponding power may rather be R = Rc = (N+1)(N+2)/2
than what is in the text, because one of the integration variables is fixed
in the toy wave function compared to the actual wave function of the
tensor model. This slight difference is not important at the present stage
of study, but may become so in the future.

out any characteristics of the Lie-group symmetry associated
to the dominant peak. Rather, we have to analyze each sam-
ple of φi

a generated by the Monte Carlo simulations to extract
its characteristics, and then pile up all the extractions over all
the samples to find allover characteristic properties.

Topological structure of each sample of φi
a can be ana-

lyzed by using the technique of persistent homology [30].
This is a modern applied mathematical technique of the topo-
logical data analysis, and can extract homology groups of a
data (see “Appendix F”). Here an input data should be a set
of points with relative distances. We used an open-source
c++ program that is called Ripser13 for the analysis and plot-
ted the output with Mathematica. For a configuration φi

a , we
consider the replica number i = 1, 2, . . . , R to represent
the label of “points” of a data set, and define the distances
between two points i and j as

d(i, j) := arccos

⎛
⎝ φi

aφ
j
a√

φi
aφ

i
aφ

j
bφ

j
b

⎞
⎠ . (61)

The gist of this definition is that the N -dimensional vectors
φi
a (i = 1, 2, . . . , R) are projected onto the unit sphere SN−1,

and the geodesic distances along the sphere are regarded as
the distances. In particular, this definition is suited for detect-
ing a gauge orbit hbaφb (h ∈ H), since it is projected on the
sphere irrespective of the size of the vector φa .

We want to see the phenomenon explained above in the
actual Monte Carlo simulations. For this initial study, choos-
ing small N would be preferred for simper analysis, because
then there exist a small number of possibilities of gauge orbits
with small dimensions, and also thermodynamic equilibri-
ums can easily be reached due to the small number of degrees
of freedom. Note however that this trades off the clarity of
the homology structure being detected by persistent homol-
ogy. This is because, for small N , the values of R at which
the phenomenon appears are also rather small in the order of
R ∼ N 2/2, as we will see in the analysis below. The homol-
ogy cycles formed by small numbers (namely R) of points
necessarily become obscure, especially higher dimensional
cycles are difficult to be clearly detected.

For the actual simulation, we considered N = 4. In
N = 4, as explicitly solved in Ref. [20], there exist only two
possibilities of Lie group symmetries, SO(2) and SO(3),
and the gauge orbits are S1 and S2, respectively. In fact,
the ridges of the Pabc with these symmetries reach the ori-
gin Pabc = 0, and therefore we should also add the trivial
possibility of S3 with the SO(4) symmetry, which is the
symmetry of Pabc = 0 and is maximal. Figure 7 shows the
persistent diagrams obtained from the Monte Carlo simula-

13 This open-source software can be downloaded from https://github.
com/Ripser/ripser.
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Fig. 7 Persistent diagrams obtained from the Monte Carlo data of
N = 4, k = 0.01, λ = 1 with R = 10, 15, 20, 25 (from the top to the
bottom). To avoid the dependence of the initial values, 10 independent
Monte Carlo sequences were run, and the sampling were performed
uniformly from the sequence of updates of ∼ 109 after thermody-
namic equilibriums were seen. 100 configurations of φi

a were uniformly
sampled and the persistent homologies were analyzed (one- to three-
dimensional homologies from the left to the right). The results of 100
samples are plotted on the same persistent diagrams. Blue dots repre-

sent the longest-life elements in each dimensional persistent homology
group of each data, the yellow ones the second, and the green ones all
after the second. The dots away from the diagonal line represent long-
life persistent homology group elements, which are considered to be
characteristics of a data, while those near the diagonal line are regarded
as “noises”. The highest blue dots, namely those with the largest uend
that represent the largest structure, move from H1 to H2 and then H3
with the increase of R
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tions with R = 10, 15, 20, 25. Statistically speaking, one can
observe that, starting from S1 at R = 10, 15, higher dimen-
sional cycles gradually appear and become the largest struc-
ture when R is increased, while lower dimensional cycles
gradually take smaller values of u.

8 Summary and future prospects

In this paper, we studied a matrix model containing non-
pairwise index contractions [21], which has a motivation
from a tensor model of quantum gravity [16,17]. More specif-
ically, it has φi

a (a = 1, 2, . . . , N , i = 1, 2, . . . , R) as its
degrees of freedom, where the lower indices are pairwise
contracted, but the latter are not always done so. This matrix
model has the same form as what appears in the replica trick
of the spherical p-spin model for spin glasses [27,28], though
the variable and parameter ranges of our interest are different.
We performed Monte Carlo simulations with the Metropolis
update method, and compared the results with some ana-
lytical computations in the leading order, mostly based on
the previous treatment in Ref. [21]. They are in good agree-
ment outside the transition region, that is located around R ∼
N 2/2. In the transition region, however, there exist deviations
between the simulations and the analytical results, and the
deviations cannot be corrected well, even if the next-leading
order contributions are included. It has not been determined
whether the transition is a phase transition or a crossover in
the thermodynamic limit N → ∞, because of the limited
range of the parameters like N � 10 available in our Monte
Carlo simulation. Our Monte Carlo simulation tended to slow
down especially at R � N 2/2 with large λ/k3, suspecting
that the system gets glassy nature in the region, but no conclu-
sive argument has been made for this aspect. We also studied
the topological characteristics of the configurations φi

a gen-
erated in the Monte Carlo simulations by using the modern
technique called persistent homology [30] in topological data
analysis. This technique extracts the homology structure of a
data, which is a configuration of φi

a in our case. We observed
that, in the vicinity of the transition region, the homology
structure of the configurations gradually changes from S1 to
higher-dimensional cycles with the increase of R.

A particularly interesting result of this paper is that there
seems to exist a transition region around R ∼ N 2/2. Intrigu-
ingly, this value of R coincides with what is required by the
consistency of the tensor model (namely, the hermiticity of
the hamiltonian constraint. See “Appendix A”) [15,18,29].
Moreover, our model seems to have the most interesting prop-
erties in this region, but they are not well understood: There
are some deviations between the simulation and the analyt-
ical results in this region, but the reason is not clear; The
transition of the homological structure of the dominant con-
figurations in this vicinity is peculiar but not well understood;

Whether the transition is a phase transition or a crossover in
the thermodynamic limit N → ∞ is not determined. For
the better understanding in the future, it seems necessary to
treat larger N cases with large λ/k3 by employing more effi-
cient methods of Monte Carlo simulations and finding more
powerful analytical methods.
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Appendices

Appendix A: The motivation for the model (1) from the
viewpoint of the canonical tensor model

In this appendix, we explain the motivation for the model (1)
by summarizing the developments of the canonical tensor
model so far.

An interesting direction in the attempt to formulate quan-
tum gravity is to pursue the existence of the spacetime as
an emergent phenomenon. In this context, the matrix models
have achieved great success in the description of the two-
dimensional quantum gravity [31]. To extend the success to
higher dimensions, the tensor models [11–14] were proposed
as generalization of the matrix models. Though various inter-
esting results have been obtained, emergence of spacetimes
has not been achieved so far by these tensor models, suffer-
ing from the dominance of singular configurations instead of
macroscopic space-like ones. Moreover, in these tensor mod-
els under the interpretation employed in these original papers
[11–14], the numbers of the indices of the tensorial dynami-
cal variables have direct connections to the dimensions of the
spaces supposed to be emergent. This is a drawback from the
viewpoint of quantum gravity, since the number of dimen-
sions should also be dynamically determined rather than pre-
determined as an input.
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This drawback may be overcome by introducing a new
interpretation of the tensor models. In fact, tensors them-
selves have rich structures enough to describe spaces. This
can be seen by supposing that a three-index tensor, say Cab

c,
define the structure constants of an algebra of functions, say
fa , over a space by fa fb = Cab

c fc. It is known that spaces
can be defined by the algebras of functions on them sat-
isfying certain properties (see for example [32]). Though
such algebras for usual spaces are commutative and asso-
ciative, we would be able to suppose that more general Cab

c,
which defines noncommutative or/and nonassociative alge-
bras, would define “fuzzy spaces”. This idea is explored to
propose a new interpretation of three-index tensor models
as models of dynamical fuzzy spaces [33]. Under this new
interpretation, a three-index tensor model can in principle
generate various dimensional spaces, not being restricted to
certain dimensions [33]. One can also see the emergence of
Euclidean general relativity on them [34–37].

However, these favorable results were obtained only by
doing some fine-tunings to the models [34–37]. Moreover,
time is missing in these tensor models. In fact, time might
play essentially important roles in the mechanism of emer-
gence of spacetime, as the success of the causal dynamical tri-
angulation [2] shows over the dynamical triangulation. Gen-
erally speaking, introducing time requires delicate treatment
in quantum gravity, since such models must respect the space-
time diffeomorphism invariance on emergent spacetimes. To
introduce time with this delicate requirement, a tensor model,
which we call the canonical tensor model (CTM), has been
formulated as a constrained system in the Hamilton formal-
ism [16,17]. The model is composed of a number of first-class
constraints analogous to those in the ADM formalism of gen-
eral relativity. Therefore, CTM embodies an analogue of the
spacetime diffeomorphism as its gauge symmetry. CTM is
supposed to describe time-evolutions of fuzzy spaces.

The classical aspects of CTM have been compared with
GR in a formal continuum limit with N → ∞: The con-
straint algebra of CTM has been shown to agree with that
of the ADM formalism of GR [38]; the classical equation of
motion of CTM has been shown to agree with that of GR
in the Hamilton-Jacobi formalism with a certain Hamilton’s
principal function [39]. Simple cases with large but finite
N have also been studied, and mutual agreement has been
obtained [19].

The canonical quantization of CTM is straightforward
[29]. The classical constraints are transformed to the quan-
tized ones with one additional term coming from operator
ordering. The algebra essentially remains the same form,
especially implying the closure of the commutation algebra
among the quantized constraints. This assures the consis-
tency of the physical state conditions given by

Ĥa |�phys〉 = Ĵab|�phys〉 = 0, (A.1)

where Ĥa and Ĵab denote the quantized constraints of CTM,
respectively corresponding to the Hamiltonian and momen-
tum constraints of ADM. By taking a certain representation,
these equations become a system of partial differential equa-
tions for physical wave functions. At first sight they looked
too complicated to solve, but it has turned out that there exist
various explicit exact solutions to these equations [15]. In par-
ticular, a systematic solution is given in the P-representation
by Refs. [15,18]

�(P)phys = ϕ(P)λH /2, (A.2)

where λH = (N + 2)(N + 3)/2, and

ϕ(P) =
∫
RN+1

dφ̃

N∏
a=1

dφa e
I (Pφ3−φ2φ̃+ 4

27λ
φ̃3) (A.3)

with Pφ3 ≡ Pabcφaφbφc, φ2 ≡ φaφa , and λ is an arbitrary
real parameter,14 which can be normalized as 0,±1. The
above value of λH is uniquely determined by the hermiticity
of the “Hamilotonian constraints” Ĥa of CTM.

In principle, emergence of spacetime can be analyzed by
investigating the properties of the wave function �(P)phys .
The ideal situation would be that, in the configuration space,
the quantum probability density |�(P)phys |2 form some
ridges that can be considered to be trajectories of classi-
cal time-evolutions of spaces. In fact, it has been qualita-
tively argued and actually been found in some tractable sim-
ple cases that such ridges exist at Pabc’s that are invariant
under Lie-groups.15 Since symmetries are ubiquitous in the
actual spacetimes,16 this result is encouraging in the pur-
suit for spacetime emergence. However, further analysis of
�(P)phys is not easy, and most of the properties of the wave
function are still unknown. Therefore, it is presently not pos-
sible to discuss emergent spacetimes in CTM.

Yet, aiming for better understanding of �(P)phys , we con-
sider in this paper a model which can be obtained after two
simplifications. One is to integrate the quantum probability
density over the configuration space:

∫
R#P

d P e−αP2 |�(P)phys |2, (A.4)

14 The N = 1 case of CTM produces the mini-superspace approxima-
tion of GR with the parameter λ as the cosmological constant [40].
15 On the ridges, the Lie-group symmetry associated with Pabc has
a definite signature like SO(n), but one can find that the Lie-group
symmetry associated with the whole terms of the exponent of (A.3) has
an indefinite signature like SO(n, 1) [18].
16 For instance, Lorentz symmetry, de Sitter symmetry, etc.
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where dP ≡ ∏N
a≤b≤c d Pabc, P

2 ≡ Pabc Pabc and α is an
arbitrary positive number. The other is to fix (or ignore) the
integration variable φ̃ of ϕ(P) in (A.3) so that ϕ̃(P) in (59) is
used as ϕ(P) in (A.2). The wave function after this replace-
ment is still interesting enough, because ϕ̃(P) has the similar
connection between Lie-group symmetries and peaks [20].
Then, by putting ϕ̃(P) into (A.2) and performing the Gaus-
sian integration over P in (A.4), one obtains

∫
R#P

d Pe−αP2
ϕ̃(P)λH = const.ZN ,λH

(
1

4α
, k

)
, (A.5)

where we have used the reality of the wave function ϕ̃(P)

for the real value of k = −Iκ + ε. Here we have actually
obtained the partition function Z in (1) of the matrix model
with the particular choice R = λH (= (N + 2)(N + 3)/2).
Since λH ∼ Rc (= (N + 1)(N + 2)/2), CTM seems to be
located in the transition region of the matrix model.

Appendix B: R = 2 case

In this appendix, we consider the partition function for R =
2, and see that the partition function is finite even for k = 0.
This is not trivial, because, for general R > 1, the solution to
U (φ) = 0 is non-empty (see below), and therefore there is a
potential risk of runaway behavior, φ2 → ∞ withU (φ) = 0.

Let us first see that U (φ) = 0 is non-empty for general
R > 1. Since

U (φ) =
(

R∑
i=1

φi
aφ

i
bφ

i
c

)⎛
⎝ R∑

j=1

φ
j
aφ

j
bφ

j
c

⎞
⎠ , (B.1)

U (φ) ≥ 0 holds, and U (φ) vanishes iff

R∑
i=1

φi
aφ

i
bφ

i
c = 0. (B.2)

An obvious set of solutions are given by φ2i−1
a = −φ2i

a , (i =
1, 2, �R/2�) with φR

a = 0 if R = odd.
For R = 2, one can see that this is the only solution as

follows. By contracting the indices b and c in (B.2), we obtain

φ1
aφ

1
bφ

1
b + φ2

aφ
2
bφ

2
b = 0. (B.3)

This implies that φ1 and φ2 are linearly dependent, and
putting this back to (B.2), we obtain φ1

a = −φ2
a .

In the R = 2 case, sinceU (φ) depends only on the relative
directions and the sizes of φ1

a and φ2
a , the partition function

for k = 0 can be written as

ZN ,R=2(λ, k = 0) = Vol(SN−1)Vol(SN−2)

·
∫ ∞

0
dr1dr2 r

N−1
1 r N−1

2

∫ π

0
dθ sinN−2(θ) e−λU (θ),

(B.4)

where

U (r1, r2, θ) = r6
1 + r6

2 + 2r3
1r

3
2 cos3(θ) (B.5)

with r1 and r2 being the sizes, and θ being the relative angle.
As shown above, the only case with U = 0 is given by r1 =
r2, θ = π . Therefore let us perform the reparameterization,

r1 = r, r2 = r(1 + x), θ = π − y. (B.6)

Then the integral of (B.4) at large r can be approximated by
expanding the integrand for small x, y, and we obtain

∼
∫

drdxdy r2N−1yN−2e−3λr6(3x2+y2) ∼
∫

dr r−N−1.

(B.7)

This shows that the partition function is convergent for R = 2
and k = 0.

There are two things which can be learned from this sim-
plest case. One is that, if R is small enough, the partition func-
tion is convergent even for k = 0. Another thing is that the
large-r asymptotic behavior of the integrand is much slower
than the leading order result,

∫
drr N R−1 f leadingN ,R (λr6) ∼

∫
dr r2N−1−N (N+1)(N+2)/2.

(B.8)

Therefore the asymptotic behavior derived from the leading
order result cannot be correct down to R = 2.

Appendix C: Derivation of (29)

In this section, we derive (29). This was previously derived in
Ref. [21], but this is repeated here to make the present paper
self-contained.

For m =odd, the equation holds, because the both sides
vanish.

Let us assume m = 2p with a positive integer p. Let us
start with the following equation:

1∫
SN R−1 dφ̃

∫
SN R−1

dφ̃ φ̃i1
a1

φ̃i2
a2

· · · φ̃i2p
a2p

= 1∫
RN R dφ e−βTrφtφ

∫
RN R

dφ
φ
i1
a1φ

i2
a2 · · ·φi2p

a2p

(Trφtφ)p
e−β Trφtφ,

(C.1)

123



Eur. Phys. J. C (2020) 80 :118 Page 19 of 25 118

Fig. 8 The Feynman diagrams for the forth order interaction term, 〈(Pφ3)4〉cφ .

where β is an arbitrary positive constant. This can easily be
proven by reparameterizing φi

a with the radial and the angular
variables as φi

a = r φ̃i
a on the righthand side, and observing

that the integrations over r decouples from the angular part
and cancels between the numerator and the denominator.

Let us consider the numerator on the righthand side of
(C.1),

A(β) :=
∫
RN R

dφ
φ
i1
a1φ

i2
a2 · · ·φi2p

a2p

(Trφtφ)p
e−βTrφtφ. (C.2)

Taking the p-th derivative of A(β) with respect to β cancels
the (Trφtφ)p in the denominator of the inetegrand. On the
other hand, by performing the rescaling φi

a → β−1/2φi
a ,

it is obvious that A(β) has the dependence β−N R/2 on β.
Therefore, by performing the p-th derivative of the both sides
of (C.2), we obtain the relation,

�
( N R

2 + p
)

�
( N R

2

) β−p A(β)=
∫
RN R

dφ φi1
a1

φi2
a2

· · · φi2p
a2p e

−β Trφtφ.

(C.3)

By solving for A(β) and putting it into (C.1), we obtain (29).

Appendix D: Computation of fN,R,�i j (t) in the next-
leading order

In this appendix, we will compute the fourth-order term
〈(Pφ̃3)4〉c

φ̃
in (27). From the definition (25) of cumulants

and the formula (29), we obtain

〈(Pφ̃3)4〉c
φ̃

= 〈(Pφ̃3)4〉φ̃ − 3(〈(Pφ̃3)2〉φ̃ )2

= γ6(2β)6〈(Pφ3)4〉φ − 3
(
γ3(2β)3〈(Pφ3)2〉φ

)2

= γ6(2β)6〈(Pφ3)4〉cφ − 3(2β)6 (
γ 2

3 − γ6
) (〈(Pφ3)2〉cφ

)2
.

(D.1)

The 〈(Pφ3)2〉cφ in the last term has already been computed

in Sect. 4. As for 〈(Pφ3)4〉cφ , Wick contractions (31) give the
five connected diagrams in Fig. 8. By counting the number of

ways to connect the legs, one can find that the degeneracies
are given by 23 · 35, 24 · 35, 23 · 34, 24 · 34, and 23 · 35,
respectively, from the left to the right diagrams17 in Fig. 8.
These Feynman diagrams represent the ways of the index
contractions of Pi

abc’s in the fourth order interaction term.
For example, the leftmost diagram gives

〈(Pφ3)4〉c,leftmost
φ = 2335

(2β)6

R∑
i1,i2,i3,i4, j=1

�̃i1 j �̃i2 j �̃i3 j �̃i4 j P
i1
aab P

i2
bcd P

i3
cde P

i4
e f f ,

(D.2)

where the numerator of the numerical factor is the degener-
acy, and the denominator comes from the factor of the Wick
contraction (31). It is also straightforward to write down the
explicit expressions for all the other diagrams in Fig. 8.

Now let us suppose we have obtained the explicit expres-
sions of S(4)

e f f (P) by the above procedure. An immediate

difficulty of this forth order term is that S(4)
e f f (P) has the

negative all over sign due to I 4 as in (27), and therefore
the system with Sef f (P) = S(2)

e f f (P) + S(4)
e f f (P) is not sta-

ble. This may be changed if we include the next order term
S(6)
e f f (P), which has a positive coefficient, but the computa-

tion will become more complicated than S(4)
e f f (P) and will

not be performed in this paper. To treat this situation in a
consistent manner, we only take the first correction com-

ing from S(4)
e f f (P) as e−S(4)

e f f (P) ∼ 1 − S(4)
e f f (P) rather than

the full exponential form. Note that this can consistently be
understood as taking the first correction coming from the

full expression of the interactions, e−S(4)
e f f (P)−S(6)

e f f (P)−··· =
1 − S(4)

e f f (P) − S(6)
e f f (P) + S(4)

e f f (P)2/2 − · · · , in the order of
P . Then fN ,R,�i j (t) with this first correction of the quartic
order can be obtained by computing

17 A non-trivial check of these numbers is to see whether the sum of
them agrees with 12!/(26 ·6!)−3 ·152, where the former number counts
all the possibilities of connecting 12 legs of the four vertices, and the
latter is the subtraction of the disconnected diagrams among them.
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Fig. 9 Graphical representations of the matrices A and B̃

f (4)
N ,R,�i j

(t) = const.
∫

dP e−S(2)
e f f (P)

(1 − S(4)
e f f (P))

= f (2)
N ,R,�i j

(t)
(

1 − 〈S(4)
e f f (P)〉P

)
, (D.3)

where f (2)
N ,R,�i j

(t) is given in (39), the allover constant has

been determined by requiring f (4)
N ,R,�i j

(0) = 1, and 〈·〉P is
defined by

〈O(P)〉P := 1∫
dPe−S(2)

e f f (P)

∫
dP O(P) e−S(2)

e f f (P) (D.4)

with the quadratic action S(2)
e f f (P) given in (33).

The computation of f (4)
N ,R,�i j

(t) in (D.3) has now been

reduced to that of 〈S(4)
e f f (P)〉P . This can be computed by the

Wick theorem, using the Wick contraction for Pi
abc deter-

mined from S(2)
e f f (P). The Wick contraction of Pi

abc can be
obtained by taking the inverse of the coefficient matrix in
the quadratic action S(2)

e f f (P) of Pi
abc. Since S(2)

e f f (P) has the
form of the direct product with respect to the upper and lower
indices, they can be treated separately.

Let us first treat the lower indices by starting with (36).
Let us introduce the following matrices (see Fig. 9):

Aabc,de f = 1

6

∑
σ

δaσd δbσeδcσ f , (D.5)

Babc,de f = 3

N + 2

(
AB̃ A

)
abc,de f

, (D.6)

B̃abc,de f = δadδbcδe f , (D.7)

where the summation over σ denotes the sum over all the
permutations of d, e, f , and the product of two matrices, say
X and Y , is defined by

(XY )abc,de f =
N∑

g,h,i=1

Xabc,ghiYghi,de f . (D.8)

Note that A acts as the identity on a symmetric tensor, namely,
(AP)abc = Pabc. One can easily check the following prop-
erties:

A2 = A, AB = BA = B, B2 = B. (D.9)

Furthermore, one can check that A − B and B give the pro-
jectors to the tensor and vector parts of Pabc, respectively,
as

(A − B)P = PT , BP = PV . (D.10)

Therefore, by using these matrices, (38) can be rewritten in
the form,

P
(
cT,λev (A − B) + cV,λev B

)
P, (D.11)

where cT,λev and cV,λev are the coefficients associated to the
tensor and vector parts of Pabc, namely,

cT,λev = 1 + 12γ3λev t,

cV,λev = 1 + 6(N + 4)γ3λev t.
(D.12)

The inverse of the matrix in (D.11) is given by

(cT,λev (A − B) + cV,λev B)−1

= 1

cT,λev

(A − B) + 1

cV,λev

B

= 1

cT,λev

A +
(

1

cV,λev

− 1

cT,λev

)
B.

(D.13)

For later convenience, let us define

aλev := 1

cT,λev

,

bλev := 1

cV,λev

− 1

cT,λev

.

(D.14)

Let us next take into account the upper indices. To derive
the above result we started with the expression (36) with an
eigenvalue λev of the matrix �i j . Therefore it is the result for
the corresponding eigenspace. Considering the projection to
each eigenspace, the final form of the Wick contraction for
Pi
abc is obtained as

〈Pi
abc P

j
de f 〉P =

∑
λev

1

2
Mi j

λev

(
aλev A + bλev B

)
abc,de f ,

(D.15)

where Mi j
λev

denotes the projector to the eigenspace of the
eigenvalue λev of �i j .

Let us next start computing 〈S(4)
e f f (P)〉P by using the Wick

contraction (D.15). Let us first compute the factors com-
ing from the projectors. Let us restrict ourselves to the case
�i j = λ + λdδi j , which is of our interest as explained in
Sect. 4. As given there, the eigenvector for λev = λR + λd
is (1, 1, . . . , 1), and those for λev = λd are the vectors trans-
verse to that. Therefore the projectors are Mi j

λR+λd
= 1/R
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for λev = λR + λd , and Mi j
λd

= δi j − 1/R for λev = λd ,
respectively. For later usage, let us compute the projectors
sandwiched between �̃i j :

(�̃Mλev �̃)i j :=
R∑

k,l=1

�̃ikM
kl
λev

�̃l j

=
{

λ + λd
R , for λev = λR + λd ,

λdδi j − λd
R , for λev = λd ,

(D.16)

where we have used the following explicit solution to (22)
for �i j = λ + λdδi j :

�̃i j = pδi j + q with p2 = λd , 2pq + Rq2 = λ. (D.17)

As for the factor coming from the �̃i j in (D.2), the
Wick contractions (D.15) of Pi

abc will generate the factor∑
j (�̃Mλev �̃) j j (�̃Mλ′

ev
�̃) j j . Thus, using (D.16), we obtain

the following results for each case:

R∑
j=1

(�̃Mλev �̃) j j (�̃Mλ′
ev

�̃) j j

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R
(
λ + λd

R

)2
, for λev = λ′

ev = λR + λd ,

R
(

(R−1)λd
R

)2
, for λev = λ′

ev = λd ,

R
(
λ + λd

R

)
(R−1)λd

R , otherwise.

(D.18)

It is easy to see that all the other diagrams in Fig. 8 have the
same factor.

As for the Wick contractions (D.15) of
(
〈(Pφ3)2〉cφ

)2
in

(D.1), there exist two cases. One is to take the contractions
within each 〈(Pφ3)2〉cφ , or otherwise. The former case can
be called the disconnected case, and the latter the connected
case, based on their diagrammatic characters. From (32) and
(D.15), the factors coming from the �i j ’s are obtained as

R∑
i, j=1

(�Mλev )i i (�Mλ′
ev

) j j = λevλ
′
evTr(Mλev )Tr(Mλ′

ev
)

=
⎧⎨
⎩

(λR + λd)
2, for λev = λ′

ev = λR + λd ,

(R − 1)2λ2
d , for λev = λ′

ev = λd ,

(λR + λd)(R − 1)λd , otherwise,
(D.19)

Fig. 10 An example of Wick contraction of Pi
abc’s. This can be com-

puted by inserting the matrices A and B at the locations of contractions

R∑
i, j=1

(�Mλev )i j (�Mλ′
ev

) j i = λ2
evTr(Mλev )δλevλ′

ev

=
⎧⎨
⎩

(λR + λd)
2, for λev = λ′

ev = λR + λd ,

(R − 1)λ2
d , for λev = λ′

ev = λd ,

0, otherwise.
(D.20)

for the disconnected and the connected cases, respectively.
The last ingredient for the computation of S(4)

e f f (P) is to
take into account the lower index part of the Wick contraction
(D.15). As can be seen in (D.15), in general, this is to insert
x A+ yAB̃ A with some x, y at the location of the Wick con-
traction (see Fig. 10 for an example). Diagrammatically, this
is to insert the diagrams in Fig. 9 at the location of the Wick
contraction. This insertion generates many diagrams with a
number of loops. The number of loops gives the degeneracy
of each diagram in powers of N . The summation over all the
diagrams is too many to do so by hand, so we performed this
task by using Mathematica. We have obtained

G1(x, y) = 6N (2 + N )(4 + N )(225x2 + 90Nx2

+ 9N 2x2 + 456xy + 174Nxy + 18N 2xy

+ 232y2 + 84Ny2 + 8N 2y2)

(D.21)

for 〈(Pφ3)4〉cφ . As for
(
〈(Pφ3)2〉cφ

)2
, we have obtained

G2(x, y) =N 2(2 + N )2(4 + N )2(x + y)2, (D.22)

G3(x, y) =2N (2 + N )(4 + N )(15x2 + 24xy

+ 6Nxy + 8y2 + 6Ny2 + N 2y2), (D.23)

respectively, for the disconnected and connected cases.
Let us combine all the results above. By using (D.15),

(D.18) and (D.21) and summing over all the possibilities of
the eigenspaces of �i j , we obtain

〈〈(Pφ3)4〉cφ〉P = R

22(2β)6 G1(x1, y1), (D.24)
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where

x1 =
(

λ + λd

R

)
aλR+λd + (R − 1)λd

R
aλd , (D.25)

y1 = 3

N + 2

((
λ + λd

R

)
bλR+λd + (R − 1)λd

R
bλd

)
.

(D.26)

For the disconnected case of 〈
(
〈(Pφ3)2〉cφ

)2〉P , from (D.15),

(D.19) and (D.22) we obtain

〈(
〈(Pφ3)2〉cφ

)2
〉discon
P

= 1

22(2β)6 G2(x2, y2), (D.27)

where

x2 = (λR + λd)aλR+λd + (R − 1)λdaλd , (D.28)

y2 = 3

N + 2

(
(λR + λd)bλR+λd + (R − 1)λdbλd

)
. (D.29)

For the connected part of 〈
(
〈(Pφ3)2〉cφ

)2〉P , from (D.15),

(D.20) and (D.23) we obtain

〈(〈(Pφ3)2〉cφ)2〉conP = 1

22(2β)6

·
(
(λR + λd)

2G3(x3, y3) + (R − 1)λ2
dG3(x4, y4)

)
,

(D.30)

where

(x3, y3) =
(
aλR+λd ,

3bλR+λd

N + 2

)
,

(x4, y4) =
(
aλd ,

3bλd

N + 2

)
.

(D.31)

By putting (D.24), (D.27) and (D.30) into (D.1), we obtain
the final result given in (41) and (42).

Appendix E: Estimation of the R-dependence of b1

As for b1, there are two kinds of contributions as given in
(D.1). The dominant R-dependence of the former term of
(D.1) can be estimated by considering the expression (D.2),
because the contractions of the upper indices among Pi

abc
are the same for all the diagrams in Fig. 8. It is sufficient
to consider λd = 0, since this is of our interest, and the
mode of Pi

abc contributing in this case with the appropriate
normalization has the form 1√

R
(1, 1, . . . , 1)Pabc, which has

the form of the eigenvector of the matrix �i j = λ for the
eigenvalue λR. Since �̃i j ∼ 1/

√
R (see (D.17)) and there

are five free summations over the upper indices in (D.2), the
former term of (D.1) is estimated as

b f ormer
1 ∼ γ6R

5
√
R

−4√
R

−4 ∼ R−5. (E.1)

As for the latter term of (D.1), 〈(Pφ3)2〉cφ ∼ RP2 by a
similar argument as above. Therefore,

blatter1 ∼ (γ 2
3 − γ6)R

2 ∼ R−5, (E.2)

where it is important to note that the contents of the paren-
theses give R−7 due to the cancellation of the leading R−6

terms of both.
The above two estimations conclude b1 ∼ R−5.

Appendix F: Brief introduction of persistent homology

In this appendix, we give a brief introduction of persistent
homology for this paper to be self-contained. More details
can be found for instance in Ref. [30].

Persistent homology is a notion that characterizes the
topological aspects of a data in terms of homology. A data to
be analyzed should be a set of points with relative distances.
From a data, a stream (or a filtration) of simplicial complexes
parameterized by a scale parameter, say u, is constructed. The
details of the construction of a stream will be given at the end
of this appendix. Once a stream is constructed, the homol-
ogy groups of the simplicial complexes at each value of u are
computed. By increasing the value of u from zero, a homol-
ogy group element will appear at a certain value of u, say
ustart, and will continue to exist until it disappears at another
value, say uend. If the life period uend−ustart is large, one may
regard the element as a persistent homology group element,
which has a long life. The collection of persistent homology
group elements characterizes the topological property of a
data set. There will also be a number of short-life elements,
but they are often regarded as “noises”, which are not robust
against small perturbations of the data. Roughly speaking,
the scale u parameterizes the sizes of topological structure
of interest, and persistent homology characterizes a data with
multi-scale homology groups.

There are two kinds of diagrams that are convenient
for visualizing the persistent homology of a data. One is
called barcode diagram, where each horizontal line seg-
ment [ustart , uend ] represents a homology group element that
exists during the period. An example of barcode diagrams
constructed from a sample of φi

a generated in the Monte
Carlo simulation is shown in Fig. 11. How to construct a set of
points with relative distances from φi

a is given in Sect. 7. The
left figure shows the barcode diagram for the 0-dimensional
homology, and the right that for the 1-dimensional homology.
The left diagram indicates that the initially separated points
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Fig. 11 An example of barcode diagrams. The example is obtained by
analyzing a configuration φi

a (i = 1, 2, . . . , R) generated by the actual
Monte Carlo simulation for N = 4, R = 15, and k = 0.01. The pres-

ence of a long-life one-dimensional homology group element can be
observed in this particular data

Fig. 12 A graph made by connecting the points with relative distances
smaller than 1.5. The data is the same one used for Fig. 11. This choice of
the distance cut-off is made because a one-dimensional cycle is expected
to exist at this scale, seeing the right of Fig. 11

form one connected component over the scale u ∼ 1.4. The
right figure shows that there exists a one-dimensional cycle
which has the size of u ∼ 1.8, while there is a small “noise”
around u ∼ 0.9. In Fig. 12, we provide the graph constructed
by connecting the points with relative distances u < 1.5,
using the same φi

a for Fig. 11. One can actually see the pres-
ence of a one-dimensional cycle consistent with the barcode
diagram.

The other kind of diagram is called persistent diagram. An
element that is represented by a line segment [ustart, uend]
in a barcode diagram is represented by a dot located at
the two-dimensional coordinate (ustart, uend) in a persistent
diagram. Since there are multiple elements in general, and
ustart < uend, a persistent diagram consists of a number of
dots in the region over the diagonal line. The long-life ele-
ments are represented by the dots that exist away from the
diagonal line, and those in the vicinity of the diagonal line are
regarded as “noises”. An example of a persistent diagram is
given in Fig. 13, which corresponds to the right barcode dia-
gram in Fig. 11. What is convenient in a persistent diagram
is that one can easily superimpose persistent diagrams from
multiple data. If there is a common characteristics through

Fig. 13 The persistent diagram corresponding to the right barcode dia-
gram in Fig. 11. A line segment in a barcode diagram is represented by
a dot in a persistent diagram. The longest one is represented by a blue
dot, and the second by a yellow one. The colors are also used in the
persistent diagrams in Sect. 7

multiple data, one can find it as a characteristic pattern in a
superimposed persistent diagram. Therefore, we use persis-
tent diagrams to find statistically favored structure common
in the configurations generated by the Monte Carlo simula-
tion.

Let us finally explain the actual construction of a stream of
simplicial complexes parameterized by u. In fact, there exist
various streams depending on purposes in the literature, but
let us restrict ourselves to the Vietoris-Rips stream, which is
used in the open-source c++ code called Ripser. For a given
data that stores distances between points, the Vietoris-Rips
stream VR(V, u) is defined as follows:

• The vertex set is given by the point set V of a data.
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• For vertices i and j with distance d(i, j), the edge [i, j]
are included in VR(V, u), if and only if d(i, j) ≤ u.

• A higher-dimensional simplex is included in VR(V, u),
if and only if all of its edges are.

From the above definition, there is an obvious property,
VR(V, u) ⊂ VR(V, u′) for u < u′. An important fact is that
this induces a map: Hk(VR(V, u)) → Hk(VR(V, u′)) for
u < u′. Therefore, the development of each homology group
element under the change of the value of u can be followed,
and its life is characterized by the two endpoint values of
u. This makes barcode and persistent diagrams convenient
ways for the description.
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