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Abstract We study the time evolution of the expectation
value of a rectangular Wilson loop in strongly anisotropic
time-dependent plasma using gauge-gravity duality. The cor-
responding gravity theory is given by describing time evolu-
tion of a classical string in the Lifshitz—Vaidya background.
We show that the expectation value of the Wilson loop oscil-
lates about the value of the static potential with the same
parameters after the energy injection is over. We discuss how
the amplitude and frequency of the oscillation depend on
the parameters of the theory. In particular, for the transverse
case, by raising the anisotropy parameter, we observe that
the amplitude and frequency of the oscillation increase. In
the longitudinal case, although the amplitude of the oscilla-
tion increases for larger values of anisotropy parameter, the
frequency is independent of anisotropy parameter.
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1 Introduction and result

Quark-gluon plasma, as a new phase of matter, is produced
at Relativistic Heavy Ion Collider (RHIC) and Large Hadron

2e-mail: a_hajilou@sbu.ac.ir
Y e-mail: m_aliakbari @sbu.ac.ir

¢ e-mail: charmchi @ipm.ir

Collider (LHC) by colliding two pancakes of heavy nuclei
such as Gold (Au) or lead (Pb) at a relativistic speed [1].
Through viscous hydrodynamical simulations, it is realized
that viscosity over entropy density is small, i.e. n/s = 1/4xw
[2,3], and it is then a strong indication that the plasma is
strongly coupled. Furthermore, at early times, the plasma is
far from equilibrium and after a certain time viscous hydro-
dynamic description can be applied. Although the viscous
hydrodynamics is applicable during most of the time evolu-
tion, a significantly different pressure between longitudinal
and transverse directions exists indicating that the plasma
created in the heavy ion collision is anisotropic.

Since the plasma is strongly coupled, it is not reliable to
describe various properties of the plasma by applying pertur-
bation method. As a results, as a non-perturbative method,
gauge-gravity duality provides a novel approach for study-
ing the strong coupling limit of a large class of non-abelian
quantum gauge theories [4]. According to this duality, a
strongly coupled gauge theory defined in a d-dimensional
space-time corresponds to a classical gravity in a d + 1-
dimensional space-time [1,4—6]. Therefore, different ques-
tions in the strongly coupled gauge theory can be translated
into corresponding problems in the classical gravity. This
duality has been frequently applied to study various aspects of
the strongly coupled systems such as static potential energy
between a quark and anti-quark pair [7], jet quenching param-
eter [8], thermalization and isotropization process [9-13].
For more details, see [1] and references therein.

Finding static potential energy between a quark and anti-
quark pair, or equivalently quark—anti-quark bound state, liv-
ing in the plasma is an interesting problem that has been
attracted a lot of attention. This problem has been firstly
addressed in [7] and then its generalization has been widely
discussed in the literature. Concisely, in order to calculate
the static potential energy between the pair we need to com-
pute expectation value of a rectangular Wilson loop in the
strongly coupled plasma. The holographic dual of the rect-
angular Wilson loop is given by a classical string suspended
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from two points (corresponding to quark and anti-quark),
hanging down in extra dimension with appropriate boundary
conditions. Using this idea, static potential energy is stud-
ied in different gauge theories with holographic duals and
it recently generalizes to a time-dependent case in [14]. In
the time-dependent case, the time evolution of the expecta-
tion value of the Wilson loop during the energy injection into
the gauge theory is investigated. Holographic-ally, the men-
tioned system corresponds to the time evolution of the classi-
cal string in the AdS-Vaidya background. As a toy model, the
AdS-Vaidya background is dual to thermalization process in
the gauge theory [15].

The Lifshitz-like background, which is holographic-ally
dual to an anisotropic plasma, is applied to investigate differ-
ent properties of the anisotropic plasma. One of the things that
makes the Lifshitz-like background interesting is that holo-
graphic estimates of the total multiplicity can fit the experi-
mental data at high energy for certain values of critical expo-
nent [16]. It was also shown that the Lifshitz-like background
can be considered as the IR limit of the 10-dimensional
IIb supergravity anisotropic background suggested in [18].
Vaidya solutions in the Lifshitz-like background have been
found in [19].

In present work we calculate the time evolution of the
expectation value of the rectangular Wilson loop in the
Lifshitz—Vaidya background.! More precisely, we would like
to discuss the effect of various parameters on the time evo-
lution of the Wilson loop. In particular, the critical exponent
v, or equivalently anisotropy parameter, plays an important
role in our work. Our main findings, for the transverse case
meaning that the classical string is located in the anisotropic
direction, can be summarized as follows:

e The quark—anti-quark bound state is excited in the
anisotropic plasma due to the energy injection. The char-
acteristic of the excited bound state does depend on
anisotropy parameter which, in our case, is given by the
critical exponent of the Lifshitz-like metric. In fact, for
larger values of the anisotropy parameter, when the other
parameters have been fixed, the excited bound state oscil-
lates with larger oscillation frequency f and amplitude
A.

e To compare with the real plasma produced at RHIC or
LHC, the case of v = 4 is more reasonable? [16]. Our
numerical results show that f”—f4 ~ 8.1 and % ~ 2.1
for the same values of the tra;fsition time, ﬁngl_temper-

! Note that this background can be considered as the IR limit of a 10-
dimensional solution of IIb supergravity similar to the case suggested
in [18].

2 In [17] it states that v = 4.45 is better fitted with experimental
data. For this value of anisotropy parameter we have % ~ 1.7

and % ~9.5.
v=1
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ature and distance / between quark and anti-quark. By
transition time we mean how slow or fast the energy has
been injected into the system under study. As a matter of
fact, the anisotropy of the system substantially influences
the bound state living in the plasma.

e We observe that the oscillation frequency of the excited
bound state depends on the transition time. In other
words, for fast (slow) energy injection the bound state is
excited with larger (smaller) oscillation frequency for a
fixed value of anisotropy parameter at fixed temperature.
Larger values of the anisotropy parameter have larger
oscillation frequencies. Similarly, the amplitude of the
oscillation increases for smaller transition time k.

e Our numerical calculations show that the final temper-
ature and the oscillation frequency are independent. It
happens for all cases with or without anisotropy parame-
ter. At fixed temperature, we observe that the anisotropy
parameter, the amplitude and frequency of oscillation
increase together. However, for given anisotropy param-
eter, the amplitude of the oscillation and temperature
increase together while the oscillation frequency does
not change.

e Another result is that the frequency and amplitude of the
oscillation depend on the distance between quark and
anti-quark. By raising the distance, both frequency and
amplitude increase.

e For the longitudinal case, when the classical string is
located transverse to the anisotropic directions, opposite
to the transverse case, the oscillation frequency is inde-
pendent of the anisotropy parameter and the bound state
is less stable for larger values of the anisotropy param-
eter. Similar to the transverse case, the amplitude of the
oscillation increases when v is larger.

In Appendix B ascalar field theory with Lifshitz symmetry
is discussed. Some of the our results are in common with this
model.

2 Review on the static and time-dependent backgrounds

In this section, we will give a brief review on the background
used to calculate (time-dependent) expectation value of the
Wilson-loop. The non-zero temperature Lifshitz-like metric
is given by

1 1
ds? = ;(—f(z)dt2 + dx%) + —z(dx§ + dx%)

ZV
dz?
+ —sz(z)’ 2.1
where
@) =1-—mzit?, 2.2)
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and v is the critical exponent or Lifshitz parameter. As is
clearly seen, there is an anisotropy between x; and other
spatial coordinates, i.e. xp and x3. We call x; and x3
anisotropic directions. According to gauge-gravity duality,
this anisotropy in the gravity is identified with an isotropy
on the gauge theory side or, in other words, the gauge theory
lives on the anisotropic background. The horizon is located
at z; = m~"/@*+2Y) and therefore the Hawking tempera-
ture, corresponding to the temperature of the gauge theory,
is given by 7 = (%), The boundary lies at z = 0
and the metric approaches Lifshitz-like geometry asymptoti-
cally. In this metric when we put v = 1, the metric reduces to
AdS-BH space-time metric. This background has been exten-
sively applied in the literature to discuss various aspects of
the anisotropic plasma, for instance see [21,22].

A generalization of the above background to the case of
Lifshitz—Vaidya metric is given by [19]

1
ds? = S(-F@, 2)dv? — 2divdz + dx?)

1
+ —g(dxg +dx3),
Zl}

2.3)

where

F(i,2) =1— M)z 2,
T(%) = <”2;Lv1) M@) T

The arbitrary function M (v), related to the temperature of
the gauge theory, represents the mass of the black hole which
changes as time passes by until it reaches a constant value.
The above metric is written in the Eddington—Finkelstein
coordinates where the radial direction is represented by z.
The coordinate v shows the null direction where, at the
boundary, v is equal to the time coordinate of the gauge the-
ory, i.e. t = v|,=o. Note that, in the case of the v = 1, the
above metric reduces to AdS-Vaidya metric.

According to gauge-gravity duality, the Lifshitz—Vaidya
metric on the gravity side resembles thermalization process
in the anisotropic gauge theory. Various types of energy injec-
tion are identified by the form of the functions chosen for the
time-dependent function M (v). These different forms have
been investigated and classified in [23] and it seems that the
final qualitative results are independent of the form of the
functions. Here, temperature is turned on exactly at v = 0
and reaches its exact final maximum value, 7'y at some finite
time. Therefore, the functions for M (v) that we will work
with can be considered as

(2.4)

0 i v <0,
M@) =My k7o — £sin(ZE)] 0<v<k, (25
1 v >k,

where the transition time k is the time interval in which the
mass of the black hole increases from zero to My which is

constant. Note that the radius of the event horizon is z;, =

M;m and therefore Ty = HLZII("Z—J;I .

The transition time k plays a central role in energy injec-
tion into the system. As a matter of fact, for small values
of k a universal behavior is observed [24-26]. By universal
behavior we mean the re-scaled equilibration time k! leg 18
independent of the final value of the temperature. This result
is perhaps common to all strongly coupled gauge theory with
gravity dual. For this reason, we are particularly interested in
studying two different regimes for the transition time, that is
k < 1 and k > 1. Thus, in the following we choose k = 0.3
and 3.

3 Probe classical string

In this section, using gauge-gravity duality, we will obtain
the static potential energy between a quark and an anti-quark
(or equivalently expectation value of the Wilson loop) in
the anisotropic plasma describing by the background (2.1).
Then the expectation value of the Wilson loop is numerically
computed in the Lifshitz—Vaidya metric (2.3). In fact, time-
dependent solution oscillates about the static one found in
the background (2.1).

The dynamics of a classical string in an arbitrary back-
ground is described by

-1
S = //drda,/—det(ga;,).

2na

3.1

where g, is the induced metric on the world-sheet and is
defined by g.» = GMN%%. XM (% = 1, o) denotes
the space-time (world-sheet) coordinates and Gy is the
background metric. In the gauge theory, the static potential
energy between a quark and an anti-quark is evaluated by
using the expectation value of the Wilson loop on a rectan-
gular loop, C, that contains two sides, time 7 and distance /,
where the length of time direction is much larger than the dis-
tance between the quarks , i.e. 7 >> [. Therefore, we finally
have [1]

(W(C)) = e*i(2m+V(l))T’ (3.2)

«/_Xthd_z
€

wherem = 32 > is the rest mass of the quarks and V (/)
is the potential energy between them. € is IR regulator in the
bulk and from UV/IR connection, its correspondence is UV
cut-off in the boundary theory. On the other hand, according
to the gauge-gravity dictionary, the expectation value of the
Wilson loop is dual to the on-shell action of a string that its

endpoints are separated by a distance / [1]. Thus
(W(C) = 5@, (3.3)

We will now proceed to calculate S(C) for the rectangular
loop C.

@ Springer
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3.1 On the static Lifshitz black hole background

In the static case, we work with the metric (2.1). It is then

convenient to choose the world-sheet coordinates, transverse

case,’ as

T=1, 0=X3=X, (3.4)
and following ansatz for the other coordinates
z = z(x), x| = constant, x; = constant. 3.5

Note that since we consider 7 >> [, one can assume that the
world sheet is translationally invariant along the t-direction.
Therefore, the string action (3.1) leads to

—1 % 1 2 22
S = dtdx—\ 7"+ 72777 f(2),
2o’ J_L

2
-5 Z

(3.6)

where 7’ =dz/dx. Since the Lagrangian does not explicitly
depend on x, we can use the associated Hamiltonian, which
is the constant of motion, to obtain the static solution. As a

result, we get
2
AR (£>2+v
f(@) \z« ’

where z'(x) = 0 at z = z, where z, is the turning point
of the string. The above equation allows us to express x as
a function of z. Using the explicit form of f(z) and new
coordinate y = z,/z, one gets

X 1 42 [V
/ dx:$z§\/1—yh+”/
+£ 1
dy
2 2 242
\/<y2+v — 1) (y”v — >

where y, = z./zx. The potential energy between the quark
and anti-quark can be obtained as explained in [7]. This
energy is divergent due to the infinite mass of the quarks. We
should subtract the action of two strings stretched between
the boundary (z =0) and the horizon (z =z;,) from the action
(3.6) to obtain a finite and regular result, which read

2 F(2)
VI 2

7)==+ 3.7)

, (3-8)

3 Note that since there is a U (1) symmetry in (x2, x3) plane, we expect
similar results for the cases in which classical string is located in x3,
X7 or an arbitrary orientation in this plane. Moreover, the longitudinal
case is considered in the Appendix A.

@ Springer
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Fig. 1 The static potential of quark—antiquark pair in terms of / for
Tr=0.3183 and v =1

o -1 on-shell 7 o Y\ dz
Vstatic = T [ + o /e +/;* Z2

(3.9)

The on-shell action can be obtained by replacing (3.7) into
(3.6). The behavior of the static potential V (/) for different
[ is plotted in the Fig. 1. In this figure, /. is critical length
that for [ > [, there is no stable bound state. However, in the
regime with/ < /. where we are interested in, the bound state
is stable. In the pure Lifshitz background, that is z;, — oo,
(3.8) reduces to
142

x == ! F Z—Ul 2 F]

Pa+da”
I 24v 4430 25

2" 2420 2420 242
Tx

(3.10)

We use this result as the initial condition for the dynamical
background case.

3.2 In the Lifshitz—Vaidya background

In the static case, as it was stated, in order to find potential
energy the condition 7" 3> [ is essential. Unfortunately, in
the Vaidya-Lifshitz background, this condition does not valid
anymore and therefore we have to calculate time-dependent
Wilson loop. In other words, instead of (3.2), we have

(W(C)) = e~/ [dr W), 3.11)

The gauge-gravity correspondence proposes that W(l, t) is
dual to the string on-shell action in which the time coordinate
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is not integrated over. Note that the above equation clearly
reduces to (3.2) in the time-independent background. Due
to UV cut-off (z — 0) an infinity appears in W(I, t). As a
result, similar to static case, we regularize (3.11) as follows

Wr(,t) =W(, 1) —2m

:/do (V= detCean)) ~om

on—shell

(3.12)

In order to compute string on-shell action we use the numer-
ical method introduced in [14,27-29]. To do so, we use the
null coordinates (i, v) on the string world-sheet. Thus all
background coordinates on the world-sheet depend on the
null coordinates and apart from v = V(u, v), z = Z(u, v)
and x3 = X (u, v), we set two other coordinates to zero. Sub-
stituting this ansatz in the action (3.1), it is easy but lengthy
to find the following equations of motion

14 (FZ F)v Vo + XX
uv — P — uv,v UV
2 Z vZi—
VA i FF F V.V
uv — 7 ) Z ) \%4 uV,v
F Fy
<E‘7> (ZaVo+ZuV.) (3.13)
2
+ _Z,qu 2 X,uX,va
z vZv—
ZuXov+Z X
X = 4y e
vZ

Since u and v are null coordinate on the world-sheet, we have
to impose two constraint equations

1 2 2-2 42
Ci=— (F(V, V242V, Z, 2 vx)u) -0,

(3.14)
C =L (F(v, V2 42V, 7, — 22—%)(2) —0,
72 U ) ) v

corresponding to g, = 0 and g,, = 0, respectively.

In order to solve the equations of motion (3.13) subject
to constraint equations (3.14), we need to specify the initial
and boundary conditions. These conditions are similar to the
ones considered in [27-29]. Here we do not repeat the details
of calculations and only state the final results. Therefore, we
have

e Boundary condition
Based on the discussions in [27-29], by fixing the diffeo-
morphism on the string world-sheet one may choose the
AdS boundary to be at u = v for one of the endpoints and
u = v+ L for the other one. Then, on the AdS boundary,
the appropriate boundary conditions on Z and X are

Z|u:v =0, Xlu:v = _7,

l
X

(3.15)
Z|u:v+L =0, Xlu:v+L =

Table 1 Appropriate numbers
for boundary conditions

One can find the rest of the boundary conditions by
expanding the fields near the boundary u = v as follows

Vu,v) =Vow)+Viv)(u —v) +---, (3.16)

Z(u,v) = Z1(v) (@ — v) + Zo()(u — v)* + -+,
(3.17)

X(u,v):%l—i—X](v)(u—v)—l—-'-. (3.18)

Then demanding the regularity condition at ¥ = v and
u = v + L the rest of the boundary condition can be
found. Furthermore, the consistency of the results with
the constraint equations (3.14) must be checked. The final
results for boundary conditions in terms of anisotropic
parameter v at u = v are:

Vu,v) = Vo) + O ((u—v)"), (3.192)
2w = 20 gy 4 Y00,y

V(l)(zv) w—v>+0(—0v)"). (3.19b)
X(u,v) = _7[ +0(w—-v)), (3.19¢)

where V (v) = % and so on. m, n and r are listed in
Table 1. The above equations then imply that
Zuvlu=v = 0, 2Z,ulu=v = Vo(v). (3.20)
One can easily check that for the another boundary u =

v + L the results are the same. We refer interested reader
to [27-29] for more details.

e Initial condition To obtain the initial conditions for the
variables V, Z and X we use the constraint equations and
the static solution (3.7). Notice that in this equation we
replace z and x with the capital ones and f(z) = 1. Since
V, > 0 at the boundary, therefore by using the boundary
conditions (3.19a) and (3.19b), Z, > O and Z, < O.
Applying these conditions on Z and V derivatives and
using X ,|z=0 = X v|z=0 = 0, the constraint equations
(3.14) lead to

_2 2

V=27, (—1+ 142270 (4%) ) (3.21)
_2 2

Vo =2, (—1—,/1+Z2 v (25) > (3.22)

@ Springer
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Wgr(LY)

WR (1Y)

By taking the derivative of the Eq. (3.21) with respect to
v and of the Eq. (3.22) with respect to u, we obtain

2 (dX\?
Z yy \/1+sz <d_Z>

17,7 e e ’ —0, (3.23)
,U u dZ —_ ) .
Z
and it can be then written as
2 (dX\?
Zu 14275 (= =0 3.24
W7 () a2

)

One can substitute ‘[% into (3.24) by using (3.7) and we
then have

I v 243 7%
2724207 24207 242
*

=¢W) —¢(v),

Z-F

Z
(3.25)

-0.4

-0.5¢

-0.6

-0.7

-0.8

-0.9t

-4.0F

-4.2F

-4.6

-4.8

t

Fig. 2 The expectation value of the Wilson loop in terms of boundary
time for v = 1 (top-left), v = 2 (top-right), v = 3 (bottom-left) and
v = 4 (bottom-right). For all figures we set k = 0.3, Ty = 0.159, and

@ Springer

WgR (LY

WgR (1Y

where ¢ (y) is an arbitrary function. The form of the right
hand side of the above equation is fixed by applying the
fact that the left hand side is zero at © = v. By integrat-
ing (3.7), we get the initial configuration for X (u, v) as
follows

X(u,v):i—

I 24v 4430 722
2724207 24207 242
*

,  (3.20)
Z

where Z, is the turning point of the string. Since
X(u,v) =0at Z = Z,, we have

2+v l

2v 1 2+4v . 4+43v.
21 25 33205 2320 1

Zy =

(3.27)

Also, the initial condition on V (u, v) is obtained from
(3.21) and (3.22)

-11.81

-12.0

-12.2]

-12.4

-12.6

-12.8
0

t

| = 1. The static potential is V() = —0.4488, —1.2422, —4.1120
and —11.8713 corresponding to v = 1, 2, 3 and 4, respectively
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-0.4r1

-0.5

-0.6

WR(LY)

-0.7

-0.8

-0.9

Fig. 3 The expectation value of the Wilson loop in terms of boundary
time for v = 1 (top-left), v = 2 (top-right), v = 3 (bottom-left) and
v = 4 (bottom-right). For all figures we set k = 3, Ty = 0.159, and

1 v 243v z2F
Vuw,v)=—-2Z1-2F| 5, ; ; 5
2 242v 242v 2435
Zy
+ x(v), (3.28)
1 v 2430 Z25
Vu,v) =—-Z |1+ 2F | =, ; ; 3
2 242v 242v 243
Zy
+ X (), (3.29)

where x and x are arbitrary functions. To have better
clarification of x and y, let’s equalize the above equations
and use (3.25), we get

x() =2¢@), xu) =2pw). (3.30)
An appropriate choice of the arbitrary function, intro-
duced in (3.25), is ¢(y) = y. Our calculations in this
paper are done by the same choice. For more details, see
[27-29].

-11.8+ 1

-12.0+

2 -12.2
x
2

—-124+F

-12.6

0 2 4 6 8 10
t

| = 1. The static potential is V() = —0.4488, —1.2422, —4.1120

and — 11.8713 corresponding to v = 1, 2, 3 and 4, respectively

4 Numerical results

Based on the gauge-gravity duality, classical string in the
anisotropic background is dual to a quark—anti-quark bound
state in the anisotropic gauge theory. When the boundary time
is smaller than zero, that is ¢ < 0, the meson is stable and in
its ground state. As the energy injection is started, or equiva-
lently the temperature is raised on the gauge theory side, the
shape of the string changes time-dependently. In fact, during
the energy injection, the turning point of the string goes closer
to the horizon in the background. Our numerical results show
that the string oscillates about the static string solution cor-
responding to the final temperature of the energy injection.
In the gauge theory, this is the reason why expectation value
of the Wilson loop oscillates about static potential by which
we mean the potential of the bound state in the anisotropic
plasma with finite temperature 7y. These oscillations indi-
cate thatbound state is excited by energy injection. This result
is in agreement with the similar one reported in [14]. Note
that since there is no energy dissipation, the excited meson
is stable.

@ Springer
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-0.43

—0.44]

-0.45

-0.46

Wr (1Y)

-0.48[ -

-047]

IS
(4]
()
N Feee-
oo
©

-0.49 ! '
3

—_

-4.09
-4.10

—411F

-4.12

Wr (1)

-4.13

|

-4.14f —

-4.15[

-4.16 : ‘
3

IN
o

~ O pmmmm=--
~
©
©

Fig. 4 The expectation value of the Wilson loop in terms of boundary
time for v = 1 (top-left), v = 2 (top-right), v = 3 (bottom-left) and
v = 4 (bottom-right). For all figures we set k = 0.3, Ty = 0.159, and
[ = 1. The static potential is V (/) = —0.4488, —1.2422, —4.1120

Understanding how anisotropy parameter v affects on the
time evolution of the expectation value of the Wilson loop
is an interesting issue to investigate. In Fig. 2, Wr(l, 1) has
been plotted for various anisotropy parameters at fixed values
of transition time k, final temperature 7'y and distance /. It is
clearly seen that the excited bound state is different for each
anisotropy parameter. More precisely, the larger anisotropy
parameter, the larger frequency. Furthermore, independent
of the anisotropy parameter, the time-dependent expectation
value starts oscillating around the negative equilibrium value
of the static potential almost at the same time, i.e. f >~ 0.30.1In
Fig. 4, we show that the amplitude of the oscillation increases
for larger v, too.

Apart from the transition time &, other variables are the
same in the Figs. 2 and 3. Evidently, the results extracted from
the Fig. 3 is similar to the case in the Fig. 2. The only differ-
ence is that the bound state oscillates with a lower frequency
and amplitude in this case.

In order to have better estimate of the dependence of the
frequency on the anisotropy parameter, we have plotted the
expectation value of the Wilson loop in term of the bound-
ary time in the region of + = 3-9 in Fig. 4. As it is clearly
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and — 11.8713 corresponding to v = 1,2, 3 and 4, respectively. The
dashed purple line shows the static potential in each case. For v = 1
and 4, we have 2A = 0.0213 and 0.0447, respectively

Table 2 The oscillation v 2 3 4
frequency of Fig. 4 for various
anisotropy parameters f 031 050 125 250

seen from this figure and confirmed by Table 2, the oscil-
lation frequency substantially increases when the anisotropy
parameter is raised in the plasma. It is important to notice that
although the frequency of the excited bound state is larger, it
is deeply bounded due to the anisotropy in the system.

We would also like to investigate the effect of the tem-
perature on the oscillation frequency. To do so, we plot the
expectation value of the Wilson loop in terms of boundary
time for two different final temperatures in Fig. 5 for fixed
values of anisotropy parameter, i.e. v = 4, and distance /.
The temperature in the left graph is less than the right one.
Interestingly, the frequency is the same for both cases. It
means that the oscillation frequency is independent of final
temperature. However, this figure indicates that the ampli-
tude of the oscillation depends on the final temperature and
they increase together. The same behavior is also observed
in case with k = 3.
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Fig. 5 The expectation value of the Wilson loop in terms of boundary
time for v =4, k = 0.3 and / = 1. The final temperature for the graph
left (right) are 0.159 (0.796) and oscillation frequency is 0.19 for both
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Fig. 6 The expectation value of the Wilson loop in terms of boundary
time forv =4,k = 0.3, T =0.159and [ = 1 (I = 1.5) for the left
(right) figure. The oscillation frequency is 2.5 (0.6) for the left (right)

Finally in the Fig. 6, we have plotted the time evolution of
the expectation value of the Wilson loop in terms of boundary
time for two different values of distance /. Atlarger distances,
the amplitude of the oscillation increases while the oscillation
frequency decreases. Therefore, the oscillation characteris-
tics depend on the distance /, too.

To summarize, we find that the oscillation frequency is
independent of time and final temperature, i.e. f(l, k, v).
However, the amplitude of oscillation depends on the all
parameters in the theory, that is A(/, T, k, v). Notice that
neither the frequency nor the amplitude of the oscillation
does not change with the time since the bound state is living
in the plasma without dissipation. From our results, one can
conclude that the amplitude of the oscillation increases when
each parameter of the problem at hand raises. It is then inter-
esting to compare our results with harmonic oscillator model.
If we consider M (V), corresponding to the time-dependent
temperature in the gauge theory, as an external force, the

=551
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1
o
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cases. The static potentials are — 11.8713 and — 5.6318. The amplitude
of oscillation is 2A = 0.0447 for the left panel and 2A = 0.1869 for
right one
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figure. The static potentials are — 11.8713 and — 1.0937. The amplitude
of oscillation is 2A = 0.0447 (0.0631) for the left (right) panel

(average) energy of the bound state increases due to energy
injection. This enhancement is more substantial in the pres-
ence of the anisotropy as well as at higher final temperatures.
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A Another embedding: longitudinal case

Instead of (3.4) and (3.5), it is instructive to choose the fol-
lowing ansatz

z = z(x), xp = constant, x3 = constant, (A1)

where T = ¢, 0 = x; = x. One then expects that the
anisotropy parameter v enters the equations of motion via
F(v, z) and therefore the resulting equations can be obtained
by setting v = 1 everywhere, for instance in (3.13), (3.14),
initial and boundary conditions, except in F (v, z). In other
words, for new ansatz (A.1) the anisotropy parameter in the
second parentheses of (2.3) does not appear. As a matter of
fact, this term can be replaced by dx% + dx32 indicating that
we are effectively dealing with a 3-dimensional spatial
isotropic metric. In Fig. 7, the time evolution of the expec-
tation value of Wilson loop is plotted. Interestingly, on the
contrary to our previous results, the frequency is independent
of anisotropy parameter and the meson is less stable for larger
values of the anisotropy parameter. However, the greater
anisotropy parameter, the larger amplitude. In this case, for
larger values of [ the amplitude of oscillation increases while
the oscillation frequency decreases, similar to the transverse
case.

B Lifshitz scalar field theory

Now let us consider a free scalar field where its action is
given by [30]

S = f dt d*x [1<a,¢>2 - i(@?)%)ﬂ, (B.1)
2 2v

-050F ,~~. ‘ e

-0.55F
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-0.70 1 Ld
°
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1

t

Fig. 7 The expectation value of the Wilson loop in terms of boundary
time forv =1,2,3,4, Ty = 0.0955,k = 0.3 and/ = 1. The oscilla-
tion frequency is f = 0.3125 for all diagrams in this figure. The static
potential is V (/) = —0.8372, —0.6532, — 0.5718 and — 0.5268 cor-
responding to v = 1, 2, 3 and v = 4, respectively. For v = 1, 2, 3 and
v =4,wehave2A = 0.0042, 0.0169, 0.0314 and 0.0401, respectively

@ Springer

where « is a constant. The above action is invariant under the
following transformations

(B.2)

)—3 . .
¢ —> AT h, t — AVt xt —> axl

The equation of motion for the scalar field can be obtained by
taking variation of the action (B.1) with respect to the scalar
field and its derivatives. Hence it turns out

— 979+ ~0/(8/¢) = 0. (B.3)

We then use the solution of simple harmonic oscillator model
as an ansatz

¢ —A e—iwt-‘-iﬁ.)?’ (B4)

where o is oscillation frequency and p is the momentum
of scalar field. Substituting (B.4) into the (B.3), leads to the
following dispersion relation

(B.5)

w o< |pl”

It is clearly seen that for larger value of z the oscillation
frequency increases (decreases) for |p| > 1 (|p| < 1). Note
that if we consider the Lifshitz theory as a low energy limit
of a relativistic field theory, meaning that |p| < |pr|, we
have

- -1
o 1P
Ipl" o< |pl| —= ,

|PIR]

where pyr is the IR energy scale. Then since v > 1 for the
non-relativistic theories, w will be suppressed compared to
the relativistic case.

(B.6)
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