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Abstract From solving the equations of the motion for a
system of Einstein gravity coupled to a non-linear electro-
magnetic field in the dS spacetime with two integral con-
stants, we derived a static and spherical symmetric non-linear
magnetic-charged black hole. It is indicated that this black
hole solution behaves like a dS geometry in the short-distance
regime. And, thus this black hole is regular. The structure of
the black hole horizons is studied in detail. Also, we investi-
gated the thermodynamics and the thermal phase transition of
the black hole in both the local and global views. By observ-
ing the discontinuous change of the specific heat sign and the
swallowtail structure of the free energy, we showed that the
black hole can undergo a thermal phase transition between a
thermodynamically unstable phase and a thermodynamically
stable phase.

1 Introduction

In General Relativity, the black hole solutions display a cur-
vature singularity at the origin surrounded by an event hori-
zon [1]. The presence of this curvature singularity is usually
regarded as a sign of the breakdown of the classical gravity.
It is widely believed that at the (very) short distances quan-
tum gravity should become important to suppress the infinite
growth of the spacetime curvature scalars and other physi-
cal quantities. And, thus the curvature singularity would be
replaced by a regular spacetime region. However, so far there
has no a consistent quantum theory of gravity. In the absence
of such a theory, the resolution of the black hole singularity
at the (semi-)classical level remains open.

In attempting to eliminate the problem of infinite energy of
the electron, Born and Infeld proposed the non-linear elec-
trodynamics as modifying the standard Maxwell theory at
the short distances [2]. But, the non-linear electrodynam-
ics did not solve this problem and thus was less popular.
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In recent years, the non-linear electrodynamics has received
considerable attention because it leads to the regular black
hole solutions. In 1998, Ayón-Beato and García studied a
system of Einstein gravity coupled to a non-linear electro-
magnetic field in asymptotically flat spacetime and derived
a regular electric-charged black hole solution [3]. Also, they
reobtained the Bardeen black hole [4], which is regular, as
a gravitational collapse of some magnetic monopole in the
non-linear electrodynamics [5]. Later, many different regular
black hole solutions in the non-linear electrodynamics have
been derived [6–17].

Astronomical observations show that our universe is
undergoing accelerated expansion [18–20]. This accelerat-
ing expansion may be explained by unknown dark energy.
There are various proposed explanations for dark energy, but
a positive cosmological constant is usually considered as the
simplest explanation for dark energy. Because of this fact,
it is necessary to consider the black hole by including the
positive cosmological constant, corresponding to the black
hole in the de Sitter (dS) spacetime [21–43,45,89].

Another interesting aspect of the black hole is that it
behaves as a thermodynamic object with the temperature
and the entropy. The seminal works of the black hole ther-
modynamics were made by Bekenstein and Hawking [46–
50]. Also, it was found that the black holes can undergo the
phase transitions, such as the Hawking–Page phase [51] or
the phase transition between small-large black charged holes
[52–54]. Recently, the cosmological constant � can be con-
sidered as the thermodynamic pressure defined as

P = − �

8π
, (1)

and its conjugate variable is the thermodynamic volume V
[55–59]. This leads to an extended phase space at which the
black hole mass is most naturally interpreted as the enthalpy
[56]. Then, the thermodynamics and phase transitions of
black holes in the extended phase space have been studied
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extensively in the literature, with new phenomena derived.
The black hole can undergo the van der Waals-like phase
transition which is similar to the liquid-gas phase transition
[60–69]. It was found that the black holes shows multiply
reentrant phase transition and triple points [70–72]. It is also
possible to consider a Carnot-cycle heat engine for the black
hole, which is defined by a closed path in the P–V plane
[73–81].

In this paper, motivated by the pioneering work of Ayón-
Beato and García and the astrophysical observations of dark
energy, we would like to study the charged dS black hole in
the non-linear electrodynamics. We will introduce a system
of Einstein gravity coupled to a non-linear electromagnetic
field in the dS spacetime. Then, we successfully construct a
static and spherical symmetric non-linear magnetic-charged
black hole and study the large and short distance behaviors
as well as the horizon properties of this black hole. These are
given in Sect. 2. The thermodynamics and the phase transition
of the black hole are investigated, in both the local and global
views, in Sect. 3. Finally, we make the conclusion in Sect. 4.

2 Non-linear magnetic-charged black hole in the dS
spacetime

Einstein gravity coupled to the non-linear electromagnetic
field in the four-dimensional dS spacetime is described by
the action

S =
∫

d4x
√−g

[
1

16π

(
R − �

2

)
− 1

4π
L(F)

]
, (2)

where R is the scalar curvature of the dS spacetime, � is the
positive cosmological constant, and L(F) is a function of the
invariant FμνFμν/4 ≡ F with Fμν = ∂μAν −∂ν Aμ to be the
field strength of the non-linear electromagnetic field. In this
paper, the non-linear electrodynamic term L(F) is explicitly
given as

L(F) = 3M

|Q|3
(
2Q2F

)3/2

[
1 + (

2Q2F
)3/4

]2 , (3)

where M and Q are mass and charge of the system, respec-
tively. From the action, one can derive the equations of
motion

Gν
μ + �δν

μ = 2
∂L(F)

∂F
FμρF

νρ − δν
μL(F), (4)

∇μ

(
∂L(F)

∂F
Fνμ

)
= 0, (5)

∇μ ∗ Fνμ = 0. (6)

Note that, Eq. (6) refers to the Bianchi identities for the non-
linear electromagnetic field.

In this paper, we would like to find a static and spherical
symmetric dS black hole of the mass M and the magnetic
charge Q (> 0), given by ansatz

ds2 = − f (r)dt2 + f (r)−1dr2 + r2d�2,

f (r) =
(

1 − 2m(r)

r

)
, (7)

Fμν = (
δθ
μδϕ

ν − δθ
ν δϕ

μ

)
B(r, θ), (8)

where the magnetic charge Q is defined as

1

4π

∫
S∞

2

F = Q, (9)

with S∞
2 to be a two-sphere at the infinity. Note that, M and Q

are two integral constants which should be used to integrate
Eqs. (4) and (5). From Eqs. (5), (6) and (9), one can easily
derive

B(r, θ) = Qsin(θ), −→ F = Q2

2r4 . (10)

Using this result, one can derive the only time component of
Eq. (4) as

dm(r)

dr
− �r2

2
= Mr2

r3 + Q3 . (11)

Integrating Eq. (11) with the integral constant M =(
m(r) − �r3

6

)
r→∞, then substituting m(r) into f (r), we

finally get

f (r) = 1 − 2Mr2

r3 + Q3 − �r2

3
. (12)

In the case � = 0, we can obtain the Hayward-like black
hole [12].

Let us look at the behavior of the black hole solution,
derived above, at the large and short distances. For the large
distances (Q/r � 1), we have

f (r) 	 1 − 2M

r
− �r2

3
, (13)

corresponding to the Schwarzschild-dS black hole. For the
small distances (Q/r 
 1), we have

f (r) 	 1 −
(

2M

Q3 + �

3

)
r2. (14)

It means that the black hole solution at the small distance
behaves like a dS geometry with an effective cosmological
constant

�eff = 3

(
2M

Q3 + �

3

)
, (15)
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rather than like a black hole solution. This means that the dS
geometry causes a negative pressure preventing a singular
end-state of the gravitationally collapsed matter. In this sense,
the black hole solution is regular. This can be checked by cal-
culating the curvature scalars, R, RμνRμν , and RμνρλRμνρλ

which are indeed finite everywhere.
The relation between the black hole mass M and its hori-

zon radius is established from the equation of the horizons
f (r) = 0 as

M = r3 + Q3

2r2

(
1 − �r2

3

)
. (16)

We can see that the black hole mass curve in the horizon
radius shows one common property

M(r → 0) → ∞ and M(r → ∞) → −∞. (17)

In addition, for the appropriate values of the magnetic charge
Q and the cosmological constant �, the black hole mass
curve displays one local minimum following one local max-
imum which both are located above the horizontal axis. These
suggest that the black hole possesses possibly the inner hori-
zon r−, the event horizon r+ (� r−) and the cosmological
horizon rc (� r+). (The cases of black holes and no black
hole are explicitly given in Fig. 1.) When the local mini-
mum and local maximum points of the black hole mass curve
merge into an inflexion point, these three horizons coincide
together. In this case, the hole black is called the ultracold
black hole whose horizon radius and mass are, with given
magnetic charge Q, given as

rucold = 51/3Q, Mucold = 12Q

55/3
, (18)

M 0.8

M 1.3

M 1.0

M 0.9

M 1.1

0 1 2 3 4 5
r

0.8

1.0

1.2

1.4

M

Fig. 1 The mass function M(r) is plotted in terms of the horizon radius
r , at Q = 1 and � = 1/10. The black lines (M = 0.8 and M = 1.3)
correspond to no black hole. The purple line (M = 1.0) corresponds to a
black hole of three different horizons. The red and green line (M 	 1.1
and M 	 0.9) corresponds to black holes whose two of three horizons
coincide together

corresponding to a critical value for the cosmological con-
stant

� = 3

55/3Q2
≡ �c. (19)

We can see here that the ultracold black hole of the larger
magnetic charge has larger horizon radius and larger mass
but the critical value for the cosmological constant is smaller.
For � > �c, there exists no black hole with any mass. (Note
that, the critical value of the cosmological constant for the
existence of the non-linear charged dS black hole is lower
than that for the existence of the usual charged dS black
hole. This is of course because the magnetic repulsion in
the non-linear electrodynamics is stronger than the magnetic
repulsion in the usual electrodynamics.) On the contrary, for
� < �c, there exist black holes only for a range of values
of the mass, M ∈ [Mmin, Mmax], where Mmin and Mmax

are functions in terms of the magnetic charge Q and the
cosmological constant �. As M = Mmax the event horizon
r+ and the cosmological horizon rc coincide together, and
such a black hole is called the Nariai black hole whose event
horizon radius rN is the largest positive real solution of the
following equation

�r5 − r3 + 2Q3 = 0. (20)

The event horizon radius rN of the Nariai black hole and its
corresponding mass, as functions in terms of the cosmolog-
ical constant at the fixed magnetic charge, are graphically
given in Figs. 2 and 3, respectively. From these figures, it
can see that both the event horizon radius and the mass of
the Nariai black hole should decrease as the cosmological
constant increases. As M = Mmin the inner horizon r− and
the event horizon r+ coincide together, and such a black hole
is called the cold black hole whose event horizon radius rcold
is the remaining positive real solution of Eq. (20). [Note that,
it can see that, for 0 < � < �c, Eq. (20) has always two
different positive real solutions.] We plot the event horizon
radius rcold of the cold black hole and its corresponding mass
in terms of the cosmological constant at the fixed magnetic
charge in Figs. 2 and 3, respectively. From these figures, it
can see that the event horizon radius of the cold black hole
increases but its mass decreases as the cosmological constant
increases.

3 Thermodynamics and thermal phase transition

In the extended phase space, the entropy S, the magnetic
charge Q, and the thermodynamic pressure P are regarded
as a complete set of the extensive thermodynamic variables.
Their corresponding conjugating quantities, which are inten-
sive thermodynamic variables, are the temperature T , the
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Fig. 2 We plot the event horizon radius of the Nariai black hole (left) and that of the cold black hole (right) in terms of the cosmological constant,
at the magnetic charge Q = 1
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Fig. 3 We plot the mass of the Nariai black hole (left) and that of the cold black hole (right) in terms of the cosmological constant, at the magnetic
charge Q = 1

chemical potential �, and the thermodynamic volume V . In
this way, the first law of the thermodynamics is established
on the event and cosmological horizons, respectively

dM = T+dS+ + �+dQ + V+dP, (21)

dM = −TcdSc + �cdQ + VcdP. (22)

(The sign − in front of Tc is because, as the cosmologi-
cal horizon radius increases, the mass M should decrease
whereas the entropy always does not decrease.) Note that,
from Eqs. (1) and (16) the black hole mass can be expressed
on the event and cosmological horizons, respectively

M(r+, Q, P) = r3+ + Q3

2r2+

(
1 + 8π P

3
r2+

)
, (23)

M(rc, Q, P) = r3
c + Q3

2r2
c

(
1 + 8π P

3
r2
c

)
. (24)

3.1 Local view

In this subsection, we consider that the event and cosmolog-
ical horizons are located far away. Thus, one can analyze the
thermodynamics and the thermal phase transition on these
horizons in an independent way.

Using the surface gravities of the event horizon and
cosmological horizon, one can identify their temperatures,
respectively [82,83]

T+ = f ′(r+)

4π
= r3+ − 2Q3 + 8π Pr5+

4πr+(r3+ + Q3)
, (25)

Tc = − f ′(rc)
4π

= −r3
c − 2Q3 + 8π Pr5

c

4πrc(r3
c + Q3)

. (26)

It is seen from Fig. 4 that the temperature Tc is an increasingly
monotonous function in terms of the cosmological horizon
radius rc. Whereas, the temperature T+ should first increase
until a maximum Tmax (given graphically in Fig. 5) and
then decrease as the event horizon radius r+ increases. The
reduced event horizon radius rmax/Q corresponding to the
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Fig. 4 We plot the reduced temperature T+Q on the event horizon
(left) and the reduced temperature TcQ on the cosmological horizon
(right) in terms of the corresponding reduced horizon radius, for the

different values of the reduced pressure PQ2. The blue, red, green and
purple curves correspond to PQ2 = −0.001, −0.002, −0.004, −0.006
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Fig. 5 We plot the reduced horizon radius rmax/Q (left) and the reduced maximum temperature Tmax Q (right) in terms of the reduced pressure
PQ2

maximum temperature Tmax is a unique positive real solution
of the following equation

x6(8π PQ2x2 − 1) + 2x3(16π PQ2x2 + 5) + 2 = 0. (27)

This solution is a function in terms of PQ2 and graphi-
cally solved in Fig. 5. In the limit of the vanishing pressure
(P → 0), the reduced horizon radius rmax/Q and the reduced
maximum temperature Tmax Q approach an upper limit given
as
rmax

Q
→

(
5 + 3

√
3
)1/3 ≈ 2.16843,

Tmax Q → 1 + √
3

4π
(

5 + 3
√

3
)1/3 (

2 + √
3
) ≈ 0.02686. (28)

We stop here to compare the temperature between the non-
linear and usual charged dS black holes with the same size,
charge and the pressure. This difference of the temperature

is graphically depicted in Fig. 6. It can see that, compared to
the usual charged dS black hole with the same size, charge
and the pressure, the non-linear charged dS black hole of the
large size (r+ > r0) is slightly hotter. But, for the small size
(r+ < r0), the usual charged dS black hole is hotter compared
to the non-linear charged dS black hole. Here, r0/Q is the
largest positive real solution of the following equation

x3 − x2(3 + 8PQ2x2) + 1 = 0. (29)

From the expressions for the temperature on the event and
cosmological horizons, the entropy on both two horizons can
be calculated as

S+ =
∫

1

T+
∂M

∂r+
dr+ = πr2+

(
1 − 2Q3

r3+

)
, (30)

Sc = −
∫

1

Tc

∂M

∂rc
drc = πr2

c

(
1 − 2Q3

r3
c

)
. (31)
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Fig. 6 We plot the difference of the temperature of the non-linear and
usual charged dS black holes in terms of the reduced event horizon
radius, under the different values of PQ2. The blue, red, green and
purple curves correspond to PQ2 = −0.008, −0.004, −0.002, −0.002

We make some remarks here. First, the non-linear elec-
trodynamics breaks the area law but it is recovered at the
large distances Q/r+ � 1. Second, the entropy is nega-
tive with r+ < 21/3Q and thus there exist no black hole
with the size smaller than 21/3Q. This suggests that at the
scale r+ = 21/3Q non-linear magnetic repulsion becomes
so strong and thus prevents the formation of any black hole.
In this sense, 21/3Q can be realized to be the smallest size of
the black hole of given magnetic charge Q.

Because Eqs. (30) and (31), we have

M(S+, Q, P) = M
(
r+(S+, Q), Q, P

)
, (32)

M(Sc, Q, P) = M
(
rc(Sc, Q), Q, P

)
. (33)

Using the first law, one can derive the remaining intensive
thermodynamic variables as

�+ =
(

∂M

∂Q

)
S+,P

=
(

∂M

∂Q

)
r+,P

+
(

∂M

∂r+

)
Q,P

(
∂r+
∂Q

)
S+

,

(34)

= Q2
[
6r3+ + 32π Pr5+ + Q3(8π Pr2+ − 3)

]
2r2+(r3+ + Q3)

, (35)

�c =
(

∂M

∂Q

)
Sc,P

=
(

∂M

∂Q

)
rc,P

+
(

∂M

∂rc

)
Q,P

(
∂rc
∂Q

)
Sc

,

(36)

= Q2
[
6r3

c + 32π Pr5
c + Q3(8π Pr2

c − 3)
]

2r2
c (r3

c + Q3)
, (37)

V+ =
(

∂M

∂P

)
S+,Q

= 4

3
π(r3+ + Q3), (38)

Vc =
(

∂M

∂P

)
Sc,Q

= 4

3
π(r3

c + Q3). (39)

One can easily check that the thermodynamic quantities
on the event or cosmological horizons satisfy the Smarr and
Smarr-like relations, respectively

M = 2(T+S+ − V+P) + �+Q,

M = −2(TcSc + VcP) + �cQ, (40)

which show the scaling behaviors of the thermodynamic vari-
ables [56].

The heat capacity at constant pressure on the event horizon
and cosmological horizon given, respectively

CP+ =
(

∂M

∂T+

)
P

= ∂M

∂r+

(
∂T+
∂r+

)−1

, (41)

= 2π(r3+ + Q3)2(r3+ − 2Q3 + 8π Pr5+)

r7+(8π Pr2+ − 1) + 2Q3r4+(5 + 16π Pr2+) + 2Q6r+
,

(42)

CPc =
(

∂M

∂Tc

)
P

= ∂M

∂rc

(
∂Tc
∂rc

)−1

, (43)

= − 2π(r3
c + Q3)2(r3

c − 2Q3 + 8π Pr5
c )

r7
c (8π Pr2

c − 1) + 2Q3r4
c (5 + 16π Pr2

c ) + 2Q6rc
.

(44)

The heat capacity CP+ under the different values of the pres-
sure is plotted in Fig. 7. Form this figure and the expression
of CP+, we can see that the heat capacity CP+ suffers a
discontinuity at the local maximum temperature Tmax . This
suggests a phase transition between a thermodynamically
stable small black hole and a thermodynamically unstable
large one at this critical point. It can show this phase tran-
sition from observing the swallowtail structure of the free
energy F+ = M − T+S+, as given in Fig. 8. With respect
to the cosmological horizon, the heat capacity CPc is always
negative and thus by emitting the thermal radiation the cos-
mological horizon become larger.

For the magnetic charge Q fixed, we can obtain the equa-
tion of state on the event and cosmological horizons, respec-
tively

P(T+, V+) = 3

4

(
2

π

)1/3

×V+T+(3V+ − 4πQ3)1/3 − V+ + 4πQ3

(3V+ − 4πQ3)5/3
,

(45)

P(Tc, Vc) = 3

4

(
2

π

)1/3

×−VcTc(3Vc − 4πQ3)1/3 − Vc + 4πQ3

(3Vc − 4πQ3)5/3
.

(46)

The isotherms in the P −V+ and P −Vc planes are the same
in the shape. In Fig. 9, we plot the isotherms in the P − V+
plane.
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Fig. 7 We plot the heat capacity CP+ in terms of the horizon radius r+, under the different values of the pressure. They correspond to P = −0.005
(top left), P = −0.001 (top right), P = −0.0005 (bottom left), and P = −0.0001 (bottom right)

Unstable larger black hole

Stable smaller black hole

0.000 0.005 0.010 0.015 0.020 0.025 0.030
T

1.0

1.5

2.0

2.5

3.0
F

Fig. 8 We plot the free energy F+ as a function of the black hole tem-
perature T+, under the different values of the thermodynamic pressure
P , at the magnetic charge Q = 1. The blue, red, green, and purple
curves correspond to P = − 0.005, − 0.001, − 0.0005, − 0.0001

3.2 Global view

If the event and cosmological horizons are not located far
away, one cannot analyze the thermodynamics and the ther-
mal phase transition on them in an independent way. Because
the temperatures on the event and cosmological horizons
are different, except for the degenerate case r+ = rc, the
black hole cannot in general be in thermodynamic equilib-

50 100 150 200
V

0.010

0.008

0.006

0.004

0.002

P

Fig. 9 We plot the thermodynamic pressure in terms of the thermody-
namic volume V+, under the different values of the temperature, at the
magnetic charge Q = 1. The blue, red, and green curves correspond to
T = 0.05, 0.01, 0.001

rium. Since the notion of the effective thermodynamics of
the black hole has been emerged [36,44,84–88,90].

In the picture of the effective thermodynamics of the black
hole, we express the mass M of the black hole and the cos-
mological constant � in terms of r+, rc, and Q as

M = α+αc(r2
c − r2+)

αcr2
c − α+r2+

, � = 3
αc − α+

αcr2
c − α+r2+

, (47)
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Fig. 10 We plot the effective temperature in terms of the event horizon
radius r+, under the different values of the magnetic charge Q, with the
cosmological horizon radius rc = 5. The blue, red, green and purple
curves correspond to Q = 2, 1.5, 1, 0.5

where

α+,c = r3+,c + Q3

2r2+,c
. (48)

From Eqs. (21) and (22), we can write the first law of the
effective thermodynamics of the black hole as

dM = − T+Tc
T+ + Tc

d(Sc − S+) + �+Tc + �cT+
T+ + Tc

dQ

+V+Tc + VcT+
T+ + Tc

dP. (49)

It is clearly that if the total entropy is identified as S = Sc−S+
the effective temperature is given by

Tef f = T+Tc
T+ + Tc

. (50)

From Fig. 10, it can see that the behavior of the effective
temperature Tef f is dependent on the magnetic charge Q. For
“large” Q (the blue and red curves), there exist two regions
(RI and RI I ) which are separated by a negative temperature
region or forbidden region r+ ∈ (rdiv, r0), where rdiv and
r0 are respectively a divergent point and a zero-temperature
point of Tef f . The first region RI of Tef f is an increasingly
monotonous function of r+. Whereas, with respect to the
second region RI I of Tef f the effective temperature should
first increase until a maximum and then decrease when r+
increasing. Note that, because of the forbidden region, if the
black hole stays in one of the two regions then it always stays
in that region and is impossible to transit another region.
For “small” Q (the green curve), the first region RI of Tef f
should disappear. For small Q but below a certain value (the
purple curve), the effective temperature is only a decreasingly
monotonous function of r+.

Form Eq. (49), one can derive the effective chemical
potential �e f f and the effective thermodynamic volume Vef f
as

�e f f = �+Tc + �cT+
T+ + Tc

, Vef f = V+Tc + VcT+
T+ + Tc

. (51)

The scaling behavior of the effective thermodynamic
quantities is shown via the following Smarr-like relation

M = −2
(
Tef f S + Vef f P

) + �e f f Q. (52)

Now we would like to compute the effective heat capacity
CP at constant pressure and analyze the thermal phase tran-
sition based on the discontinuous change of the sign of CP .
The effective heat capacity CP is given by

CP =
(

∂M

∂Tef f

)
P

,

=
(

∂M

∂r+
− ∂M

∂rc

∂g/∂r+
∂g/∂rc

) (
∂Tef f
∂r+

− ∂Tef f
∂rc

∂g/∂r+
∂g/∂rc

)−1

,

(53)

where

g = 3
αc − α+

αcr2
c − α+r2+

− �. (54)

The behavior of the heat capacityCP is explicitly depicted in
Fig. 11. From this figure, we can analyze the thermodynamic
stability and the thermal phase transition of the black hole.
For large magnetic charge (top left and top right), if the black
hole stays in the first region RI , because of the negative and
regular heat capacity CP the black hole is thermodynam-
ically unstable and there has no thermal phase transition.
Otherwise, if the black hole stays in the second region RI I ,
the heat capacity CP should suffer a discontinuity. This sug-
gests a thermal phase transition, at this discontinuous point,
between a thermodynamically unstable large black hole (neg-
ative CP ) and a thermodynamically stable small black hole
(positive CP ). For small magnetic charge (bottom left), the
first region RI should disappear and thus the black hole
always stays in the second region RI I . This means that the
black hole can undergo the thermal phase transition between
a thermodynamically unstable phase and a thermodynam-
ically stable phase. For small magnetic charge but below a
certain value (bottom right), like the black hole staying in the
first region RI , the black hole is thermodynamically unstable
and there has no thermal phase transition.

Let us now show that there actually exists the thermal
phase transition by investigating the free energy F given by

F = M − Tef f S, (55)
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Fig. 11 Plots of the effective heat capacity in terms of the event horizon
radius r+ under the different values of the magnetic charge, at rc = 5.
They correspond to Q = 2 (top left), Q = 1.5 (top right), Q = 1

(bottom left), and Q = 0.5 (bottom right). Dashed parts of the curves
refer to the negative-temperature regions
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Fig. 12 We plot the free energy F as a function of the effective tem-
perature Tef f under the different values of the magnetic charge Q, at
rc = 5. The blue, red, and green curves correspond to Q = 2, 1.5, 1.

The left and right figures refers to the black hole staying in the first
region RI and the second region RI I , respectively

which is graphically depicted in Fig. 12. As seen in Fig. 12,
for the black hole staying in the region RI , its free energy
is a decreasingly monotonous function of the effective tem-
perature Tef f and thus there actually has no thermal phase
transition. Otherwise, for the black hole staying in the region
RI I , the free energy F is a multivalued function shown by

the presence of the swallowtail structure. And, thus there
should actually occur the thermal phase transition between
a thermodynamically unstable phase (large black hole) and
a thermodynamically stable phase (small black hole). Here,
the black hole of the larger magnetic charge has the smaller
critical effective temperature.
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4 Conclusion

In this work, we have derived a non-linear magnetic-charged
dS black hole, from solving the equations of the motion for
a system of Einstein gravity coupled to a non-linear electro-
magnetic field in the dS spacetime with a static and spherical
symmetric ansatz. It is interesting that, in the short-distance
regime corresponding to the strong non-linear magnetic field,
the black hole solution behaves like a dS geometry with an
effective cosmological constant

�eff = 3

(
2M

Q3 + �

3

)
, (56)

where M , Q, and � are the black hole mass, the black
hole magnetic-charge, and the positive cosmological con-
stant, respectively. By this, the singularity at the origin should
be replaced by a core of the dS geometry, and thus the black
hole solution is regular. Also, we indicated a critical value
for the cosmological constant, above which there exists no
black hole for any mass. At this critical value, all horizons
of the black hole coincide together. Below this critical value,
the black hole has possibly three horizons: the inner, event
and cosmological horizons. In particular, for suitable black
hole mass, two of three horizons possibly coincide together.

In the extended phase space, we have studied the thermo-
dynamics of the black hole and analyzed its thermal phase
transition based on the discontinuous change of the specific
heat sign and the swallowtail structure of the free energy.
If the event and cosmological horizons are located far away,
the thermodynamics and the thermal phase transition on these
horizons are investigated in an independent way. On the con-
trary, we use the notion of the effective thermodynamics of
the black hole, which has been emerged in the recent years,
to investigate.
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71. N. Altamirano, D. Kubizňák, R.B. Mann, Phys. Rev. D 88, 101502

(2013)
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