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Abstract We consider Friedmann-like universes with tor-
sion and take a step towards studying their stability. In
so doing, we apply dynamical-system techniques to an
autonomous system of differential equations, which moni-
tors the evolution of these models via the associated density
parameters. Assuming relatively weak torsion, we identify
the system’s equilibrium points. These are found to represent
homogeneous and isotropic spacetimes with nonzero torsion
that undergo accelerated expansion. We then examine the lin-
ear stability of the aforementioned fixed points. Our results
indicate that Friedmann-like cosmologies with weak torsion
are generally stable attractors, either asymptotically or in the
Lyapunov sense. In addition, depending on the equation of
state of the matter, the equilibrium states can also act as inter-
mediate saddle points, marking a transition from a torsional
to a torsion-free universe.

1 Introduction

Extensions of general relativity that go beyond the bound-
aries of the Riemannian geometry, by allowing for an asym-
metric affine connection, have a long history in the literature.
These studies introduce the possibility of spacetime torsion
and its associated new degrees of freedom to the gravitational
field (e.g. see [1] for a recent review). Therefore, it comes to
no surprise that there are many applications of these theories
to cosmology, in an effort to illuminate the role and the poten-
tial implications of torsion (as well as those of spin) for the
evolution of the universe we live in. The topics of research
interest, which have varied over the decades, range from the
early universe and its initial singularity, to the large-scale
kinematics and the late-time universal acceleration (see [2–
12] for a representative though incomplete list).
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Allowing for arbitrary torsion, introduces anisotropic
degrees of freedom into the host spacetime. As a result, the
spatially homogeneous and isotropic Friedmann-Robertson-
Walker (FRW) cosmologies can only accommodate specific
forms of torsion [13]. Vectorial torsion fields, determined by a
single scalar function of time (φ = φ(t) – see Sect. 2.1 here),
are generally compatible with the FRW symmetries [14]. The
latter study focused on finding exact solutions for torsional
Friedmann-like models. These were then combined with the
primordial nucleosynthesis measurements to constrain the
gravitational effects of torsion. Here, following on the work
of [14], we investigate the general qualitative behaviour of
homogeneous and isotropic torsional cosmologies. Utilising
the above named torsion scalar, φ = φ(t), we parametrise
the contribution of the torsion field to the universal expan-
sion and to the total (effective) energy density of the universe.
Then, assuming relatively weak torsion, we are able to recast
the associated Einstein-Cartan equations into an autonomous
dynamical system and identify its critical (fixed) equilibrium
points. As expected, these include the familiar torsion-free
Friedmann models, with varying 3-curvature and a nonzero
cosmological constant. In the presence of (weak) torsion, on
the other hand, we find that all the critical points correspond
to spatially flat cosmologies and that they all undergo acceler-
ated, de Sitter-like, expansion. Put another way, the torsional
equilibrium states identified in this work are flat Friedmann-
type universes, which are either Λ-dominated or filled with
non-conventional matter (dark energy or phantom). This is
expected to change, however, if the weak-torsion assumption
is relaxed (see Sect. 3.3 here).

Perturbing the aforementioned fixed points, we employ
standard dynamical-system techniques to determine their lin-
ear stability and then complete the phase-space portraits of
their dynamical evolution. Our results show that, with one
exception that leads to a “saddle point”, Friedmann-like cos-
mologies equipped with a weak torsion field are generally
stable attractors, either asymptotically or in the Lyapunov
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sense. More specifically, the attractors correspond to accel-
erating universes with (weak) torsion, whereas the saddle
point marks the transition from an accelerated torsional cos-
mology to a torsion-free (also accelerating) model.

The plan of the paper is as follows: In Sect. 2 we introduce
the key equations of a torsional Friedmann-type universe.
The dimensionless variables, the associated autonomous
dynamical systems and their critical points are defined and
obtained in Sect. 3. We study the stability of the critical
points and identify some subtle issues surrounding equilib-
rium points with zero eigenvalues in Sect. 4. There, we also
provide the phase portraits of our dynamical study. Finally,
we summarise our conclusions in Sect. 5.

2 Friedmann-like universes with torsion

The spatial homogeneity and isotropy of the Friedmann uni-
verses severely restricts the forms of torsion they can accom-
modate naturally. In particular, the torsion fields allowed in
an FRW cosmology must depend only on time and should
have vanishing spacelike parts.

2.1 The torsion field

The general form of torsion permitted by the high symmetry
of an FRW host has been given in [13]. Here, following [14],
we will consider a sub-class of the allowed torsion fields,
with the torsion tensor taking the form

Sabc = 2φha[buc], (1)

which falls into the class of the so-called vectorial torsion
fields [15–17]. Then, the associated torsion vector is

Sa = Sbab = −3φua . (2)

In the above, φ = φ(t) is a scalar function of time,1 ua is
a timelike 4-velocity vector (i.e. uaua = −1) and hab =
gab+uaub is the symmetric spacelike tensor orthogonal to it
(i.e. hab = hba , habub = 0 and haa = 3). We also note that
an immediate consequence of (1) and (2) is that Sa becomes
the sole carrier of the torsion effects.

Spacetime torsion is typically induced by the spin of the
matter, just like curvature is generated by the matter’s energy-
density contribution. Then, in an FRW-type cosmology, the
Cartan field equations recast relations (1) and (2) into the
expressions κsabc = 8φhc[aub] and κsa = 12φua for the

1 The torsion scalar can in principle take positive or negative values,
with the sign of φ fixing the orientation of the torsion vector relative to
the ua-field (see Eq. (2) above as well as [14]).

spin tensor (sabc = s[ab]c) and the spin vector (sa = sbab)
respectively. These, in turn lead to the following relations

Sabc − −1

4
κscba and Sa = −1

4
κsa, (3)

between torsion and spin in a Friedmann-like universe [14].
Therefore, the two fields are directly proportional and they
are both fully determined by the scalar function φ = φ(t).
With these in mind, we will explicitly focus on torsion.

2.2 The Ω-parameters

In the presence of torsion, the analogues of the Friedmann
and the Raychaudhuri equations, in a spacetime with nonzero
spatial curvature and non-vanishing cosmological constant
(i.e. when K ,Λ �= 0) take the form (see [14] for details)

(
ȧ

a

)2

= 1

3
κρ − K

a2 + 1

3
Λ − 4φ2 − 4

(
ȧ

a

)
φ (4)

and

ä

a
= −1

6
κ (ρ + 3p) + 1

3
Λ − 2φ̇ − 2

(
ȧ

a

)
φ, (5)

respectively. Therefore, torsion can affect the evolution of the
FRW-like host in a variety of ways, depending on the sign
and the magnitudes of the φ and φ̇.

Keeping in mind that H = ȧ/a defines the (purely Rie-
mannian) Hubble parameter, relation (4) recasts into the con-
straint

1 = Ωρ + ΩK + ΩΛ + Ωφ, (6)

where Ωρ = κρ/3H2, ΩK = −K/a2H2 and ΩΛ =
Λ/3H2 are the familiar Ω-parameters associated with the
matter, the 3-curvature and the cosmological constant. In an
analogous way, the dimensionless parameter

Ωφ = −4

(
1 + φ

H

)
φ

H
, (7)

monitors the torsion contribution to the total (effective)
energy density of our model. Then, Ωφ = 0 when φ = 0
(trivial case), or when φ/H = −1. Also note that the above
can be written as Ωφ = −4(1 + χ)χ , with the dimension-
less variable χ = φ/H measuring the contribution of the
torsion field relative to that of the Hubble expansion. Finally,
following (7), the torsion contribution to the total effective
energy density of the host spacetime can be either positive
or negative, depending on the sign of φ (among others).
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2.3 The deceleration parameter

Given that q = −äa/ȧ2 = −[1 + (Ḣ/H2)] defines
the (purely Riemannian) deceleration parameter, Raychaud-
huri’s formula (see Eq. (5) in Sect. 2.2) leads to

qH2 = 1

6
κ(ρ + 3p) − 1

3
Λ + 2φ̇ + 2Hφ. (8)

As with the Friedmann-like equations earlier, the overall
effect of torsion on the deceleration/acceleration of the host
spacetime depends on the sign and the magnitudes of φ and
φ̇. Alternatively, one may combine expressions (6) and (8),
together with the definitions of the Ω-parameters given in
Sect. 2.2, to arrive at

q = 1

2
(1 + 3w)(1 − ΩK ) − 3

2
(1 + w)ΩΛ − 1

2
(2 + 3w)Ωφ

−2

(
1 − φ̇

φ2

)
χ2, (9)

where w = p/ρ is the barotropic index of the matter. We also
remind the reader that χ = φ/H is the dimensionless ratio
that monitors the strength of the torsion field relative to the
Hubble expansion (see definition (7) in Sect. 2.2 previously).
As expected, in the absence of torsion, both of the above
reduce to their familiar FRW counterparts [18].

3 The autonomous system

Starting from the Friedmann equations given in Sect. 2.2
earlier, one can arrive to an autonomous system of dynamical
equations describing the phase-space evolution of the FRW-
like models in terms of the four Ω-parameters defined in the
same section.

3.1 The dynamical equations

Proceeding along the lines of [18], we will combine the tor-
sional analogues of the Friedmann equations seen in Sect. 2.2
with the conservation law of the matter density to obtain
a set of dynamical equations for the Ω-parameters defined
there. To begin with, in the presence of torsion, the continuity
equation of an FRW-like cosmology reads (see [14] for the
derivation)

ρ̇

ρ
= −3(1 + w)H − 2(1 + 3w)Hχ, (10)

Using the above evolution formula, while bearing in mind
that Ḣ/H = −(1 + q)H , the time-derivative of Ωρ reads

Ω̇ρ = − [3(1 + w) − 2(1 + q) + 2(1 + 3w)χ ] HΩρ. (11)

In an analogous manner we obtain

Ω̇K = 2qHΩK , Ω̇Λ = 2(1 + q)HΩΛ (12)

and

Ω̇φ = 2

(
φ̇

φ
− Ḣ

H

) (
Ωφ + 2χ

)
. (13)

Note that in deriving the latter of these formulae we have
also used the auxiliary relation χ̇/χ = φ̇/φ− Ḣ/H . Finally,
combining expressions (11)–(13) with Eqs. (6) and (9), it is
fairly straightforward to show that Ω̇ρ+Ω̇K +Ω̇Λ+Ω̇φ = 0,
as expected.

3.2 The case of weak torsion

We can simplify the system (11)–(13) by assuming weak tor-
sion, with by |χ | = |φ|/H � 1 and |φ̇/φ| � |Ḣ |/H . In
other words, we constrain both the torsion field and its rate of
change. Then, definition (7) reduces to the linear expression
Ωφ � −4χ , which takes positive or negative values depend-
ing on the sign of χ = φ/H (while |Ωφ | � 1 always). In
such a case, the set of (11)–(13) reduces to

Ω̇ρ � − [3(1 + w) − 2(1 + q)] HΩρ, (14)

Ω̇K = 2qHΩK , Ω̇Λ = 2(1 + q)HΩΛ (15)

and

Ω̇φ � (1 + q)HΩφ. (16)

Our last step is to introduce the new dimensionless time-
variable η = ln(a/a0) – with dη = Hdt [18], which recasts
the above into the autonomous system

Ω ′
ρ � − [3(1 + w) − 2(1 + q)] Ωρ, (17)

Ω ′
K = 2qΩK , Ω ′

Λ = 2(1 + q)ΩΛ (18)

and

Ω ′
φ � (1 + q)Ωφ, (19)

respectively. Here, primes indicate differentiation with respect
toη. Finally, given thatΩρ can be obtained algebraically from
Eq. (6), one simply has to solve the system

Ω ′
K = 2qΩK , Ω ′

Λ = 2(1 + q)ΩΛ (20)

and

Ω ′
φ � (1 + q)Ωφ, (21)
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where

q � 1

2
(1 + 3w)(1 − ΩK ) − 3

2
(1 + w)ΩΛ

−1

2
(2 + 3w)Ωφ, (22)

at our adopted level of approximation (i.e. having dropped
the χ2-order term – see Eq. (9)). According to expression
(22), the torsional analogue of the familiar Einstein-de Sitter
universe (with ΩK = 0 = ΩΛ and w = 0) has q = 1/2 −
Ωφ � 1/2, due to the weakness of the torsion field. On the
other hand, in the presence of (weak) torsion, the coasting
universe solution (with K = 0 = Λ and w = −1/3) has
q � −Ωφ/2 �= 0.

3.3 The equilibrium points

The equilibrium (fixed) points of the autonomous system
(20), (21) are solutions of the set Ω ′

K = 0 = Ω ′
Λ = Ω ′

φ ,
which recasts as

qΩK = 0, (1 + q)ΩΛ = 0 (23)

and

(1 + q)Ωφ � 0. (24)

At the same time, the deceleration parameter is still given
by (22). With these in hand, may distinguish between the
following three main alternatives of equilibria:
(i) The “trivial” fixed points, namely (ΩK ,ΩΛ,Ωφ) =
(0, 0, 0) with Ωρ = 1 and q = (1+3w)/2, (Ωρ,ΩΛ,Ωφ) =
(0, 0, 0) with ΩK = 1 and q = 0 and (Ωρ,ΩK ,Ωφ) =
(0, 0, 0) with ΩΛ = 1 and q = −1. The first fixed point cor-
responds to the familiar (torsionless) Friedmann universes
with conventional matter, Euclidean spatial geometry and no
cosmological constant. The second and the third are the clas-
sical Milne and de Sitter solutions respectively.
(ii) Assuming non-zero torsion, we demand that Ωφ �= 0.
This ensures that q � −1 �= 0 always (see Eq. (24)), which
in turn implies that ΩK = 0 at all times (see (23a)).2 On
the other hand, expression (23b) allows for ΩΛ �= 0 and
therefore for a nonzero cosmological constant. On using the
above, relations (6) and (22) combine to give

Ωρ � − 1

3(1 + w)
Ωφ (25)

2 The constraints q � −1 and ΩK = 0 are a direct consequence of our
weak torsion assumption. This is reflected in Eq. (13), which ensures
that the aforementioned conditions do not apply for a general torsion
field. In that case, however, one needs an evolution equation for the the
torsion scalar (φ), in order to proceed.

and

ΩΛ � 1 − 2 + 3w

3(1 + w)
Ωφ, (26)

with w �= −1 by default.3 In the case of a radiative fluid with
w = 1/3, the above constraints become Ωρ � −Ωφ/4 and
ΩΛ � 1−3Ωφ/4. For pressure-free matter, that is for w = 0,
expressions (25) and (26) translate into Ωρ � −Ωφ/3 and
ΩΛ � 1 − 2Ωφ/3 respectively. In either of the aforemen-
tioned cases Ω̄φ has to be negative to guarantee “ghost”-free
matter with Ω̄ρ positive. Also, given that |Ωφ | � 4|χ | � 1,
we are always dealing with a Λ-dominated, spatially flat
FRW-like universes with small amounts of matter (in the
form of radiation or dust respectively) and weak torsion. Put
another way, Eqs. (25), (26) describe de Sitter-like universes,
which is in agreement with the value of the their deceleration
parameters (recall that q � −1, when Ωφ �= 0).
(iii) Allowing for torsion, but switching the cosmological
constant off (i.e. assuming that Ωφ �= 0 and ΩΛ ≡ 0), the
fixed point defined by (25), (26) has q � −1, ΩK = 0,

Ωρ = − 1

2 + 3w
and Ωφ = 3(1 + w)

2 + 3w
, (27)

with w �= −1,−2/3. Demanding that Ωρ > 0 always,
namely excluding ghost-like matter with ρ < 0, imposes
the constraint w < −2/3 on the barotropic index. Then,
assuming that torsion is subdominant at all times, rela-
tion (27b) leads to the following two sub-cases: (α) When
−4/3 < w < −1, the associated equilibrium point has

q � −1, ΩK = 0 = ΩΛ, Ωρ � − 1

2 + 3w
(28)

and

Ωφ = 3(1 + w)

2 + 3w
, (29)

where Ωφ > 0 and Ωρ > Ωφ ; (β) For −1 < w < −2/3, the
equilibrium point is still (formally) monitored by the same
set of relations, though now Ωφ < 0 (with Ωρ > |Ωφ |).
Note that the above given two fixed points correspond to
spatially flat FRW-like universes, with weak torsion and non-
conventional matter. The latter has positive energy density,
but negative pressure and negative total gravitational energy
density (i.e. w < −1/3 ⇔ ρ + 3p < 0 in both cases). This
explains the de Sitter-like expansion (with q � −1) of the
associated solutions, despite the absence of a cosmological
constant. Finally, we should note that when w < −1, we are
dealing with the so-called “phantom” matter [19].

3 Following (22), the value w = −1 of the barotropic index is also
incompatible with our assumption that Ωφ �= 0, which meant that q =
−1 and ΩK = 0.
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4 Stability analysis

In dynamical terms, the fixed points identified in the last
section may be stable attractors, unstable repulsors, or inter-
mediate saddle points. We can determine the stability of
the aforementioned equilibrium configurations by perturb-
ing them and then studying their response.

4.1 Perturbing the equilibrium points

To begin with, let us go back to the set of (20) and (22).
Substituting the latter into each one of Eqs. (20), (21), we
obtain

Ω ′
K � (1 + 3w)ΩK − (1 + 3w)Ω2

K − 3(1 + w)ΩKΩΛ

−(2 + 3w)ΩKΩφ, (30)

Ω ′
Λ � 3(1 + w)ΩΛ − 3(1 + w)Ω2

Λ − (1 + 3w)ΩΛΩK

−(2 + 3w)ΩΛΩφ (31)

and

Ω ′
φ � 3

2
(1 + w)Ωφ − 1

2
(2 + 3w)Ω2

φ − 1

2
(1 + 3w)ΩφΩK

−3

2
(1 + w)ΩφΩΛ, (32)

respectively. The next step is to introduce perturbations
around the fixed-point solutions (Ω̄K , Ω̄Λ, Ω̄φ) obtained in
Sect. 3.3. More specifically, we set4

ΩK = Ω̄K + ωK , ΩΛ = Ω̄Λ + ωΛ (33)

and

Ωφ = Ω̄φ + ωφ, (34)

with the quantities ωK , ωΛ and ωφ representing homoge-
neous deviations from the equilibrium states. Inserting the
above into (30)–(32), while bearing in mind that Ω̄K , Ω̄Λ

and Ω̄φ satisfy a set formally identical to Eqs. (30)–(32),
leads to the nonlinear propagation formulae

ω′
K � [

1 + 3w − 2(1 + 3w)Ω̄K − 3(1 + w)Ω̄Λ

−(2 + 3w)Ω̄φ

]
ωK − 3(1 + w)Ω̄KωΛ

−(2 + 3w)Ω̄Kωφ − (1 + 3w)ω2
K

−3(1 + w)ωKωΛ − (2 + 3w)ωKωφ, (35)

ω′
Λ � −(1 + 3w)Ω̄ΛωK + [

3(1 + w) − 6(1 + w)Ω̄Λ

−(1 + 3w)Ω̄K − (2 + 3w)Ω̄φ

]
ωΛ

−(2 + 3w)Ω̄Λωφ − 3(1 + w)ω2
Λ

−(1 + 3w)ωΛωK − (2 + 3w)ωΛωφ (36)

4 Hereafter, overbars will always indicate variables evaluated at the
equilibrium points.

and

ω′
φ � −1

2
(1 + 3w)Ω̄φωK − 3

2
(1 + w)Ω̄φωΛ

+
[

3

2
(1 + w) − (2 + 3w)Ω̄φ − 1

2
(1 + 3w)Ω̄K

−3

2
(1 + w)Ω̄Λ

]
ωφ − 1

2
(2 + 3w)ω2

φ

−1

2
(1 + 3w)ωφωK − 3

2
(1 + w)ωφωΛ, (37)

of the perturbations themselves. The last three terms in each
one of the above expressions are quadratic in ω. Hence, when
the perturbations are relatively small (i.e. for |ω| � |Ω|), the
system (35)–(37) linearises to

ω′
K � [

1 + 3w − 2(1 + 3w)Ω̄K − 3(1 + w)Ω̄Λ

−(2 + 3w)Ω̄φ

]
ωK − 3(1 + w)Ω̄KωΛ

−(2 + 3w)Ω̄Kωφ, (38)

ω′
Λ � −(1 + 3w)Ω̄ΛωK + [

3(1 + w) − 6(1 + w)Ω̄Λ

−(1 + 3w)Ω̄K − (2 + 3w)Ω̄φ

]
ωΛ

−(2 + 3w)Ω̄Λωφ (39)

and

ω′
φ � −1

2
(1 + 3w)Ω̄φωK − 3

2
(1 + w)Ω̄φωΛ

+
[

3

2
(1 + w) − (2 + 3w)Ω̄φ − 1

2
(1 + 3w)Ω̄K

−3

2
(1 + w)Ω̄Λ

]
ωφ, (40)

In what follows, we will use this set of differential equations
to determine the (linear) stability of the fixed points identified
in Sect. 3.3 earlier.

4.2 Stability of fixed points with Ω̄φ = 0

Not surprising, adding (weak) torsion perturbations does not
alter the standard stability behaviour of the spatially flat FRW
universes. For instance, when Ω̄K = 0 = Ω̄Λ = Ω̄φ – see
case (i) in Sect. 3.3, the linear system (38)–(40) reduces to

⎛
⎝ω′

K
ω′

Λ

ω′
φ

⎞
⎠ �

⎛
⎝1 + 3w 0 0

0 3(1 + w) 0
0 0 3

2 (1 + w)

⎞
⎠

⎛
⎝ωK

ωΛ

ωφ

⎞
⎠ , (41)

when written in matrix form. Accordingly, for conventional
matter with positive gravitational energy density and w >

−1/3 all three eigenvalues are positive, making the associ-
ated Friedmann solutions unstable equilibrium points (repul-
sors – see point A in Fig. 1). On the other hand, when
−1 < w < −1/3 the FRW universes are saddle points,
while for w < −1 they become attractors. This is exactly
what happens in the absence of torsion as well (e.g. see [18]).
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4.3 Stability of fixed points with Ω̄φ �= 0 and Ω̄Λ �= 0

For our purposes, all the interesting scenarios have Ω̄φ �= 0.
Let us therefore begin our stability investigation by assuming
that Ω̄K = 0 and Ω̄Λ � 1 − [(2 + 3w)Ω̄φ/3(1 + w)] – see
case (ii) in Sect. 3.3. Then, the system (38)–(40) recasts as

ω′
K � −2ωK , (42)

ω′
Λ � −(1 + 3w)

[
1 − 2 + 3w

3(1 + w)
Ω̄φ

]
ωK

− [
3(1 + w) − (2 + 3w)Ω̄φ

]
ωΛ

−(2 + 3w)

[
1 − 2 + 3w

3(1 + w)
Ω̄φ

]
ωφ (43)

and

ω′
φ � −1

2
(1 + 3w)Ω̄φωK − 3

2
(1 + w)Ω̄φωΛ

−1

2
(2 + 3w)Ω̄φωφ. (44)

Recall that the above set describes linear perturbations
around a fixed point that corresponds to spatially flat, Λ-
dominated (i.e. accelerating) FRW universe with a small
amount of matter and (weak) torsion.

Suppose now that matter is highly relativistic radiation. In
that case, w = 1/3 and the linear system (42)–(44) reads

⎛
⎝ω′

K
ω′

Λ

ω′
φ

⎞
⎠ �

⎛
⎝ −2 0 0

−2
(
1 − 3

4 Ω̄φ

) −4
(
1 − 3

4 Ω̄φ

) −3
(
1 − 3

4 Ω̄φ

)
−Ω̄φ −2 Ω̄φ − 3

2 Ω̄φ

⎞
⎠

⎛
⎝ωK

ωΛ

ωφ

⎞
⎠ ,

(45)

in matrix form. Note that Ω̄φ < 0 to ensure non-ghost mat-
ter with Ω̄ρ > 0 (see case (ii) in Sect. 3.3 earlier), while
|Ω̄φ | � 4|χ | always. Then, since |χ | = |φ|/H � 1 (see
Sect. 3.2 earlier), we may keep up to Ω̄φ-order terms in
our analysis. Similarly, when dealing with a non-relativistic
(pressure-free) fluid with w = 0, the linearised system (42)–
(44) becomes

⎛
⎝ω′

K
ω′

Λ

ω′
φ

⎞
⎠ �

⎛
⎝ −2 0 0

− (
1 − 2

3 Ω̄φ

) −3
(
1 − 2

3 Ω̄φ

) −2
(
1 − 2

3 Ω̄φ

)
− 1

2 Ω̄φ − 3
2 Ω̄φ −Ω̄φ

⎞
⎠

⎛
⎝ωK

ωΛ

ωφ

⎞
⎠ ,

(46)

with Ω̄φ < 0 and |Ω̄φ | � 1. Next, we will use (45) and (46)
to study the linear stability of their associated equilibrium
points.

4.3.1 The case of ωK = 0

Current observations strongly favour an almost spatially flat
universe. On these grounds, we may (temporarily) ignore the

effects of 3-curvature in our equations. Setting ΩK ≡ 0 ⇔
Ω̄K = 0 = ωK , the linear systems (45) and (46) reduce to

(
ω′

Λ

ω′
φ

)
�

(−4
(
1 − 3

4 Ω̄φ

) −3
(
1 − 3

4 Ω̄φ

)
−2 Ω̄φ − 3

2 Ω̄φ

)(
ωΛ

ωφ

)
, (47)

and

(
ω′

Λ

ω′
φ

)
�

(−3
(
1 − 2

3 Ω̄φ

) −2
(
1 − 2

3 Ω̄φ

)
− 3

2 Ω̄φ −Ω̄φ

) (
ωΛ

ωφ

)
, (48)

for radiation and dust respectively. The characteristic poly-
nomials areP1(λ) = −λ(λ+4−3Ω̄φ/2) for radiative matter
and P2(λ) = −λ(λ + 3 − Ω̄φ) for a pressureless medium.
Therefore, in both cases one of the eigenvalues is zero. In
particular, we have λ1 = 0 and λ2 = −4 + 3Ωφ/2 < 0
in the case of radiation, while for pressure-free matter the
eigenvalues are λ1 = 0 and λ2 = −3 + Ω̄φ < 0. It is also
straightforward to show that the eigenvectors correspond-
ing to the zero eigenvalue of the radiation era are multiples
of v1 = (3,−4), while those associated with λ2 are multi-
ples of v2 = ((4 − 3Ω̄φ)/2Ω̄φ, 1). In the case of dust, on
the other hand, the respective eigenvectors are multiples of
u1 = (2,−3) and of u2 = (2(3 − 2Ω̄φ)/3Ω̄φ, 1).

In the presence of a zero eigenvalue the stability of (47)
and (48) is not straightforward to decide (see [20,21] for
an extensive discussion of the zero-eigenvalue problem). We
will therefore attempt to obtain an answer by solving both of
these systems analytically. Starting with the case of radiation,
system (47) solves to give

ωΛ = 2
(
4 − 3Ω̄φ

)
eαη + 3Ω̄φ

8 − 3Ω̄φ

C1

−3
(
4 − 3Ω̄φ

)
(1 − eαη)

2
(
8 − 3Ω̄φ

) C2 (49)

and

ωφ = −4Ω̄φ (1 − eαη)

8 − 3Ω̄φ

C1

+8 − 3Ω̄φ (2 − eαη)

8 − 3Ω̄φ

C2, (50)

where C1,2 are the integration constants and α = −(8 −
3Ω̄φ)/2. Based on our constraint that |Ω̄φ | � 1, we deduce
that α < 0 always. Consequently, at late times (i.e. as η →
∞), the above approaches the constant solution

ωΛ = 3

8
Ω̄φ C1 − 3

4
C2 (51)

and

ωφ = −1

2
Ω̄φ C1 + C2, (52)
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which satisfies the condition 4ωΛ + 3ωφ = 0 as well. In
other words, the perturbations ωΛ and ωφ do not grow but
instead tend to constant values. Moreover, solution (51), (52)
resides within the sub-space of the eigenvector v1 = (3,−4),
which corresponds to the zero eigenvalue of (47). Conse-
quently, solutions that start out near the equilibrium point
remain close to it, although they never converge to the fixed
point. Technically speaking, the system (47) is not asymp-
totically stable, but it is stable according to Lyapunov (see
line (ε) in Fig. 1).

The same is also true for pressure-free matter. Indeed,
when |Ω̄φ | � 1, the late-time solution of system (48) reads

ωΛ = 1

3
Ω̄φ C1 − 2

3
C2 (53)

and

ωφ = −1

2
Ω̄φ C1 + C2, (54)

with 3ωΛ + 2ωφ = 0. As before, ωΛ and ωφ are constants
and the solution resides in the sub-space of the eigenvector
u1 = (2,−3), which in turn corresponds to the zero eigen-
value of the dust case (see matrix (48) above). Therefore,
Λ-dominated Friedmann universes with dust, vanishing spa-
tial curvature and torsion are also stable in the Lyapunov
sense. In other words, solutions close to the aforementioned
fixed point will remain in that vicinity and never diverge.

4.3.2 The case of ωK �= 0

Allowing for curvature perturbations and assuming radiative
matter, the linear system is given by (45). Then, the charac-
teristic polynomial is P1(λ) = −λ(λ + 2)(λ + 4 − 3Ω̄φ/2),
with eigenvalues λ1 = 0, λ2 = −2 and λ3 = −4+3Ω̄φ/2 <

0 (since |Ω̄φ | � 1). When dealing with non-relativistic
(pressure-free) matter, the linear system is (46) and the char-
acteristic polynomial readsP2(λ) = −λ(λ+2)(λ+3−Ω̄φ).
Here, the eigenvalues are λ1 = 0, λ2 = −2 and λ3 =
−3 + Ω̄φ < 0 (given that |Ω̄φ | � 1).

As before, due to the zero eigenvalues, we will attempt to
solve both linear systems analytically. Recalling that |Ω̄φ | �
1, the late-time solutions (i.e. as η → ∞) read

ωK = 0, ωΛ = 3

8
Ω̄φ C1 − 3

4
C2 (55)

and

ωφ = −1

2
Ω̄φ C1 + C2, (56)

for radiation, with

ωK = 0, ωΛ = 1

3
Ω̄φ C1 − 2

3
C2 (57)

Fig. 1 Phase-space diagram around two of the equilibrium points seen
in cases (i) and (ii) of Sect. 3.3. The unstable fixed point A is a
torsion-free, Ω̄ρ = 1 Friedmann universe with radiative matter or dust
(e.g. see [18], or Sect. 4.2 here). The dashed diagonal line (ε) represents
an accelerating, Λ-dominated, FRW-like cosmology with weak torsion
(i.e. |Ω̄φ | � 1) and radiation (or dust), which is stable in the Lyapunoc
sense. Note the shaded regions at the top and at the bottom of the dia-
gram. These contain FRW-like universes with |Ω̄φ | > 1 and therefore
lie beyond the range of this study (see Sect. 3.2)

and

ωφ = −1

2
Ω̄φ C1 + C2, (58)

for dust. Clearly, since ωΛ and ωφ tend to finite constants
and only ωK → 0, the above given solutions are also sta-
ble à la Lyapunov and not asymptotically stable. Moreover,
the 3 × 3 solutions (55), (56) and (57), (58) are essentially
supplementary to their 2 × 2 counterparts (given by (51),
(52) and (53), (54) respectively), with ωΛ and ωφ still resid-
ing in the subspace of the eigenvectors v1 = (3,−4), and
u1 = (2,−3) respectively. Recall that the aforementioned
eigenvectors correspond to the zero eigenvalues of P1(λ)

and P2(λ) – see Sect. 4.3.1 earlier.
Based of the results obtained in Sects. 4.3.1 and 4.3.2, we

conclude that an accelerating, Λ-dominated FRW universe
with a small amount of matter (in the form of radiation or
dust) and a (weak) torsion field is stable in the Lyapunov
sense, irrespective of whether its spatial-curvature perturba-
tions are accounted for, or not.

4.4 Stability of fixed points with Ω̄φ �= 0 and Ω̄Λ = 0

Let us now switch the cosmological constant off, by setting
Ω̄Λ = 0 = ωΛ at all times. Then, demanding that Ω̄φ �= 0,
Ω̄ρ > 0 and Ω̄ρ > |Ω̄φ |, we are in case (iii) of Sect. 3.3. In
other words, we are dealing with two families of equilibrium
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points having −4/3 < w < −1 and −1 < w < −2/3 (with
Ω̄φ > 0 and Ω̄φ < 0 respectively). The former family cor-
responds to spatially flat Friedmann universes with torsion,
dominated by “phantom” matter (since w < −1). In the lat-
ter case, on the other hand, the dominant matter component
is of the dark-energy type (given that −1 < w < −2/3).
In either case, the associated cosmological models are accel-
erating with q � −1. Also, dynamically speaking, both of
the aforementioned sets of fixed points are monitored by the
system (see Eqs. (38)–(40) in Sect. 4.1)

(
ω′
K

ω′
φ

)
�

(
−2 0

− 3(1+3w)
2(2+3w)

(1 + w) − 3
2 (1 + w)

) (
ωΛ

ωφ

)
, (59)

with eigenvalues λ1 = −2 and λ2 = −3(1 + w)/2. Conse-
quently, the first family of equilibrium points (those with
−4/3 < w < −1) has one negative and one positive
eigenvalue. This means that, in dynamical terms, phantom-
dominated FRW-like universes with zero spatial curvature
and a weak torsion field are intermediate saddle points (see
equilibrium state C in Fig. (2a). On the other hand, the sec-
ond family of fixed points (with −1 < w < −2/3) has two
negative eigenvalues. Therefore, flat Friedmann models with
torsion and a dominant dark-energy component are stable
attractors (see fixed point C in Fig. (2b).5

5 Discussion

Dynamical system techniques have been extensively used to
study the qualitative evolution of a wide range of cosmo-
logical solutions (e.g. see [22,23] for reviews). Among oth-
ers, there have been applications to cosmologies with torsion
(see [24] and references therein.), Nevertheless, to the best
of our knowledge, qualitative methods have not been used
to study cosmological models based on pure Einstein-Cartan
gravity, which is the simplest classical extension of general
relativity. Here, we have attempted a step in this direction, by
employing dynamical systems to study Friedmann-like uni-
verses with torsion. Before proceeding, however, one should
bear in mind that the high symmetry of the FRW spacetimes
imposes severe constraints on the form of the allowed torsion
field [13]. Therefore, following on the work of [14], we have
considered vectorial torsion, determined by a single scalar
function of time (φ = φ(t)). We also introduced an effective
density parameter (Ωφ) to measure the torsion contribution
to the total (effective) energy density of the universe. Then,

5 Keeping Ω̄Λ = 0, but allowing for nonzero perturbations (i.e. assum-
ing that ωΛ �= 0), we find that ω′

Λ = 0 (see Eq. (39) in Sect. 4.1).
Incorporating this equation to (59) adds a zero eigenvalue to the sys-
tem. This alters the nature of the stability, which is no longer asymptotic
but of the Lyapunov type.

Fig. 2 Stability diagrams of fixed points discussed in Sect. 3.3 (see
cases (i) and (iii) there), with −4/3 < w < −1 at the top (a) and
−1 < w < −2/3 at the bottom (b). In a the attractor A describes
an accelerated, torsionless, flat FRW model filled with phantom matter
(see Sect. 4.2 here). Fixed point B is an unstable repulsor representing
the Milne solution (e.g. see [18]), while C is an intermediate (transition)
saddle point corresponding to an accelerating, spatially flat, FRW-like
universe with weak torsion and phantom matter (see Sect. 4.4). In b, on
the other hand, the saddle point A is a torsion-free Friedmann cosmology
with zero 3-curvature and dark energy (see Sect. 4.2 before), B is still
the Milne repulsor and C is the attractor that represents a flat FRW-like
model with weak torsion and dark energy. Note that the fixed point C has
Ω̄φ > 0 in a and Ω̄φ < 0 in b. Also, in both figures, the shaded regions
contain torsional models with |Ω̄φ | > 1, lying beyond the boundaries
of our “weak-torsion” assumption
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assuming weak torsion (namely setting Ωφ � 1), we wrote
the associated Einstein-Cartan equations as an autonomous
system of differential equations.

The torsional equilibrium states of the aforementioned
system corresponded to accelerating universes with zero spa-
tial curvature. These were either Λ-dominated cosmologies,
or they were filled with non-conventional matter, which sat-
isfied a dark-energy/phantom equation of state. The stability
analysis of these fixed points showed that they are all sta-
ble attractors, either asymptotically or à la Lyapunov, with
the exception of the phantom-dominated solution. The latter
was found to act as an intermediate saddle point, marking
the transition from an accelerated torsional Friedmann-like
universe to its (also accelerating) torsion-free counterpart.

Our results so far have been obtained under the assumption
of weak torsion, with the dimensionless parameters φ/H and
Ωφ = −4φ/H restricted to values considerably smaller than
unity. Relaxing these constraints, while remaining within the
FRW framework, should add extra degrees of freedom to the
solutions. The associated equilibrium points, in particular,
are very likely to exhibit a richer and more versatile behaviour
(like that reported in [14] for example) and they should not
necessarily identify themselves with accelerating, spatially
flat spacetimes (see footnote 2 in Sect. 3.3). However, in
order to accommodate strong torsion fields to our analysis,
one needs (among others) an evolution law for the torsion
scalar. We will return to the investigation of the strong-torsion
regime in our future work, as it goes beyond the scope of the
present paper.
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