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Abstract We propose a new approach to generate
messenger–matter interactions in deflected anomaly medi-
ated SUSY breaking mechanism from typical holomorphic
messenger–matter mixing terms in the Kahler potential. This
approach is a unique feature of AMSB and has no analog
in GMSB-type scenarios. New coupling strengths from the
scaling of the (already known) Yukawa couplings always
appear in this approach. With messenger–matter interactions
in deflected AMSB, we can generate a realistic soft SUSY
breaking spectrum for next-to-minimal supersymmetric stan-
dard model (NMSSM). Successful electroweak symmetry
breaking conditions, which is not easy to satisfy in NMSSM
for ordinary AMSB-type scenario, can be satisfied in a large
portion of parameter space in our scenarios. We study the
relevant phenomenology for scenarios with (Bino-like) neu-
tralino and axino LSP, respectively. In the case of axino LSP,
the SUSY contributions to �aμ can possibly account for the
muon g − 2 discrepancy. The corresponding gluino masses,
which are found to below 2.2 TeV, could be tested soon at
LHC.
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1 Introduction

Weak scale supersymmetry (SUSY) is one of the most inter-
esting candidates for new physics beyond the standard model

a e-mail: feiwang@zzu.edu.cn

(SM). Its low energy phenomenology is determined mainly
by the relevant soft SUSY breaking parameters which are
required to preserve flavor and CP with a good accuracy.
Such soft SUSY breaking parameters can be predicted by the
mediation mechanism of SUSY breaking. So it is crucial to
understand various well-motivated mediation mechanisms,
for example, the gauge mediated SUSY breaking (GMSB)
[1–7], the anomaly mediated SUSY breaking (AMSB) [8,9]
mechanisms.

Minimal AMSB, which is determined solely by the param-
eter Fφ � m3/2, is insensitive to the UV theory [10] and
predicts a flavor conservation soft SUSY breaking spectrum.
Unfortunately, negative slepton squared masses will appear
and the minimal scenario must be extended. Although there
are many possible ways to tackle such tachyonic slepton
problem, the most elegant solution from aesthetical point
of view is the deflected AMSB [11–14] (dAMSB) scenario.
In deflected AMSB, additional messenger sectors are intro-
duced to deflect the AMSB trajectory and additional gauge
mediation contributions can possibly push the negative slep-
ton squared masses to positive values [15,16]. On the other
hand, N ≥ 4 species are always needed to give positive
slepton squared masses with naturally negative deflection
parameters, possibly leading to strong gauge couplings below
GUT scale or Landau pole below Planck scale. Besides,
electroweak naturalness and the discovered 125 GeV Higgs
boson by both the ATLAS [17] and CMS collaborations [18]
of LHC, may indicate respectively the lightness of stop and
large trilinear coupling At ; null search results of sparticles
with 36 f b−1 of data at the (13 TeV) LHC by the ATLAS
and CMS collaborations [19–22] suggest that the low energy
SUSY spectrum should display an intricate pattern, for exam-
ple, the first two generation squarks need to be heavy to
avoid the stringent constraints from LHC. However, spec-
trum of such a type will in general not be predicted in ordinary
(d)AMSB scenarios.
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We had proposed to introduce general messenger–matter
interactions in dAMSB to solve the previous problems [23]
which can be advantageous in various aspects. The previous
formalism in [23,24], within which the messenger–matter
interactions are introduced in the superpotential, has an ana-
log in GMSB [25–31]. In this paper, we propose an alter-
native approach to including messenger–matter interactions
in (d)AMSB from typical holomorphic terms in the Kahler
potential. Such an approach, with the messenger scales set
by the compensator vacuum expectation value (VEV), can
only be possible in AMSB type scenarios.

Next-to-minimal supersymmetric standard model
(NMSSM) [32,33] is a singlet extension of MSSM that
has various advantages. The SUSY preserving μ parame-
ter, which (however) needs to lie near the soft SUSY break-
ing scale to trigger EWSB, could be generated with the cor-
rect scale once the singlet scalar acquires a VEV. Besides,
with additional tree-level contributions or through doublet-
singlet mixing, NMSSM can easily accommodate the dis-
covered 125 GeV Higgs boson without much fine-tuning.
Low energy NMSSM from typical SUSY breaking mech-
anism, such as GMSB, is always bothered by the require-
ment to achieve successful EWSB with suppressed trilin-
ear couplings Aκ , Aλ and m2

S , rendering the model building
non-trivial [34,35]. Such difficulty always persists in ordi-
nary (d)AMSB-type scenarios. We find that phenomenolog-
ical interesting NMSSM spectrum can be successfully gen-
erated from non-trivial holomorphic messenger–matter mix-
ing terms in the Kahler potential. Besides, the discrepancy
between the theoretical predictions for the muon anomalous
magnetic momentum and the experiments, can possibly be
solved in our scenario.

This paper is organized as follows. In Sect. 2, we propose
our new scenario and discuss the general methods to obtain
the soft SUSY parameters. The soft SUSY parameters for
NMSSM are also given. The relevant numerical results are
discussed in Sect. 3. Section 4 contains our conclusions.

2 Messenger–matter interactions from Kahler potential

There are two possible ways to deflect the AMSB trajectory
with the presence of messengers, by pseudo-moduli field or
holomorphic terms (for messengers) in the Kahler potential.
In our previous work [23], messenger–matter interactions
are introduced in the superpotential involving the pseudo-
moduli field. We find that messenger–matter interactions can
also be consistently generated by holomorphic messenger–
matter mixing terms in the Kahler potential. In order to show
the most general features of this approach, we discuss the
relevant soft parameters in the framework of NMSSM.

As mentioned previously, the low energy soft SUSY
breaking spectrum of NMSSM obtained from typical SUSY

breaking mechanism, such as GMSB and ordinary extended
(d)AMSB, is always bothered by the requirement to achieve
successful electroweak symmetry breaking (EWSB), render-
ing the model building non-trivial [34,35]. In fact, EWSB
within NMSSM in general requires a large VEV for the sin-
glet. This prefers a negative m2

S and/or large A-terms for the
singlet superpotential interactions, Aλ and Aκ [36]. AMSB
always predicts a positive value for m2

S and Aλ, Aκ can be
sizable only if λ, κ are also large which would induce a larger
m2

S , suppressing the singlet VEV. Such difficulty can possibly
be ameliorated in AMSB-type scenarios with enhanced tri-
linear couplings. We find that phenomenological interesting
NMSSM spectrum can be successfully generated by intro-
ducing holomorphic messenger–matter mixing terms in the
Kahler potential.

We propose to introduce new holomorphic term in the
Kahler potential in addition to ordinary canonical Kahler
kinetic terms and Z3 invariant NMSSM superpotential

Kh ⊇ φ†φ

[
2∑

i=1

cS,i T Si + cP P̃ P + cQ Q̃Q

+
3∑

m=1

(
cPm,a P̃m,a P + cQm,a Q̃Qm,a

)]
+ h.c.,

W = φ3
[
WM + λ̃S1HuHd + 1

3
κ̃S3

1 + WMSSM

]
,

WM =
∑

a=1,2,3

λP S1 P̃m,a P + λQS1 Q̃Qm,a . (2.1)

Here φ is the conformal compensator field and S1, S2, T
are gauge singlet superfields; P̃m,a and Qm,a are the standard
model matter superfields in the 5̄ and 10 representations of
SU (5) with ‘a = 1, 2, 3’ the family index. Additional vector-
like messengers in the P̃, P 5⊕ 5) and Q̃, Q (10⊕ 10) rep-
resentations of SU (5) are introduced to solve the tachyonic
slepton problems and at the same time deflect the ordinary
AMSB trajectory. In this paper, we assume cP , cQ, cP,Q

m,a are
real and cP,Q

m,a �= 0 only for a = 3 for simply. Such mixing
between the third generation fermions and additional vector-
like fermions always appear in new physics models, such as
top (top-bottom ) seesaw model or extra dimension models.
We should note that cP,Q

m,a �= 0 for the first two generations
a = 1, 2 are also possible and such possibility will be dis-
cussed subsequently. Besides, the choice of superpotential
WM is not unique. For example, we can adopt couplings
between S and messengers used in [37] or [38] (with double
messenger species).

With only cP,Q
m,3 �= 0, the holomorphic terms in the Kahler

potential reduce to

Kh ⊇ φ†

φ

[
T

⎛
⎝∑

i=1,2

cS,i Si

⎞
⎠+ P

(
cP P̃ + cPm,3 P̃m,3

)
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+Q̃
(
cQQ + cQm,3Qm,3

) ]
+ h.c., (2.2)

after rescaling each superfield with the compensator field φ,
namely � → φ�. With the F-term VEVs of compensator
φ = 1 + Fφθ2, we have the potential for the singlets

V ⊇ cS,i |Fφ |2T Si + |Fφ |2
(∑

i

c2
S,i

)
|T |2

+|Fφ |2|
(∑

i

cSi Si

)
|2 + · · · , (2.3)

where the first term are obtained by picking out the Fφ terms.
We thus arrive at the mass matrix for the scalar components
T, S1, S2

( T, S∗
1 , S∗

2 )⎛
⎜⎝

(c2
S,1 + c2

S,2)|Fφ |2 cS,1|Fφ |2 cS,2|Fφ |2
cS,1|Fφ |2 c2

S,1|Fφ |2 cS,1cS,2|Fφ |2
cS,2|Fφ |2 cS,1cS,2|Fφ |2 c2

S,2|Fφ |2

⎞
⎟⎠

⎛
⎝ T ∗

S1

S2

⎞
⎠ (2.4)

It can be seen that the mass matrix has vanishing determi-
nant.

We can define cS ≡
√
c2
S,1 + c2

S,2 and redefine the fields

S̃0 ≡ 1

cS

(
cS,1S1 + cS,2S2

)
,

S̃1 ≡ 1

cS

(−cS,2S1 + cS,1S2
)
, (2.5)

The mixing angle can be given as

cos(−θ) = cS,1√
c2
S,1 + c2

S,2

,

sin(−θ) = − cS,2√
c2
S,1 + c2

S,2

. (2.6)

A minus sign for the angle is kept for future convenience.
The zero eigenvalue of the scalar mass matrix corresponds to
the combination S̃1. The fermionic component of S̃1, which
is orthogonal to S̃0, can also be seen to be massless from
the Kahler potential. The non-vanishing mass eigenstates for
scalar matrix are given by

L ⊇ − (c2
S − cS)

2c2
S

F2
φ

∣∣−cST + cS,1S
∗
1 + cS,2S

∗
2

∣∣2
− (c2

S + cS)

2c2
S

F2
φ

∣∣cST + cS,1S
∗
1 + cS,2S

∗
2

∣∣2 ,

= −(c2
S − cS)F

2
φ

∣∣∣∣∣−T + S̃∗
0√

2

∣∣∣∣∣
2

−(c2
S + cS)F

2
φ

∣∣∣∣∣T + S̃∗
0√

2

∣∣∣∣∣
2

. (2.7)

Such expressions are analog to that of the GMSB with
T, S̃0 the messenger-like fields. After integrated out the mes-
sengers, we can obtain their contributions to the low energy
soft SUSY breaking spectrum. S1 can be written as the com-
bination

S1 = cos θ S̃0 + sin θ S̃1, (2.8)

which, after substituting into the superpotential, can lead to
couplings between the massless fields S̃1 and heavy massive
messenger-type fields S̃0.

Similar to the gauge singlet case, we can define the mas-
sive combinations K̄1, K1 for P, Q within Eq. (2.2) and their
massless orthogonal combinations K̄2, K2 as

K̄1 ≡ 1√
c2
P + (cPm,3)

2

[
cP P̃ + cPm,3 P̃m,3

]
,

K̄2 ≡ 1√
c2
P + (cPm,3)

2

[
−cPm,3 P̃ + cP P̃m,3

]
,

K1 ≡ 1√
c2
Q + (cQm,3)

2

[
cQQ + cQm,3Qm,3

]
,

K2 ≡ 1√
c2
Q + (cQm,3)

2

[
−cQm,3Q + cQQm,3

]
. (2.9)

So P̃m,3(Qm,3) can be written as the combination of mas-
sive state K̄1(K1) and massless state K̄2(K2)

P̃m,3 = sin ψ1 K̄1 + cos ψ1 K̄2,

Qm,3 = sin ψ2K1 + cos ψ2K2, (2.10)

with

tan ψ1 = cPm,3/cP , tan ψ2 = cQm,3/cQ . (2.11)

The SUSY breaking effects from compensator F-term
VEVs can be taken into account by introducing a spurion
superfields R

W =
∫

d2θ
(
cP R P̃ P + cQ RQ̃Q + · · ·

)
, (2.12)

with the spurion VEV as

R ≡ MR + θ2FR = Fφ(1 − θ2Fφ), (2.13)

which gives the deflection parameter

d ≡ FR

MRFφ

− 1 = −2. (2.14)
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The spurion messenger–matter interactions will affect the
AMSB RGE trajectory after integrating out the heavy modes.

The superpotential involving the matter and singlet super-
fields at the Fφ scale are given as

W ⊇ λ̃S1HuHd + 1

3
κ̃S3

1

+
∑

a=1,2,3

[
λP S1 P̃m,a P + λQS1 Q̃Qm,a

]

+y5̄i j P̃m,i Qm, j H̄5̄ + y5i j Qm,i Qm, j H5

+
√
c2
P + (cPm,3)

2 K̄1PR +
√
c2
Q + (cQm,3)

2 Q̃K1R,

⊇ (cos θ S̃0 + sin θ S̃1)λ̃HuHd + κ̃

3
(cos θ S̃0 + sin θ S̃1)

3

+ [
λP

(
sin ψ1 K̄1 + cos ψ1 K̄2

)
P

+λQ Q̃ (sin ψ2K1 + cos ψ2K2)
]
(cos θ S̃0 + sin θ S̃1),

+
∑
a=1,2

(
λP P̃m,a P + λQ Q̃Qm,a

)

(cos θ S̃0 + sin θ S̃1) + · · · . (2.15)

The terms containing the 10, 5̄ representations of SU (5)
reduce to the sum of their components below the GUT scale
and should be understood as the abbreviation of this sum at
low energy∑
a=1,2,3

[
λP S1 P̃m,a P + λQS1 Q̃Qm,a

]

+y5̄i j P̃m,i Qm, j H̄5̄ + y5i j Qm,i Qm, j H5

�⇒
∑

a=1,2,3

S1
[
λD,a(D

c
L ,a)D + λL ,a(LL ,a)L

+ λQ,a(QL ,a)Q + λU,a(U
c
L ,a)U + λE,a(E

c
L ,a)E

]
+yUab(QL ,a)(U

c
L ,b)Hu + yDab(QL ,a)(D

c
L ,b)Hd

+yEab(LL ,a)(E
c
L ,b)Hd . (2.16)

The same holds for terms containing Ka, K̄a . Besides,
terms involving the triplet components of H, H̄ are integrated
out by assuming proper doublet-triplet splitting mechanism
to generate heavy triplet Higgs masses.

After integrated out all the heavy modes including
T, S̃0; K̄1, K1; P, Q̃ etc, the low energy theory will reduce to
NMSSM. The effects of integrating out the messengers can
be taken into account by using Giudice-Rattazi’s wavefunc-
tion renormalization approach [39]. The messenger thresh-
old MR can be further promoted to the other chiral spurion
field X with MR = √

X†X . The superfield S̃1 will act as the
singlet S appearing in ordinary NMSSM superpotential and
K̄2, K2 as the third generation superfields. Note that there is
a scaling of various couplings appeared in NMSSM

λ = λ̃ sin θ, κ = κ̃ sin3 θ, yb,τ = yD,L
33 cos ψ1 cos ψ2,

yt = yU33 cos2 ψ2. (2.17)

In the subsequent studies, we must ensure that correct
scaled (or unscaled) couplings are used in the expressions.
New flavor dependent interactions involving the messengers
from yD,L

i j P̃m,i Qm, j H̄5̄ and yUi j Qm,i Qm, j H5 are not dan-
gerous because these new flavor dependent interactions are
aligned with the MSSM Yukawa coupling. Diagonalizing the
MSSM Yukawa couplings will simultaneously diagonalize
these additional Yukawa couplings.

We should briefly discuss the most general case with
cPm;1,2 �= 0. Similar to Eq. (2.9), we can define the mixing

matrix U P
AB with the indices A, B = (0, a) [a = 1, 2, 3]⎛

⎜⎜⎝
K̄0

K̄1

K̄2
K̄3

⎞
⎟⎟⎠

≡ 1√
c2
P +∑

a
(cPm,a)

2

⎛
⎜⎜⎝

cP cPm,1 cPm,2 cPm,3
−cPm,1 cP cPm,3 −cPm,2
−cPm,2 −cPm,3 cP cPm,1
−cPm,3 cPm,2 −cPm,1 cP

⎞
⎟⎟⎠

⎛
⎜⎜⎝

P̃
P̃m,1

P̃m,2

P̃m,3

⎞
⎟⎟⎠ . (2.18)

within which the three orthogonal combinations K̄ a(a =
1, 2, 3) are determined up to an arbitrary rotation under
SO(3) transformation OP . The scalar components of the
three combinations K̄ a(a = 1, 2, 3) correspond to the
massless eigenvalues of the 5 × 5 sfermion mass matrix
for (P∗, P̃, P̃m

1 , P̃m
2 , P̃m

3 ) that can be identified to be the
three generation squark/sleptons in MSSM. Similar conclu-
sions hold for Qm

a . Besides, the relations between yt , yb, yτ
and yU33, y

D
33, y

L
33 will be non-trivial and depends on various

parameters in the mixing matrix(
OQyUSMOQ)

ab
= (UQ)−1

ac y
U
cd(U

Q)−1
db ,(

OP yDSMOQ)
ab

= (U P )−1
ac y

D
cd(U

Q)−1
db ,(

OP yLSMOQ)
ab

= (U P )−1
ac y

L
cd(U

Q)−1
db . (2.19)

with

(U P )−1 = (U P )T

c2
P +∑

a
(cPm,a)

2
.

After fixing the rotation matrix OP and OQ , we can
obtain precisely the relations between SM Yukawa cou-
plings and the couplings in the superpotential. For new fla-
vor dependent interactions involving one messengers, such
as (yU )′0b K̄Q;0 K̄Uc

L ;bHu , the coupling can be seen to satisfy
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(yU )′0cOQ
cb = (UQ)−1

0c y
U
cd(U

Q)−1
db ,

(yU )′0c = (UQ)−1
0a U

Q
aeOQ

ed(y
U
SM)dc. (2.20)

by combining with Eq. (2.19).
So the flavor constraints are no-dangerous if UQ

aeOQ
ed is

diagonal so that (yU )′ can align to yUSM or the coefficients of
the new Yukawa couplings

(UQ)−1
0a = − cQm,a

c2
Q +∑

a
(cQm,a)

2
, (2.21)

are small. The SO (3) rotation matrix can be parameterized
by three Euler angles, so the three diagonal elements of the
diagonalized UQ

abOQ
bc matrix can match the three rotation

freedom. Therefore, it is possible to align (yU )′ and yUSM
by proper chosen OQ so that we need not worry too much
about the flavor constraints. On the other hand, if we insist on
small cP,Q

1,2 , such small numbers can be the consequence of
suppressions from additional Froggatt-Nielsen [40,41] type
mechanism with additional horizontal flavor symmetry.

After integrating out the messenger fields, the wavefunc-
tion will depend on the messenger threshold set by the spu-
rion superfield R. The soft gaugino masses are given at the
messenger scale by

Mi (Mmess) = g2
i

(
Fφ

2

∂

∂ ln μ
− dFφ

2

∂

∂ ln |X |
)

1

g2
i

(μ, |X |, T ),

(2.22)

with

∂

∂ ln |X |gi (α; |X |) = �bi
16π2 g

3
i , (2.23)

Because of the non-renormalization of the superpotential,
the trilinear soft terms will be determined by the wavefunc-
tion normalization as

Ai jk
0 ≡ Ai jk

yi jk

=
∑
i

(
− Fφ

2

∂

∂ ln μ
+ dFφ

∂

∂ ln X

)
ln [Zi (μ, X, T )] ,

=
∑
i

(
− Fφ

2
G−

i + dFφ

�Gi

2

)
. (2.24)

The anomalous dimension are expressed in the holomor-
phic basis [42] as

Gi ≡ dZi j

d ln μ

≡ − 1

8π2

(
1

2
diklλ

∗
iklλ jmn Z

−1∗
km Z−1∗

ln − 2cir Zi j g
2
r

)
.

(2.25)

with �G ≡ G+−G− the discontinuity across the messenger
threshold. HereG+(G−) denotes the value above (below) the
messenger threshold, respectively.

The soft SUSY breaking scalar masses are given by

m2
so f t = −

∣∣∣∣− Fφ

2

∂

∂ ln μ
+ dFφ

∂

∂ ln X

∣∣∣∣
2

ln [Zi (μ, X, T )] ,

= −
(
F2

φ

4

∂2

∂(ln μ)2 + d2F2
φ

4

∂

∂(ln |X |)2

−dF2
φ

2

∂2

∂ ln |X |∂ ln μ

)
ln [Zi (μ, X, T )] , (2.26)

The dAMSB soft scalar masses can be divided into sev-
eral parts, namely the gauge-anomaly interference part, the
pure gauge mediation part as well as the ordinary anomaly
mediation part.

3 Numerical results

From the previous general formulas for soft SUSY breaking
parameters, we can obtain the analytical expressions in our
scenario at the scale Fφ after integrating out the messenger
fields. Some of the lengthy expressions are given explicitly
in the appendix. We can see that new contributions will be
given to the trilinear couplings Aκ .Aλ,m2

S which could be
helpful to trigger EWSB in NMSSM.

We use NMSSMTools5.1.2 [43,44] to scan the whole
parameter space. The free parameters of our inputs are cho-
sen to satisfy

10TeV < Fφ < 1000 TeV,

0.1 < cot θ, tan ψ1, tan ψ2 < 10,

0 < λD,a, λL ,a, λQ,a, λU,a,

λE,a <
√

4π, 0 < λ, κ < 0.7, (3.1)

with the range of the mixing angle −π/2 < θ,ψ1, ψ2 < π/2
and we require that λ2 + κ2 � 0.7 to satisfy the pertur-
bative bounds. The soft SUSY mass m2

Hu
,m2

Hd
,m2

S can be

recast into μ, tan β, M2
Z by the minimization conditions of

the scalar potential. Usually, the parameter MA can be used
to replace Aκ by

M2
A = 2μe f f

sin 2β
Bef f , μe f f ≡ λ〈s〉,

Bef f = (Aλ + κ〈s〉). (3.2)

We note that κ is a free parameter while the tan β ≡ vu/vd
is not. This choice is different to ordinary numerical setting
from top-down in which tan β is free while κ is a derived
quantity [45]. Such choice is convenient for those predictable
NMSSM models with a UV completion. Firstly, we need to
guess a value for tan β to obtain the relevant Yukawa yt , yb

123
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couplings at the electroweak (EW) scale. After renormaliza-
tion group equation (RGE) evolution of gi , yt , yb couplings
from EW scale to the messenger scale as the theory inputs, the
whole soft SUSY breaking parameters at the messenger scale
can be obtained. Low energy tan β can be obtained iteratively
from the minimization condition of the Higgs potential [46].
The purpose of deflection in AMSB is to solve the notorious
tachyonic slepton problem. So non-tachyonic slepton should
be obtained at the EW scale.

In our scan, we also impose the following collider con-
straints

(i) The lower bounds from current LHC constraints on
SUSY particles [47–50]. In particular, the gluino mass is
boundedmg̃ � 1.85 ∼ 2.0 TeV from a search for gluino
pair production, assuming g̃ → qq̄χ0

1 with a massless
LSP and decoupled squarks; or mg̃ � 1.96 ∼ 2.05 TeV,
assuming g̃ → t t̄χ0

1 . The squark mt̃1 � 0.95 ∼ 1.05
TeV for light third generation sfermions, and mq̃ � 1.6
TeV for the first two generations.

(ii) Flavor constraints from the rare decays of B meson. We
adopt the recent experimental results [51]:

0.85 × 10−4 < Br(B+ → τ+ν) < 2.89 × 10−4,

2.99 × 10−4 < Br(BS → Xsγ ) < 3.87 × 10−4,

1.7 × 10−9 < Br(Bs → μ+μ−) < 4.5 × 10−9,

(3.3)

(iii) The CP-even component S2 in the Goldstone-′eaten′
combination of Hu and Hd doublets corresponds to
the SM-like Higgs. The S2 dominated CP-even scalar
should lie in the combined mass range: 122 GeV <

Mh < 128 GeV from ATLAS and CMS data. Note that
the uncertainty is 3 GeV instead of default 2 GeV in
NMSSMTools because large λ may induce additional
O(1) GeV correction to mh at two-loop level [52].

(iv) The EW precision observables [53] and the lower
bounds for the neutralino and chargino masses, includ-
ing the invisible decay bounds for Z boson. The most
stringent LEP bounds require mχ̃± > 103.5 GeV and
the invisible decay width �(Z → χ̃0χ̃0) < 1.71 MeV,
which is consistent with the 2σ precision EW measure-
ment �non−SM

inv < 2.0 MeV [54].

A possible hint of new physics beyond the SM is the muon
g − 2 anomaly. The E821 experimental result of the muon
anomalous magnetic moment at the Brookhaven AGS [55]
is given by

aexpt
μ = 116592089(63) × 10−11, (3.4)

which is larger than the SM prediction [56,57]

aSM
μ = 116591834(49) × 10−11. (3.5)

We adopt the conservative estimation 4.7 × 10−10 �
�aμ � 52.7 × 10−10 in our scenario. If possible, we would
like our theory to explain such muon g-2 anomaly.

To address the strong CP problem in SUSY, the axino,
which is the fermionic superpartner of axion, can be pre-
dicted. If the existence of axino could be confirmed by exper-
iments, the two theoretical hypotheses, which are designed to
solve two respective hierarchy problems: the strong CP prob-
lem by a very light axion and the gauge hierarchy problem
by SUSY, could be validated.

The SUSY version of the Kim-Shifman-Vainshtein-
Zakharov (KSVZ) [58,59] axion model, which introduces
a SM singlet and a pair of extra vector-like quarks that carry
U (1)PQ charges while keeps the SM fermions and Higgs
fields neutral under U (1)PQ symmetry, could be introduced
in NMSSM with additional singlets and messengers. The
decoupling theorem [60] of anomaly mediation, which states
that pure mass threshold will not deflect the AMSB trajectory,
guarantee that such new messengers, with their masses deter-
mined by the singlet VEVs between 1010GeV � 〈S〉 � 1012

GeV (to be compatible with the experimental bound on fa
[61]) will not change the original AMSB predictions upon
Fφ .

The axino mass, which is strongly model dependent, can
be much smaller or much larger than the SUSY scale. Some
models predict mã of the order of gravitino mass m3/2 [61]
while the spontaneously broken global SUSY predict it to
lie of order mã ∼ O(M2

SUSY / fa) [62]. So one usually treats
axino mass as a free parameter and assumes the axino inter-
actions to be given by the U (1)PQ symmetry. If axino is
heavy, the lightest neutralino will be DM candidate; if the
axino is the LSP and acts as DM particle, colored or charged
NLSP can decay into axino and non-thermally generate the
observed axino DM relic density.

Depending on the nature of the LSP, we have the following
discussions from our numerical results

• Scenario I–The lightest neutralino χ0
1 as the LSP: Suc-

cessful EWSB conditions impose stringent constrains on
the input parameters of NMSSM, especially when such
low energy inputs are determined by a UV-completed
theory. Random scan in this case indicates that still some
points can survive the EWSB conditions by leading to a
iteratively stable value of tan β. The allowed range for
characteristic NMSSM parameters κ and λ can be seen
in the upper left panel of Fig. 1.
Besides, the discovered 125 GeV Higgs can be success-
fully interpreted in our scenario. The mass scales of the
soft spectrum are uniquely determined by the gravitino
mass Fφ in AMSB-type scenarios. The plot of Fφ versus
Higgs boson mass is shown in the upper right panel of
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Fig. 1 Numerical scan for scenario I with neutralino LSP. All points
can satisfy the collider constraints from (i) to (iv). The allowed val-
ues for λ vs κ , which are derived from EWSB conditions of NMSSM,
are given in the upper left panel; in the upper right panel, the allowed
ranges of Fφ vs mHiggs are shown explicitly. The corresponding values

of SUSY contributions to �aμ are also shown; in the lower left panel
and lower right panel, the Spin-Independent and Spin-Dependent direct
detection cross sections for neutralino dark matter are given, respec-
tively. The exclusion lines from from LUX and PANDAX experiments
are also shown

Fig. 1. In the NMSSM, the SM-like Higgs can be pushed
to 125 GeV by additional tree-level contributions for rel-
atively large λ and small tan β. If the lightest CP-even
scalar is mostly singlet-like, mixing between it and the
SM-like Higgs can lead to an increase of the SM-like
Higgs mass. Although the possibility of SM-like Higgs
being the second lightest CP-even scalar is attractive,
we find that almost all the survived points predict the
lightest CP-even scalar as the 125 GeV Higgs. Numeri-
cal results indicate that the muon g − 2 anomaly cannot
be explained in this scenario. The SUSY contributions
to �aμ are shown in different color in the upper right
panel of Fig. 1. This result can be understood because
the required �aμ can be achieved only if the relevant
sparticles ( μ̃, ν̃μ, B̃, W̃ , H̃ ) are lighter than 600 ∼ 700
GeV for tan β ∼ 10 in MSSM [63–68]. The inclusion of
singlino in NMSSM will not give sizable contributions
to �aμ because the coupling of singlino to MSSM sec-
tor is suppressed. Although the two loop contributions
involving the Higgs is negligible in SM, the new higgs
bosons in NMSSM could have an important impact on

aμ if the lightest neutral CP-odd Higgs scalar is very
light [69]. As noted there, positive two-loop contribution
is numerically more important for a light CP-odd Higgs
heavier than 3 GeV and the sum of both one-loop and
two-loop contributions is maximal around ma1 ∼ 6 GeV.
In our scenario, the lightest CP-odd Higgs a1 is not light
enough to give sizable contributions to �aμ. So the main
contributions are similar to that in the MSSM and are not
large enough to account for the discrepancy.
In the case of χ0

1 as the LSP, the dark matter (DM)
relic density is required to satisfy the bounds set by the
Planck data [70] in combination with the 5σ WMAP data
[71]:

0.0913 � �DM � 0.1363.

Numerical scan indicates that the LSP is almost pure
Bino-like. This fact can be understood from the gaugino
ratio at the Fφ scale M1 : M2 : M3 = 14.6 : 9 : 5 which
will lead to the ratio at the EW scale M1 : M2 : M3 ≈
14.6 : 18 : 30. The Higgsino components within the LSP
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are tiny and the effective μ parameter is relatively high
in our scenario.
It is well known that the Bino LSP will lead to over-
abundance of DM unless co-annihilation with sfermions
or s-channel resonance increase the annihilation rates.
In our scenario, the Bino-like DM always co-annihilates
with the lightest stau or sbottom and leads to the right
DM relic density. The mass differences between τ̃1(b̃1)

NLSP and χ̃0
1 LSP are typically of order O(GeV ).

Interactions between Bino dark matter and the nucle-
ons are primarily mediated by t-channel scalar Higgses
or by s-channel squarks. The Higgs exchange diagrams
dominate the Spin-Independent (SI) cross section of χ0

1
on nucleon for sufficiently heavy squarks. The Spin-
Dependent (SD) cross section, which is dominated by
the Z-boson exchange diagram as long as the squarks
are sufficiently heavy, can provide a good probe of the
gaugino and Higgsino parameters. Large SD cross sec-
tions can appear only if χ0

1 DM contains a large Higgsino
component. Although the SD direct detection cross sec-
tion is generally larger than the SI cross section, it is much
more difficult to probe in the experiment, as the SD cross
section does not scale directly with the mass of the nuclei.
In fact, current bounds on the neutron SD cross section
are less stringent by a factor of 106.
The SI and SD direct detection results are shown in the
lower right panel of Fig. 1. In our scenario, the neutralino
DM is almost pure Bino with very tiny Higgsino and
Wino contents. Such (almost pure) Bino-like DM can
survive the direct detection constraints from LUX [72]
and PANDAX [73] because of the suppressed Higgsino
component.

• Scenario II–The axino as the LSP: As mentioned before,
the axino can be the LSP and act as the DM candi-
date. So the previously forbidden charged or colored LSP
region can be revived. In some of the allowed parame-
ter space, numerical scan indicate that lightest ordinary
supersymmetric particle (LOSP) will be the lightest sbot-
tom, stau, tau-sneutrino etc. Even in this scenario, suc-
cessful EWSB conditions can impose stringent constrains
on the input parameters of NMSSM, especially for char-
acteristic NMSSM parameters κ and λ. Their allowed
range can be seen in the upper left panel of Fig. 2. The
plot of Fφ versus Higgs boson mass is shown in the upper
right panel of Fig. 2. We can see that the 125 GeV Higgs
mass can also be easily accommodated in this scenario.
The muon g − 2 discrepancy, however, prefer this sce-
nario. The most stringent constraint, as noted in our pre-
vious papers [74], is the gluino mass bound. We can see
that the SUSY contributions to �aμ can reach 14×10−10

in the case of slepton (τ̃1, ẽR) LOSP with mg̃ ≈ 1.8 TeV.
The mass bound of gluino can be understood as follows:
as the whole low energy spectrum is determined by the

value of Fφ , the mass scales of μ̃ etc determine the upper
bound of Fφ , which, on the other hand, sets a bound on
gluino mass. We find that the gluino mass is bounded
to less than 2.2 TeV if we adopt the lower limit of the
required �aμ. Such light gluino will soon be tested by
the future LHC searching results.
The explanation of the muon g−2 discrepancy prefers the
effective μ parameter to be light, which could reduce the
fine tuning (FT) involved in our theory. Besides, the stop
mass can also be predicted to lie just upon the experimen-
tal bounds from recent LHC and be fairly natural [75]. We
show the Barberi-Giudice (BG) FTs [76] for the survived
points in the figures. We can see that the FT involved in
this scenario can be as low as 50.
DM particle in this scenario is the axino from LOSP decay
(neglecting the effects of saxion condensate [77]). As
the non-thermally produced relic density of axino can be
related to that of NLSP via

�ã = mã

mNLSP
�NLSP , (3.6)

the relic density of DM will not impose stringent con-
straints on our parameter space. We show the relic den-
sity of NLSP in Fig. 2. The thermal production of axino,
which may give important contributions (or even domi-
nate over the non-thermally production) to the observed
relic density and be model dependent, will impose strong
bound on the reheating temperature after inflation by
requiring such production should not overclose the uni-
verse.1 Relevant discussions on the reheating tempera-
ture and cosmological consequences of axino DM can be
found in [79,80].
The extremely weak interaction strength of axino makes
its detection in DM direct detection experiments, as well
as at collider experiments, rather hopeless. The hint of
the axino DM may show up from the properties of the
LOSP. In the case of axino LSP, the LOSP typically
decays with a lifetime of less than one second and prac-
tically be stable inside the collider detector. The (elec-
trically) charged or colored particle as a LOSP would
appear as a stable particle inside the detector. The injec-
tion of high-energetic hadronic and electromagnetic par-
ticles, produced from late decays of an NLSP to axino
(with lifetime less than one second), will not affect the
abundance of light elements produced during Big Bang
Nucleosynthesis (BBN).

1 It is noted in [78] that, even though squarks are normally not the NLSP
and remain in thermal equilibrium, axino yield from squark decay can
dominate the abundance for TR � mq̃ and large gluino mass. We assume
the reheating temperature is higher than the squark masses.
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Fig. 2 Numerical scan for scenario II with axino LSP. All points can
satisfy the collider constraints (i) to (iv). In the upper left panel, the
allowed values for λ vs κ are derived from EWSB condition of NMSSM;
in the upper right panel, the allowed ranges of Fφ vs mHiggs are shown
explicitly. The involved Barbieri-Giudice fine tuning are also shown;

in the lower left panel, the SUSY contributions to �aμ vs the gluino
mass mg̃ are given for various NLSP (τ̃1, ẽR, b̃1 etc); The freeze-out
relic density for NLSP particles (before later decaying into axino DM)
are shown in the lower right panel

4 Conclusions

We propose a new approach to generate messenger–matter
interactions in deflected anomaly mediated SUSY break-
ing mechanism from typical holomorphic messenger–matter
mixing terms in the Kahler potential. This approach is a
unique feature of AMSB and has no analog in GMSB-
type scenarios. New coupling strengths obtained from the
scaling of the (already known) Yukawa couplings, such
as yt tan ψ2, yt tan2 ψ2, yb tan ψ2 tan ψ1, κ cot θ, κ cot2 θ ,
always appear in this approach, which is a salient fea-
ture of this scenario. With messenger–matter interactions
in deflected AMSB, we can generate a realistic soft SUSY
breaking spectrum for next-to-minimal supersymmetric stan-
dard model (NMSSM). Successful electroweak symmetry
breaking conditions, which is not easy to satisfy in NMSSM
for ordinary AMSB-type scenario, can be satisfied in a large
portion of parameter space in our scenarios. We study the
relevant phenomenology for scenarios with (Bino-like) neu-

tralino and axino LSP, respectively. In the case of Bino-like
LSP, most of parameter space can survive the recent SI and
SD DM direct detection experiment; in the case of axino LSP,
the SUSY contributions to �aμ can possibly account for the
muon g-2 discrepancy. The corresponding gluino masses (for
those points that can explain the muon g-2 anomaly), which
are found to below 2.2 TeV, could be tested soon at LHC.
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Appendix: The soft SUSY breaking parameters

We list the relevant soft SUSY breaking parameters obtained
from the analytical formulas (2.22) to (2.26).

For gaugino masses, we have

Mi = −Fφ

αi (μ)

4π
(bi − (−2)�bi ) , (4.1)

with

(b1, b2, b3) =
(

33

5
, 1,−3

)
,

�(b1, b2, b3) = ( 4, 4, 4). (4.2)

The trilinear couplings are given as

At = Fφ

16π2

[
G̃ yt − d�G̃ yt

]
,

Ab = Fφ

16π2

[
G̃ yb − d�G̃ yb

]
,

Aτ = Fφ

16π2

[
G̃ yτ − d�G̃ yτ

]
,

Aλ = Fφ

16π2

{
G̃λ − d�G̃λ

}
,

Aκ = Fφ

16π2

{
G̃κ − 3d�G̃S

}
. (4.3)

with the deflection parameter d = −2.
Here the discontinuities of Yukawa beta-function are given

by

�Gyi jk ≡ − 1

8π2 �G̃ yi jk ,

with

G̃λ = 4λ2 + 2κ2 + 3y2
t + 3y2

b + y2
τ − (3g2

2 + 3

5
g2

1), (4.4)

G̃κ = 6λ2 + 6κ2,

G̃ yt = λ2 + 6y2
t + y2

b − (
16

3
g2

3 + 3g2
2 + 13

15
g2

1),

�G̃ yt = λ2
Q,3 cos2 ψ2 + λ2

U,3 cos2 ψ2 + λ2 cot2 θ

+9y2
t tan2 ψ2 + 3y2

t tan4 ψ2 + y2
b tan2 ψ1,

G̃ yb = λ2 + y2
t + 6y2

b + y2
τ − (

16

3
g2

3 + 3g2
2 + 7

15
g2

1),

�G̃ yb = λ2
Q,3 cos2 ψ2 + λ2

D,3 cos2 ψ1 + λ2 cot2 θ

+y2
t tan2 ψ2 + 5y2

b tan2 ψ2 + 4y2
b tan2 ψ1

+3y2
b tan2 ψ1 tan2 ψ2

+y2
τ

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
,

G̃ yτ = λ2 + 3y2
b + 4y2

τ − (3g2
2 + 9

5
g2

1),

�G̃ yτ = λ2
L ,3 cos2 ψ1 + λ2

E,3 cos2 ψ2 + λ2 cot2 θ

+3y2
τ tan2 ψ1 + 2y2

τ tan2 ψ2

+y2
τ tan2 ψ1 tan2 ψ2

+3y2
b

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
,

�G̃λ = sin2 θ
∑

a=1,2,3

(
6λ2

Q,a + 3λ2
U,a + λ2

E,a + 3λ2
D,a + 2λ2

L ,a

)

+ 2λ2 cot2 θ + 4κ2 cot2 θ + 2κ2 cot4 θ

+ 6y2
t tan2 ψ2 + 3y2

t tan4 ψ2

+
(

3y2
b + y2

τ

) (
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
,

�G̃S = sin2 θ
∑

a=1,2,3

(
6λ2

Q,a + 3λ2
U,a + λ2

E,a + 3λ2
D,a + 2λ2

L ,a

)

+4κ2 cot2 θ + 2κ2 cot4 θ. (4.5)

Within the expressions, we have used the relation λ̃ sin θ =
λ, κ̃ sin3 θ = κ .

The soft SUSY breaking parameters

m2
so f t = δd + δI + δG, (4.6)

are given separately by

• Pure deflected anomaly mediation contribution without
new Yukawa couplings

δdHu
= F2

φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]

+ F2
φ

(16π2)2

[
λ2G̃λ + 3y2

t G̃ yt

]
,

δdHd
= F2

φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]

+ F2
φ

(16π2)2

[
λ2G̃λ + 3y2

b G̃ yb + y2
τ G̃ yτ

]
,

δd
Q̃L;1,2

= F2
φ

16π2

[
8

3
G3α

2
3 + 3

2
G2α

2
2 + 1

30
G1α

2
1

]
,

δd
Ũc
L;1,2

= F2
φ

16π2

[
8

3
G3α

2
3 + 8

15
G1α

2
1

]
,

δd
D̃c
L;1,2

= F2
φ

16π2

[
8

3
G3α

2
3 + 2

15
G1α

2
1

]
,

δd
L̃L;1,2

= F2
φ

16π2

[
3

2
G2α

2
2 + 3

10
G1α

2
1

]
,

δd
Ẽc
L;1,2

= F2
φ

16π2

6

5
G1α

2
1, (4.7)

with

Gi = −bi ,

(b1, b2, b3) =
(

33

5
, 1,−3

)
. (4.8)

The soft SUSY breaking sfermions masses for the third
generation needs the inclusion of the Yukawa contributions

δd
Q̃L ,3

= δd
Q̃L;1,2

+ F2
φ

1

(16π2)2

[
y2
t G̃ yt + y2

b G̃ yb

]
,
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δd
Ũc
L ,3

= δd
Ũc
L;1,2

+ F2
φ

1

(16π2)2

[
2y2

t G̃ yt

]
,

δd
D̃c
L ,3

= δd
D̃c
L;1,2

+ F2
φ

1

(16π2)2

[
2y2

b G̃ yb

]
,

δd
L̃L ,3

= δd
L̃L;1,2

+ F2
φ

1

(16π2)2

[
y2
τ G̃ yτ

]
,

δd
Ẽc
L ,3

= δd
Ẽc
L;1,2

+ F2
φ

1

(16π2)2

[
2y2

τ G̃ yτ

]
, (4.9)

The pure anomaly contribution to the singlet soft masses
m2

S :

δdS = F2
φ

(16π2)2

[
2λ2G̃λ + 2κ2G̃κ

]
. (4.10)

• The sum of GMSB type contributions δI with the inter-
ference contributions δG . Because the second term of
GMSB contributions will cancel the contributions from
the gauge-anomaly interference terms with d = −2, we
give only the first term of the gauge mediated contribu-
tions for the NMSSM superfields:

δQ̃L ,a
= d2F2

φ

(16π2)2

[
y2
QQL ,a S̃1

(
G+

yQQL ,a S̃1

)

+y2
QQL ,a S̃0

(
G+

yQQL ,a S̃0

)

+δa,3y
2
QL ,3KU Hu

(
G+

yQL ,3KU Hu

)
+δa,3y

2
QL ,3KDHd

(
G+

yQL ,3KDHd

) ]
,

δŨ c
L ,a

= d2F2
φ

(16π2)2

[
y2
UUc

L ,a S̃1

(
G+

yUUc
L ,a S̃1

)

+ +y2
UUc

L ,a S̃0

(
G+

yUUc
L ,a S̃1

)

+δa,32y2
K̄QUc

L ,3Hu

(
G+

yK̄QUc
L ,3Hu

)]
,

δẼc
L ,a

= d2F2
φ

(16π2)2

[
y2
EEc

L ,a S̃1

(
G+

yEEcL ,a S̃1

)

+y2
EEc

L ,a S̃0

(
G+

yEEcL ,a S̃0

)

+ δa,32y2
KL Ec

L ,3Hd

(
G+

yKL EcL ,3Hd

)]
,

δD̃c
L ,a

= d2F2
φ

(16π2)2

[
y2
DDc

L ,a S̃1

(
G+

yDDc
L ,a S̃1

)

+y2
DDc

L ,a S̃0

(
G+

yDDc
L ,a S̃0

)

+ +δa,32y2
K̄Q Dc

L ,3Hd

(
G+

yK̄Q Dc
L ,3Hd

)]
,

δL̃ L ,a
= d2F2

φ

(16π2)2

[
y2
LLL ,a S̃1

(
G+

yLLL ,a S̃1

)

+y2
LLL ,a S̃0

(
G+

yLLL ,a S̃0

)

+ +δa,3y
2
L̄ L ,3KE Hd

(
G+

yL̄L ,3KE Hd

)]
,

δHu = d2F2
φ

(16π2)2

[
y2
S̃0Hd Hu

(
G+

yS̃0Hd Hu

)
+3y2

QL ,3KU Hu

(
G+

yQL ,3KU Hu

)
+3y2

KQUc
L ,3Hu

(
G+

yKQUc
L ,3Hu

)

+ 3y2
KQKU Hu

(
G+

yKQKU Hu

)]
,

δHd = d2F2
φ

(16π2)2

[
y2
S̃0Hd Hu

(
G+

yS̃0Hd Hu

)
+3y2

QL ,3KDHd

(
G+

yQL ,3KDHd

)
+3y2

KQDc
L ,3Hd

(
G+

yKQ Dc
L ,3Hd

)

+3y2
KQKDHd

(
G+

yKQ KDHd

)
+y2

K̄L Ec
L ,3Hd

(
G+

yK̄L EcL ,3Hd

)

+y2
L̄ L ,3KE Hd

(
G+

yL̄L ,3KE Hd

)

+y2
K̄L KE Hd

(
G+

yK̄L KE Hd

)]
,

δS = d2F2
φ

(16π2)2

{[ ∑
a=1,2,3

(
6y2

QQL ,a S̃1

(
G+

yQQL ,a S̃1

)

+3y2
UUc

L ,a S̃1

(
G+

yUUc
L ,a S̃1

)

+y2
EEc

L ,a S̃1

(
G+

yEEcL ,a S̃1

)
+ 3y2

DDc
L ,a S̃1

(
G+

yDDc
L ,a S̃1

)

+2y2
LLL ,a S̃1

(
G+

yLLL ,a S̃1

)]

+6y2
QKQ S̃1

(
G+

yQKQ S̃1

)

+3y2
UKU S̃1

(
G+

yUKU S̃1

)
+ y2

EKE S̃1

(
G+

yEKE S̃1

)
+3y2

DKD S̃1

(
G+

yDKD S̃1

)
+ 2y2

LKL S̃1

(
G+

yLKL S̃1

)
+4y2

S̃0 S̃1 S̃1

(
G+

yS̃0 S̃1 S̃1

)
+ 2y2

S̃0 S̃0 S̃1

(
G+

yS̃0 S̃0 S̃1

) }
,

with d = −2 and δa,3 the Kronecker delta. We identify the
S field in NMSSM with S̃1 in our scenario. The anomalous
dimensions upon the messenger threshold are given as

G+
yQQL ,b S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

123
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+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
Q,a) + 2κ2 cot4 θ

+ 4κ2 cot2 θ + 2λ2 + 2κ2

+ λ2
Q,b(δb,1 + δb,2) + δb,3(λ2

Q,3 cos2 ψ2

+ y2
t tan2 ψ2 + y2

b tan2 ψ1 + y2
t + y2

b )

− 16

3
g2

3 − 3g2
2 − 1

15
g2

1 , (4.11)

G+
yQKQ S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
Q,a) + 4κ2 cot4 θ

+2κ2 cot2 θ + 2λ2 cot2 θ + 2κ2 cot6 θ

+ λ2
Q,3 sin2 ψ2 + y2

t tan4 ψ2

+ y2
b tan2 ψ1 tan2 ψ2 + (y2

t + y2
b ) tan2 ψ2

− 16

3
g2

3 − 3g2
2 − 1

15
g2

1 , (4.12)

G+
yQQL ,b S̃0

= cos2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
Q,a) + 4κ2 cot4 θ

+ 2κ2 cot2 θ + 2λ2 cot2 θ + 2κ2 cot6 θ

+ λ2
Q,b(δb,1 + δb,2)

+ δb,3(λ2
Q,3 cos2 ψ2 + y2

t tan2 ψ2

+y2
b tan2 ψ1 + y2

t + y2
b )

− 16

3
g2

3 − 3g2
2 − 1

15
g2

1 , (4.13)

G+
yUUc

L ,b S̃1
= sin2 θ

∑
a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
U,a) + 2κ2 cot4 θ

+4κ2 cot2 θ + 2λ2 + 2κ2

+λ2
U,b(δb,1 + δb,2) + δb,3(λ2

U,3 cos2 ψ2

+2y2
t tan2 ψ2 + 2y2

t )

− 16

3
g2

3 − 16

15
g2

1 , (4.14)

G+
yUKU S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
U,a) + 2κ2 cot4 θ

+4κ2 cot2 θ + 2λ2 + 2κ2

+λ2
U,3 sin2 ψ2 + 2y2

t tan2 ψ2 + 2y2
t tan4 ψ2

− 16

3
g2

3 − 16

15
g2

1 , (4.15)

G+
yUUc

L ,b S̃0
= cos2 θ

∑
a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
U,a) + 4κ2 cot4 θ

+2κ2 cot2 θ + 2λ2 cot2 θ + 2κ2 cot6 θ

+λ2
U,b(δb,1 + δb,2) + δb,3(λ2

U,3 cos2 ψ2

+2y2
t tan2 ψ2 + 2y2

t )

− 16

3
g2

3 − 16

15
g2

1 , (4.16)

G+
yDDc

L ,b S̃1
= sin2 θ

∑
a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
D,a) + 2κ2 cot4 θ + 4κ2 cot2 θ

+2λ2 + 2κ2

+λ2
D,b(δb,1 + δb,2) + δb,3(λ2

D,3 cos2 ψ1

+2y2
b tan2 ψ2 + 2y2

b )

− 16

3
g2

3 − 4

15
g2

1 , (4.17)

G+
yDKD S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
D,a) + 2κ2 cot4 θ + 4κ2 cot2 θ

+2λ2 + 2κ2

+λ2
D,3 sin2 ψ1 + 2y2

b tan2 ψ1

+2y2
b tan2 ψ1 tan2 ψ2

− 16

3
g2

3 − 4

15
g2

1 , (4.18)

G+
yDDc

L ,b S̃0
= cos2 θ

∑
a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
D,a) + 4κ2 cot4 θ + 2κ2 cot2 θ

+2λ2 cot2 θ + 2κ2 cot6 θ

+λ2
D,b(δb,1 + δb,2) + δb,3(λ2

D,3 cos2 ψ1

+2y2
b tan2 ψ2 + 2y2

b )

− 16

3
g2

3 − 4

15
g2

1 , (4.19)

G+
yLLL ,b S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
L ,a) + 2κ2 cot4 θ

+ 4κ2 cot2 θ + 2λ2 + 2κ2

+ λ2
L ,b(δb,1 + δb,2) + δb,3(λ2

L ,3 cos2 ψ1

+ y2
τ tan2 ψ2 + y2

τ )

− 3g2
2 − 3

5
g2

1 , (4.20)

G+
yLKL S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

123



Eur. Phys. J. C (2018) 78 :431 Page 13 of 15 431

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
L ,a) + 2κ2 cot4 θ

+4κ2 cot2 θ + 2λ2 + 2κ2

+λ2
L ,3 sin2 ψ1 + y2

τ tan2 ψ1

+y2
τ tan2 ψ1 tan2 ψ2

−3g2
2 − 3

5
g2

1 , (4.21)

G+
yLLL ,b S̃0

= cos2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
L ,a) + 4κ2 cot4 θ + 2κ2 cot2 θ

+2λ2 cot2 θ + 2κ2 cot6 θ

+λ2
L ,b(δb,1 + δb,2) + δb,3(λ2

L ,3 cos2 ψ1

+y2
τ tan2 ψ2 + y2

τ )

−3g2
2 − 3

5
g2

1 , (4.22)

G+
yEEcL ,b S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
E,a) + 2κ2 cot4 θ

+4κ2 cot2 θ + 2λ2 + 2κ2

+λ2
E,b(δb,1 + δb,2) + δb,3(λ2

E,3 cos2 ψ2

+2y2
τ tan2 ψ1 + 2y2

τ ) − 12

5
g2

1 , (4.23)

G+
yEKE S̃1

= sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
E,a) + 2κ2 cot4 θ

+4κ2 cot2 θ + 2λ2 + 2κ2

+λ2
E,3 sin2 ψ2 + 2y2

τ tan2 ψ2

+2y2
τ tan2 ψ1 tan2 ψ2 − 12

5
g2

1 , (4.24)

G+
yEEcL ,b S̃0

= cos2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
∑

a=1,2,3

(λ2
E,a) + 4κ2 cot4 θ

+2κ2 cot2 θ + 2λ2 cot2 θ + 2κ2 cot6 θ

+λ2
E,b(δb,1 + δb,2) + δb,3(λ2

E,3 cos2 ψ2

+2y2
τ tan2 ψ1 + 2y2

τ ) − 12

5
g2

1 , (4.25)

G+
yS̃0Hd Hu

= cos2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+4κ2 cot4 θ + 2κ2 cot2 θ + 2κ2 cot6 θ

+4λ2 cot2 θ + 2λ2 + 6y2
t tan2 ψ2

+3y2
t tan4 ψ2 +

(
3y2

b + y2
τ

)
(

tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+3y2

t + 3y2
b + y2

τ − 3g2
2 − 3

5
g2

1 ,

G+
yS̃0 S̃1 S̃1

= cos2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+4κ2 cot4 θ + 2κ2 cot2 θ

+2κ2 cot6 θ + 2λ2 cot2 θ,

+2 sin2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+2
[
2κ2 cot4 θ + 4κ2 cot2 θ + 2κ2 + 2λ2

]
,

G+
yS̃0 S̃0 S̃1

= 2 cos2 θ
∑

a=1,2,3

[
6λ2

Q,a

+3λ2
U,a + λ2

E,a + 3(λD,a)2 + 2(λL ,a)2
]

+2
[
4κ2 cot4 θ + 2κ2 cot2 θ + 2κ2 cot6 θ + 2λ2 cot2 θ

]
,

+ sin2 θ
∑

a=1,2,3

[
6λ2

Q,a + 3λ2
U,a + λ2

E,a

+3(λD,a)2 + 2(λL ,a)2
]

+
[
2κ2 cot4 θ + 4κ2 cot2 θ + 2κ2 + 2λ2

]
, (4.26)

G+
yQL ,3KU Hu

= λ2
Q,3 cos2 ψ2 + λ2

U,3 sin2 ψ2

+9y2
t tan2 ψ2 + 5y2

t tan4 ψ2 + y2
b tan2 ψ1

+λ2 cot2 θ + 4y2
t + y2

b − 16

3
g2

3 − 3g2
2 − 13

15
g2

1 ,

G+
yK̄QUc

L ,3Hu
= λ2

Q,3 sin2 ψ2 + λ2
U,3 cos2 ψ2

+(9y2
t + y2

b ) tan2 ψ2 + 4y2
t tan4 ψ2

+y2
b tan2 ψ1 tan2 ψ2

+λ2 cot2 θ + 5y2
t − 16

3
g2

3 − 3g2
2 − 13

15
g2

1 ,

G+
yK̄Q KU Hu

= λ2
Q,3 sin2 ψ2 + λ2

U,3 sin2 ψ2

+(9y2
t + y2

b ) tan2 ψ2 + 6y2
t tan4 ψ2

+y2
b tan2 ψ1 tan2 ψ2

+λ2 cot2 θ − 16

3
g2

3 − 3g2
2 − 13

15
g2

1 , (4.27)

G+
yQL ,3KDHd

= λ2
Q,3 cos2 ψ2 + λ2

D,3 sin2 ψ1

+y2
t tan2 ψ2 + 3y2

b tan2 ψ1 + 2y2
b tan2 ψ1 tan2 ψ2

+(3y2
b + y2

τ )
(

tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+λ2 cot2 θ + y2

t + 4y2
b + y2

τ

− 16

3
g2

3 − 3g2
2 − 7

15
g2

1 ,

G+
yK̄Q Dc

L ,3Hd
= λ2

Q,3 sin2 ψ2 + λ2
D,3 cos2 ψ1

+y2
t tan2 ψ2 + y2

t tan4 ψ2 + 3y2
b tan2 ψ2

+y2
b tan2 ψ1 tan2 ψ2

+(3y2
b + y2

τ )
(

tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)

123
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+λ2 cot2 θ + 5y2
b + y2

τ − 16

3
g2

3 − 3g2
2 − 7

15
g2

1 ,

G+
yKQ KDHd

= λ2
Q,3 sin2 ψ2 + λ2

D,3 sin2 ψ1

+ y2
t tan2 ψ2 + y2

t tan4 ψ2 + 4y2
b tan2 ψ2

+ 6y2
b tan2 ψ1 tan2 ψ2

+ 5y2
b tan2 ψ1

+ y2
τ

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+ λ2 cot2 θ − 16

3
g2

3 − 3g2
2 − 7

15
g2

1 , (4.28)

G+
yL̄L ,3KE Hd

= λ2
L ,3 cos2 ψ1 + λ2

E,3 sin2 ψ1

+4y2
τ tan2 ψ2 + 3y2

τ tan2 ψ1 tan2 ψ2 + y2
τ tan2 ψ1

+3y2
b

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+λ2 cot2 θ + 3y2

b + 2y2
τ − 3g2

2 − 9

5
g2

1 ,

G+
yKL EcL ,3Hd

= λ2
L ,3 sin2 ψ1

+λ2
E,3 cos2 ψ2 + y2

τ tan2 ψ2

+2y2
τ tan2 ψ1 tan2 ψ2 + 4y2

τ tan2 ψ1

+3y2
b

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+λ2 cot2 θ + 3y2

b + 3y2
τ − 3g2

2 − 9

5
g2

1 ,

G+
yK̄L KE Hd

= λ2
L ,3 sin2 ψ1 + λ2

E,3 sin2 ψ1 + 3y2
τ tan2 ψ2

+4y2
τ tan2 ψ1 tan2 ψ2 + 2y2

τ tan2 ψ1

+3y2
b

(
tan2 ψ1 + tan2 ψ2 + tan2 ψ1 tan2 ψ2

)
+λ2 cot2 θ − 3g2

2 − 9

5
g2

1 , (4.29)
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