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Abstract We discuss some physical prospective of the non-
BPS effective actions of type IIA and IIB superstring theories.
By dealing with all complete three and four point functions,
including a closed Ramond–Ramond string (in terms of both
its field strength and its potential), gauge (scalar) fields as
well as a real tachyon and under symmetry structures, we
find various restricted world volume and bulk Bianchi iden-
tities. The complete forms of the non-BPS scattering ampli-
tudes including their Chan–Paton factors are elaborated. All
the singularity structures of the non-BPS amplitudes, their
all order α′ higher-derivative corrections, their contact terms
and various modified Bianchi identities are derived. Finally,
we show that scattering amplitudes computed in different
super-ghost pictures are compatible when suitable Bianchi
identities are imposed on the Ramond–Ramond fields. More-
over, we argue that the higher-derivative expansion in powers
of the momenta of the tachyon is universal.

1 Introduction

D-branes have been realized to be the sources for Ramond–
Ramond (RR) fields [1,2]. RR couplings played important
contributions to string theory. For instance to observe some
of the application of RR couplings, one may consider the
dissolving branes [3], K-theory and the Myers effect [4–
6]. The other applications to RR couplings are related to
the N 3 phenomena for M5-branes, dS solutions, entropy

a e-mails: ehsan.hatefi@fuw.edu.pl; ehsanhatefi@gmail.com

growth and geometrical applications to the effective actions
[7–9].

The spectrum of the so-called non-BPS (unstable) branes
includes massless states, tachyons, and an infinite number of
massive states. There must be an Effective Field theory (EFT)
for non-BPS branes where one integrates out all the mas-
sive states and hence the spectrum involves just the tachyon
and massless states [10]. We will not point out cosmolog-
ical applications for unstable branes. On general grounds,
one might expect that D-branes and SD-branes have similar
effective actions. The effective action of these branes has to
have two parts. It consists of the extensions of the usual DBI
and Wess–Zumino (WZ) actions where the tachyon mode is
embedded into these effective actions. By applying the con-
formal field theory (CFT) methods [11], the leading order
effective couplings of the fermions with tachyons were found
in [12,13] as

S = −TpV (T )

√
− det(ηab + 2πα′Fab − 2πα′�̄γb∂a� + π2α′2�̄γ μ∂a��̄γμ∂b� + 2πα′DaT DbT ).

In the above action, Fab is the field strength of the gauge
field, �̄γμ∂μ� is the kinetic term of fermion fields, DT is the
covariant derivative of the tachyon (DaT = ∂aT−i[Aa, T ]).
On the other hand the Chern–Simons action for BPS branes
was constructed in [14]. Using Boundary String Field Theory
(BSFT), one has the tachyon’s kinetic term in the DBI part
[15] as follows:

SDBI ∼
∫

dp+1σ e−2πT 2
F(2πα′DaT DaT ),

F(x) = 4x x	(x)2

2	(2x)
. (1)

The WZ action in BSFT approach is found to be

SWZ = μ′
p

∫


(p+1)

C ∧ Str ei2πα′F , (2)
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where C(p+1) is the RR potential (p + 1) form-field and the
super-connection’s curvature would be given by

iF =
(
i F − β ′2T 2 β ′DT

β ′DT i F − β ′2T 2

)
,

β ′ is the normalization constant and μ′
p is the RR charge of

the brane.
If we expand the exponential in (2), then we obtain various

couplings as follows:

SWZ = 2β ′μ′
p(2πα′)Tr

(
Cp ∧ DT + (2πα′)Cp−2 ∧ DT ∧ F

+ (2πα′)2

2
Cp−4 ∧ F ∧ F ∧ DT

)
. (3)

For the sake of the higher-derivative corrections, we work
with the second approach of exploring effective actions,
which is the scattering amplitude formalism. In this approach
the tachyon’s kinetic term is embedded into the DBI action
as follows:

SDBI ∼
∫

dp+1σSTr

(
V (T i T i )

√
1 + 1

2
[T i , T j ][T j , T i ])

×
√

− det(ηab + 2πα′Fab + 2πα′DaT i (Q−1)i j DbT j )

)
,

(4)

where V (T i T i ) = e−πT i T i /2, Qi j = I δi j−i[T i , T j ], T 1 =
Tσ1, T 2 = Tσ2 andσ1, σ2 are Pauli matrices. The trace in (4)
should be symmetric for all Fab, DaT i , [T i , T j ] matrices.
If all Chan–Paton factors are taken into account, then this
action would produce consistent results with all momentum
expansions of three and four point functions of a closed string
RR field and either the two, three tachyon or the two tachyon
two gauge/scalar field amplitude.

On the stable point, the tachyon potential and its effective
action get replaced by the well-known tachyon DBI action
[16,17] with potential T 4V (T 2). The WZ part of the action in
this approach has the same formula as appearing in (2). Using
the S-matrix method the normalization constants of β ′, β
for the non-BPS and brane–antibrane system are discovered

to be β ′ = 1
π

√
6 ln(2)

α′ and β = 1
π

√
2 ln(2)

α′ [18]. It is worth
mentioning that the super-connection’s structure for the WZ
action was found by the S-matrix approach in [19].

The aim of the paper is to show that the scattering ampli-
tudes computed in different super-ghost pictures are compat-
ible when suitable Bianchi identities are imposed on the RR
fields. Moreover, we argue that the higher-derivative expan-
sion in powers of the momenta of the tachyon is universal.

The outline of this paper is as follows. First we find all
three point functions including a gauge field, a tachyon and a
closed string RR in all asymmetric and symmetric pictures of
the closed string RR. By doing so, not only do we find some

restricted Bianchi identities on both world volume and trans-
verse directions of non-BPS branes, but also we explore all
their infinite higher-derivative corrections. It is believed that
due to a supersymmetry transformation BPS the S-matrices
do not generate a Bianchi identity. To get consistent results
for four point functions of the two gauge fields, a tachyon
and a closed string RR field in their asymmetric and sym-
metric pictures, we discover various restricted Bianchi iden-
tities. Eventually we have to do with a universal expansion
for tachyon and construct all different singularity structures
of 〈VC−2VA0VA0VT 0〉 as well as all order α′ higher-derivative
corrections to the various couplings of the type IIA, IIB super-
string theories.

2 All order 〈VC−2VA0VT0〉

In this section we would like to apply CFT methods to derive
the complete S-matrix elements of a closed string RR, a gauge
field and a tachyon. The total super-ghost charge for disk
level amplitude must be − 2. First we choose an asymmetric
closed string RR field (which carries total − 2 super-ghost
charge) and hence the gauge field and a tachyon must be put
in zero picture. This S-matrix can be obtained if one finds
the correlation functions of the following vertex operators:

V (0)
T (x) = α′ik2·ψ(x)eα′ik2··X (x)λ ⊗ σ1

V (−1)
T (x) = e−φ(x)eα′ik2·X (x)λ ⊗ σ2

V (−1)
A (x) = e−φ(x)ξaψ

a(x)eα′iq·X (x)λ ⊗ σ3

V (0)
A (x) = ξ1a(∂

a X (x) + iα′q · ψψa(x))eα′iq·X (x)λ ⊗ I,

V (−2)
A (x) = e−2φ(x)V (0)

A (x),

V

(
− 3

2 ,− 1
2

)

C (z, z̄) = (P−C/ (n−1)Mp)
αβe−3φ(z)/2Sα(z)ei

α′
2 p·X (z)

× e−φ(z̄)/2Sβ(z̄)ei
α′
2 p·D·X (z̄) ⊗ σ1,

V

(
− 1

2 ,− 1
2

)

C (z, z̄) = (P−H/ (n)Mp)
αβe−φ(z)/2Sα(z)ei

α′
2 p·X (z)

× e−φ(z̄)/2Sβ(z̄)ei
α′
2 p·D·X (z̄) ⊗ σ3σ1. (5)

It is argued in [20] that the vertices of a non-BPS D-brane
need to carry internal degrees of freedom or a Chan–Paton
(CP) matrix. This is because if we set the tachyon to zero,
then the WZ effective action of non-BPS branes gets reduced
to the WZ action of BPS branes. Hence, we impose an iden-
tity internal CP matrix to all massless fields including gauge
(scalar) and RR fields in zero picture. It is discussed in [21]
that a Picture Changing Operator (PCO) carries a CP matrix
σ3. It is explained in [22] that the tachyon in zero and the
(−1) picture carries σ1 and σ2 CP factors. 〈VC−1VT−1〉 makes
sense in the world volume of non-BPS branes. This fixes the
CP factor of RR in the (−1/2,−1/2) picture to be σ3σ1. By
applying PCO to RR in the (−1) picture, we derive its CP
factor in the (−2) picture to be σ1 and the CP factor for the
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gauge field in the (−1) picture to be σ3 where λ is the external
CP matrix for the U(N) gauge group.

We are looking for the disk level amplitude. The closed
string will be located in the middle of the disk whereas all
open strings are located at the boundary of the disk. The
on-shell conditions are

q2 = p2 = 0, k2
2 = 1/4, q · ξ1 = 0.

The definitions of the RR’s field strength and projection oper-
ator are

P− = 1
2 (1 − γ 11), H/ (n) = an

n! Hμ1...μnγ
μ1 . . . γ μn .

For type IIA (IIB) n = 2, 4, an = i (n = 1, 3, 5, an = 1)
and in spinor notation

(P−H/ (n))
αβ = Cαδ(P−H/ (n))δ

β .

We apply the doubling trick so that all the holomorphic parts
of the fields can be used. Thus the following change of vari-
ables works:

X̃μ(z̄) → Dμ
ν Xν(z̄) , ψ̃μ(z̄) → Dμ

ν ψν(z̄),

φ̃(z̄) → φ(z̄) , and S̃α(z̄) → Mα
β Sβ(z̄),

with

D =
(−19−p 0

0 1p+1

)
, and

Mp =
⎧
⎨
⎩

±i
(p+1)!γ

i1γ i2 . . . γ i p+1εi1...i p+1 for p even,

±1
(p+1)!γ

i1γ i2 . . . γ i p+1γ11εi1...i p+1 for p odd.

Now one can use the following two-point functions for
Xμ,ψμ, φ:

〈Xμ(z)Xν(w)〉 = −α′

2
ημν log(z − w),

〈ψμ(z)ψν(w)〉 = −α′

2
ημν(z − w)−1,

〈φ(z)φ(w)〉 = − log(z − w).

(6)

The amplitude in an asymmetric picture is given by
∫

dx1dx2dx4dx5(P−C/ (n−1)Mp)
αβ(2α′ik2bξ1a)(x45)

−3/4(I1 + I2)

× |x12|α′2k1.k2 |x14x15| α′2
2 k1·p|x24x25| α′2

2 k2·p|x45| α′2
4 p·D·p

where x4 = z = x + iy, x5 = z̄ = x − iy and

I1 = ika2

(
x42

x12x14
+ x52

x12x15

)
2−1/2(x24x25)

−1/2

×(x45)
−3/4(γ bC−1)αβ. (7)

One uses the Wick-like rule [23] to obtain the correlation
function for I2,

I2 = 2ik1c〈: Sα(x4) : Sβ(x5) : ψcψa(x1) : ψb(x2) :〉
as follows:

I2 =
(

(	bacC−1)αβ + 2Re[x14x25]
x12x45

(
ηbc(γ aC−1)αβ − ηab(γ cC−1)αβ

))

× 2ik1c2−3/2(x14x15)
−1(x24x25)

−1/2(x45)
1/4.

It can readily be shown that the amplitude is SL(2, R) invari-
ant. We use the gauge fixing as (x1, x2, z, z̄) = (x,−x, i,−i)
and the Jacobian is J = −2i(1+ x2). One reveals that I1 has
zero contribution to the S-matrix. Because the integrand is an
odd function while the interval of the integral is symmetric.1

We introduce t = −α′
2 (k1 + k2)

2 and I2 is obtained by
∫ ∞

−∞
dx(2x)−2t−1/2(1 + x2)−1/2+2t

((
1 − x2

2i x

)

×(ηbcTr (P−C/ (n−1)Mpγ
a) − ηabTr (P−C/ (n−1)Mpγ

c))

+Tr (P−C/ (n−1)Mp	
bac)

)
23/2k1ck2bξ1a .

The last two terms have just non-zero contributions to our
amplitude. The final answer for the amplitude is

AT 0,A0,C−2 = (πβ ′μ′
p)2

√
π

	[−t + 1/4]
	[3/4 − t]

×Tr (P−C/ (n−1)Mp	
bac)k1ck2bξ1aTr (λ1λ2).

(8)

To be able to match the leading order of the S-matrix with
the following coupling in the EFT:

2iβ ′μ′
p(2πα′)2

∫


p+1

Tr (Cp−2 ∧ F ∧ DT ), (9)

we use (πβ ′μ′
p/2) as the normalization constant. β ′ and μ′

p
are known to be the WZ normalization constant and the RR
brane’s charge. On the other hand, the result in symmetric
cases (RR is written in the (−1) picture) for AA0,T−1,C−1

can
be derived as

AA0,T−1,C−1 = 2ik1bξ1aTr (P−H/ (n)Mp	
ab)

×
∫ ∞

−∞
dx(2x)−2t−1/2(1 + x2)−1/2+2t .

(10)

Accordingly AA−1,T 0,C−1
is found to be

AA−1,T 0,C−1 = 2ik2bξ1aTr (P−H/ (n)Mp	
ba)

×
∫ ∞

−∞
dx(2x)−2t−1/2(1 + x2)−1/2+2t .

(11)

1 α′ = 2 is set.
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By applying momentum conservation (k1 + k2 + p)a = 0
and making comparisons between (10) and (11), one obtains
the following Bianchi identities:

pbHa0...ap−2ε
a0...ap−2ba = paHa0...ap−2ε

a0...ap−2ba = 0.

(12)

All three point functions of a closed string RR, a tachyon and
a scalar field in all symmetric and asymmetric pictures of RR
can also be computed. The result for Aφ0,T−1,C−1

is given by

4ξ1i (P−H/ (n)Mp)
αβ

(
k1a(	

iaC−1)αβ − pi (C−1)αβ

)

×
∫ ∞

−∞
dx(2x)−2t−1/2(1 + x2)−1/2+2t .

To get a consistent result for the S-matrix, in the presence
of all different pictures of closed string RR, the restricted
Bianchi identity (12) must get replaced by the following
Bianchi identity:

piεa0...ap Ha0...ap + paεa0...ap−1aHi
a0...ap−1

= 0. (13)

This modified Bianchi identity holds for all world volume
and transverse directions of branes. The trace below is non-
zero for the p + 1 = n + 2 case,

Tr

(
C/ (n−1)Mp(k2 · γ )(ξ · γ )(k1 · γ )

)

= ± 32

(p − 2)!ε
a0···ap−3bacCa0···ap−3k1ck2bξ1a .

The trace that has the γ 11 part indicates that the following
relation holds:

p > 3, Hn = ∗H10−n, n ≥ 5.

Neither there are massless poles nor tachyon poles for this
three point function. It is argued in [24] that the expansion
of the non-BPS amplitudes in the presence of a closed string
RR field makes sense if one applies the following constraint:

t = −pa pa → −1

4
. (14)

For the brane–antibrane configuration the above constraint
gets replaced by pa pa → 0 [25]. Hence, the precise momen-
tum expansion for CAT is t → −1/4. The expansion for the
gamma function is

√
π

	[−t + 1/4]
	[3/4 − t] = π

∞∑
n=−1

cn(t + 1/4)n+1,

with the following coefficients:

c−1 = 1, c0 = 2ln(2), c1 = 1

6
(π2 + 12ln(2)2), . . .

An infinite number of higher-derivative corrections to a
Cp−2, a tachyon and a gauge field can be found by producing
the contact terms in an EFT as follows:

2iβ ′μ′
p

(p − 2)! (2πα′)2Cp−2

∧Tr

⎛
⎝

∞∑
n=−1

cn(α
′)n+1Da1 · · · Dan+1 F ∧ Da1 . . . Dan+1 DT

⎞
⎠ .

(15)

Let us deal with the complete amplitude 〈VC−2VA0VA0VT 0〉,
to see what kinds of restricted Bianchi identities can be
explored and also to see whether or not there are bulk singu-
larity structures.

3 The complete 〈VC−2VA0VA0VT0〉 amplitude

In order to find the complete form of the scattering amplitude
of a tachyon, a potential RR (p+1) form-field and two gauge
fields 〈VC−2VA0VA0VT 0〉, one needs to employ all CFT tech-
niques. To achieve all singularities and contact interactions,
we use the vertex operators. Note that, as clarified in [26], the
CP factor of RR for the brane–antibrane system is different
from the CP factor of non-BPS branes. RR vertex operators
are introduced in [27]. One might refer for some of the BPS
and non-BPS scattering amplitudes to [28–33].

Recently, an analysis of 〈VC−2Vφ0Vφ0VT 0〉 was done;
however, one cannot derive the result for 〈VC−2VA0VA0VT 0〉
from it. This is because not all world volume couplings nor
bulk terms have any effect in our new effective action. Given
the presence of the tachyon, we cannot compare them with
BPS branes’s effective action [34–38]. The closed form of
the correlation functions is written down by the following2

and all the other kinematical relations can be found in [26]:

A′C−2A0A0T 0

∼ 2
∫

dx1dx2dx3dx4dx5(P−C/ (n−1)Mp)
αβ I ξ1aξ2bx

−3/4
45

×
(

(iα′k3c)a
c
1

[
aa1a

b
2 − ηabx−2

12

]
− α′2k2dk3ca

a
1a

cbd
2

−α′2k1ek3ca
b
2a

cae
3 − iα′3k1ek2dk3ca

cbdae
4

)
, (16)

where

I = |x12|α′2k1·k2 |x13|α′2k1·k3 |x14x15| α′2
2 k1·p|x23|α′2k2·k3 |

×x24x25| α′2
2 k2·p|x34x35| α′2

2 k3·p|x45| α′2
4 p·D·p,

aa1 = ika2

(
x42

x14x12
+ x52

x15x12

)
+ ika3

(
x43

x14x13
+ x53

x15x13

)
,

ab2 = −ikb1

(
x14

x42x12
+ x15

x52x12

)
− ikb3

(
x43

x42x23
+ x53

x52x23

)
,

ac1 = 2−1/2x−3/4
45 (x34x35)−1/2(γ cC−1)αβ,

acbd2 = 2−3/2x1/4
45 (x34x35)−1/2(x24x25)−1

2 xi j = xi − x j , and α′ = 2.

123
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×
{
(	cbdC−1)αβ + α′h1

Re[x24x35]
x23x45

}
,

acae3 = 2−3/2x1/4
45 (x34x35)−1/2(x14x15)−1

×
{
(	caeC−1)αβ + α′h2

Re[x14x35]
x13x45

}
,

h1 = ηdc(γ bC−1)αβ − ηbc(γ dC−1)αβ,

h2 = ηec(γ aC−1)αβ − ηac(γ eC−1)αβ .

The last fermionic correlator acbdae4 =<: Sα(x4) : Sβ(x5) :
ψeψa(x1) : ψdψb(x2) : ψc(x3) :> can be explored as fol-
lows:

acbdae4 =
{
(	cbdaeC−1)αβ + α′h3

Re[x14x25]
x12x45

+α′h4
Re[x14x35]
x13x45

+ α′h5
Re[x24x35]
x23x45

+α′2h6

(
Re[x14x35]
x13x45

)(
Re[x14x25]
x12x45

)

+α′2h7

(
Re[x14x25]
x12x45

)2

+α′2h8

(
Re[x14x25]
x12x45

)(
Re[x24x35]
x23x45

)}

×2−5/2x5/4
45 (x14x15x24x25)

−1(x34x35)
−1/2,

h3 =
(

ηed(	cbaC−1)αβ − ηeb(	cdaC−1)αβ

−ηad(	cbeC−1)αβ + ηab(	cdeC−1)αβ

)
,

h4 =
(

ηec(	bdaC−1)αβ − ηac(	bdeC−1)αβ

)
,

h5 =
(

ηdc(	baeC−1)αβ − ηbc(	daeC−1)αβ

)
,

h6 =
(

ηedηac(γ bC−1)αβ − ηebηac(γ dC−1)αβ

− ηecηad(γ bC−1)αβ + ηecηab(γ dC−1)αβ

)
,

h7 =
(

− ηedηab(γ cC−1)αβ + ηebηad(γ cC−1)αβ

)
,

h8 =
(

− ηedηbc(γ aC−1)αβ + ηebηdc(γ aC−1)αβ

+ ηadηbc(γ eC−1)αβ − ηabηdc(γ eC−1)αβ

)
. (17)

We wrote all the S-matrix elements so that SL(2,R) invariance
can be manifestly shown. By fixing three positions of the
vertices, we can get rid of the volume of the Killing group.
In order to get the algebraic answer for the amplitude, we fix
the positions of open strings as

x1 = 0, x2 = 1, x3 → ∞.

Eventually one needs to take a 2D complex integrals on the
location of the closed string RR on the upper half plane as
follows:
∫

d2z|1 − z|a |z|b(z − z̄)c(z + z̄)d (18)

where d = 0, 1, 2 and a, b, c are written in terms of the
following Mandelstam variables:

s = −α′
2

(k1+k3)2, t= −α′
2

(k1+k2)2,

u = −α′
2

(k2 + k3)2, s′ = s + 1

4
, u′ = u + 1

4
.

For d = 0, 1 and d = 2, 3 the algebraic solutions for the
integrals are obtained in [39] and [40], respectively. The final
form of the amplitude is

A′C−2A0A0T 0 = A′
1 + A′

2 + A′
3 (19)

where

A′
1 = −23/2iξ1aξ2bk1ek3ck2d

×Tr (P−C/ (n−1)Mp	
cbdae)(t + s′ + u′)L3

A′
2 = 23/2i L1

(
(k1c + k2c + k3c)(−tξ1aξ2b

×Tr (P−C/ (n−1)Mp	
cba))

+ 2Tr (P−C/ (n−1)Mp	
cde) × k3ck2dk1eξ1 · ξ2

)

+ 23/2i

(
ξ2b (−2k3 · ξ1k2d L2(k3c + k1c)

+ 2k2 · ξ1k3ck2d L1)

×Tr (P−C/ (n−1)Mp	
dbc)

− 2k2 · ξ1k3ck1eξ2bTr (P−C/ (n−1)Mp	
cbe)L1

− 2
s′

u′ k3 · ξ2k1eξ1a × (k3c + k2c)

×Tr (P−C/ (n−1)Mp	
cae)L2

− 2k1 · ξ2k3ck2dξ1aTr (P−C/ (n−1)Mp	
cda)L1

− 2k1 · ξ2k3ck1eξ1aTr (P−C/ (n−1)Mp	
cae)L1

)
,

A′
3 = 23/2iTr (P−C/ (n−1)Mpγ

c)L3(k1c + k2c

+ k3c)

[
t (k3 · ξ1)(k3 · ξ2) − 1

2
(ξ1 · ξ2)u

′s′

− (k3 · ξ1)(k1 · ξ2)u
′ − s′(k3 · ξ2)(k2 · ξ1)

]
. (20)

The functions L1, L2, L3 are

L1 = (2)−2(t+s+u)−1π

× 	(−u + 3
4 )	(−s + 3

4 )	(−t)	(−t − s − u)

	(−u − t + 3
4 )	(−t − s + 3

4 )	(−s − u + 1
2 )

,
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L2 = (2)−2(t+s+u)−1π

×	(−u + 3
4 )	(−s − 1

4 )	(−t + 1)	(−t − s − u)

	(−u − t + 3
4 )	(−t − s + 3

4 )	(−s − u + 1
2 )

,

L3 = (2)−2(t+s+u)π

×	(−u + 1
4 )	(−s + 1

4 )	(−t + 1
2 )	(−t − s − u − 1

2 )

	(−u − t + 3
4 )	(−t − s + 3

4 )	(−s − u + 1
2 )

.

This amplitude satisfies Ward identities related to both
gauge fields. We expand the amplitude in such a way that all
tachyon and massless poles can be obtained from the EFT.
Finally, we produce all contact interactions to all orders in
α′. One thinks that the amplitude in the asymmetric case has
non-zero terms for the p+ 1 = n case; however, these terms
are not gauge invariant. These terms are

21/2iTr (P−C/ (n−1)Mpγ
c)

[
2(k2 · ξ1)(k1 · ξ2)k3c

×
(

− 4M5 + 4K2 + M9 − 4

(
1

4
M9 + K2 − M5

) )

+ξ2ck2 · ξ1

(
4u′

(
− M4 + 1

2
M5 + 1

2
M11 − 1

4
M9

)

−4s′
(

1

4
M9 − 1

2
M5

))
+ ξ2ck3 · ξ1

(
− 2u′

(
− M11 + 1

2
M9

)

+4t

(
1

4
M9 − 1

2
M5

))
+ ξ1ck3 · ξ2

(
2s′M11 − s′M9

−4t

(
1

4
M9 − 1

2
M11 + M4 − 1

2
M5

))
+ ξ1ck1

·ξ2

(
− 2s′M5 + s′M9+4u′

(
1

4
M9− 1

2
M11+M4− 1

2
M5

))]
.

(21)

The sum of all coefficients of all terms in parentheses of
(21) is zero. This means that they disappear from the ultimate
form of the amplitude. All K2, M functions are written in
terms of gamma functions and for the sake of this paper we
will not mention their forms. This confirms that there is no
bulk singularity term for this S-matrix.

4 The complete 〈VC−1VA0VA−1VT0〉 amplitude

This S-matrix in terms of the field strength of the closed
string RR field, that is, 〈VC−1VA0VA−1VT 0〉 has not been
calculated yet. Using CFT, we explore the amplitude of
〈VC−1VA0VA−1VT 0〉. It can be found by the following cor-
relations:

A′′C−1A0A−1T 0 = −2
∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβ

×I ξ1aξ2bx
−1/4
45 (x24x25)

−1/2

×
(
iα′k3ca

a
1a

cb
2 − α′2k1dk3c I

cbad
2

)
,

(22)

I = |x12|4k1·k2 |x13|4k1·k3 |x14x15|2k1·p|x23|4k2·k3

×|x24x25|2k2·p|x34x35|2k3·p|x45|p·D·p

aa1 = ika2

(
x42

x14x12
+ x52

x15x12

)

+ ika3

(
x43

x14x13
+ x53

x15x13

)
. (23)

One needs to know the following correlation functions:

acb2 = 〈: Sα(x4) : Sβ(x5) : ψb(x2) : ψc(x3) :〉
=

{
(	cbC−1)αβ − 2ηbc

Re[x24x35]
x23x45

}

×2−1(x24x25x34x35)
−1/2x−1/4

45 . (24)

One obtains the correlation function of a current and two
fermion fields in two different locations in the presence of
two spin operator, that is, I cbad2 = 〈: Sα(x4) : Sβ(x5) :
ψdψa(x1) : ψb(x2) : ψc(x3) :〉 as

I cbad2 =
{
(	cbadC−1)αβ + α′b1

Re[x14x25]
x12x45

+α′b2
Re[x24x35]
x23x45

+ α′b3
Re[x14x35]
x13x45

+α′2b4

(
Re[x14x35]
x13x45

)(
Re[x14x25]
x12x45

)}

×2−2x3/4
45 (x34x35x24x25)

−1/2(x14x15)
−1,

b1 =
(

ηbd(	caC−1)αβ − ηab(	cdC−1)αβ

)
,

b2 =
(

− ηbc(	adC−1)αβ

)
,

b3 =
(

− ηcd(	baC−1)αβ + ηac(	bdC−1)αβ

)
,

b4 =
(

− ηacηdb + ηabηdc
)

(C−1)αβ.

We fixed three positions of the open strings as x1 =
0, x2 = 1, x3 → ∞, and one takes integration on the position
of closed string RR. Having set the gauge fixing, one would
find the complete form of the integrand for AC−1A0A−1T 0

as
follows:

−2ξ1aξ2b(P−H/ (n)Mp)
αβ

×
∫

d2z|1 − z|2t+2u−3/2|z|2t+2s+1/2(z − z̄)−2(t+s+u)−1

×
[

− k3c(2k2a − |z|−2(k2a + k3a)(z + z̄))

×
(

(	cbC−1)αβ + 2ηbc
(

1 − x

x45

))

− k1dk3c|z|−2x45

(
(	cbadC−1)αβ + 2x

x45
(ηbd(	caC−1)αβ

− ηab(	cdC−1)αβ − ηbc(	adC−1)αβ
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− ηcd(	baC−1)αβ + ηac(	bdC−1)αβ)

− 2|z|2
x45

(ηbd(	caC−1)αβ − ηab(	cdC−1)αβ)

+ 2

x45
ηbc(	adC−1)αβ + x2 − x |z|2

x2
45

×(−4ηacηdb + 4ηabηdc)C−1
αβ

)]
. (25)

The final answer is given by

A′′C−1A0A−1T 0 = A′′
1 + A′′

2 + A′′
3 (26)

where

A′′
1 = 2ξ1aξ2bk1dk3cTr (P−H/ (n)Mp	

cbad )(t + s′ + u′)L3

A′′
2 = −2

(
ξ2b (−2k2 · ξ1k3cL1

+2k3 · ξ1L2(k3c + k1c)) Tr (P−H/ (n)Mp	
cb)

+ 2k1 · ξ2k3cξ1aTr (P−H/ (n)Mp	
ca)L1

− 2
s′
u′ k3 · ξ2k1dξ1aTr (P−H/ (n)Mp	

ad )L2

)

+ 2L1

(
tξ1aξ2bTr (P−H/ (n)Mp	

ba)

+ 2k3ck1dξ1 · ξ2Tr (P−H/ (n)Mp	
cd )

)

A′′
3 = 2Tr (P−H/ (n)Mp)L3

[
− t (k3 · ξ1)(k3 · ξ2)

+ (k3 · ξ2)(k2 · ξ1)s′ + (k3 · ξ1)(k1 · ξ2)u′ + 1

2
(ξ1 · ξ2)u′s′

]
.

(27)

On the other hand, this amplitude for the following picture
〈VC−1VA0VA0VT−1〉 was computed to be

AC−1A0A0T−1 = A1 + A2 + A3 (28)

where

A1 = −2iξ1aξ2bk1ek2dTr (P−H/ (n)Mp	
bdae)(t + s′ + u′)L3

A2 = 2

{[
k2dξ2b (−2k2 · ξ1L1 + 2k3 · ξ1L2) Tr (P−H/ (n)Mp	

db)

− 2k1 · ξ2k2dξ1aTr (P−H/ (n)Mp	
ad )L1

]

+
[
k1dξ1a

(
2k1 · ξ2L1 − 2k3 · ξ2

s′

u′ L2

)

×Tr (P−H/ (n)Mp	
da) + 2k2 · ξ1k1dξ2bTr (P−H/ (n)Mp	

bd )L1

]

− L1

(
−tξ1aξ2bTr (P−H/ (n)Mp	

ba)

+ 2k2dk1eξ1 · ξ2Tr (P−H/ (n)Mp	
de)

) }

A3 =
[

− t (k3 · ξ1)(k3 · ξ2) + (k3 · ξ2)(k2 · ξ1)s
′

+ (k3 · ξ1)(k1 · ξ2)u
′ + 1

2
(ξ1 · ξ2)u

′s′
]

− 2iTr (P−H/ (n)Mp)L3. (29)

In the next section we address the tachyon’s momentum
expansion to be able to expand our S-matrix and, finally,
we generate its non-zero couplings.

5 Tachyon’s momentum expansion

In [24] it is conjectured that the momentum expansion for the
tachyon is universal. Given the momentum conservation for
a closed string RR and a tachyon, one reveals that ka + pa =
0, therefore pa pa must be sent to the mass of the tachyon
(k2 = −m2). Hence, one understands the fact that

pa pa → 1

4

and that is just possible for SD-branes or euclidean branes.
This means that amplitude makes sense for non-BPS SD-
branes [41]. The coupling of the two tachyons and a gauge
field is non-zero, so to be able to produce all tachyon and
massless poles of the EFT, we need to employ a unique
expansion for all non-BPS branes. Two Mandelstam vari-
ables should be sent to the mass of the tachyon as follows:

s + t + u = −pa pa − 1

4
, t → 0, s → −1

4
, u → −1

4
.

(30)

(iμ′
pβ

′π1/2) is the normalization constant and the closed
forms of the expansions are

L1 = −π3/2
(

1

t

∞∑
n=−1

bn(u
′ + s′)n+1

+
∞∑

p,n,m=0

ep,n,mt
p(s′u′)n(s′ + u′)m

)
,

L2 = −π3/2
(

1

s′
∞∑

n=−1

bn(u
′ + t)n+1

+
∞∑

p,n,m=0

ep,n,ms
′p(tu′)n(t + u′)m

)
; (31)

thus some of the above coefficients are found.3 Having taken
(31), we would understand that L1, L2, L3 have t-channel

3

L3 = −π5/2
∞∑

p,n,m=0

(
cn(s

′ + t + u′)n + cn,m
s′nu′m + s′mu′n

(t + s′ + u′)

+ f p,n,m(s′ + t + u′)p(s′ + u′)n(s′u′)m
)

b−1 = 1, b0 = 0, b1 = 1

6
π2, e1,0,0 = 1

6
π2

c0 = 0, c1 = π2

3
, c1,0 = c0,1 = 0, f0,0,1 = 4ζ(3).
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gauge fields and s′, u′, (s′ + t + u′) tachyonic singularities.
We make comparisons of the singularity structures as well as
all contact terms. We then reconstruct all singularities in EFT
and derive the restricted world volume Bianchi identities for
non-BPS branes.

6 Singularities and restricted Bianchi identities

Let us first compare singularity structures between 〈VC−2VA0

VA0VT 0〉 and 〈VC−1VA0VA−1VT 0〉 with (29). If we use
momentum conservation k1a + k2a + k3a = −pa and
pC = H to the complete A′

3 of (19), then we are able
to produce all (s′ + t + u′) channel poles A3 of (29). The
first term A′

2 produces the seventh term A2 that has tachyon
singularities. Replacing k3c = −(k1c + k2c + pc) for the
second term of A′

2, we obtain

−25/2i L1Tr (P−C/ (n−1)Mp	
cde)

×(k1c + k2c + pc)k2dk1eξ1 · ξ2. (32)

Equation (32) is symmetric under both k1c, k2c and is anti-
symmetric in terms εa0...ap−3cde inside the trace; therefore,
k1c, k2c have no contribution to our coupling. Using pC = H
we derive the eighth term of A2 that has (s′ + t +u′) tachyon
singularities. The above arguments hold for the third term of
A′

2 so the third term of A′
2 reconstructs the second term of

A2 that has s′-channel tachyon poles. If we apply momentum
conservation to the sixth term of A′

2, we find the following
interaction:

25/2i
s′

u′ L2k3 · ξ2k1eξ1aTr (P−C/ (n−1)Mp	
cae)(k1c + pc).

(33)

k1c has no effect on the above interaction and using pC = H ,
(33) regenerates all u′ channel tachyon singularities (the fifth
term of A2). Having applied momentum conservation to the
fourth term A′

2 we obtain

23/2i L12k2 · ξ1k2dξ2bTr (P−C/ (n−1)Mp	
cbd )(k1c + k2c + pc).

(34)

k2c has no contribution to the above interaction and using
pC = H , one reproduces the first term of A2. Now adding
the contribution k1c of (34) to the fifth term of A′

2 we obtain

23/2i L12k2 · ξ1k1cξ2bTr (P−C/ (n−1)Mp	
cbd)(k2d + k3d),

(35)

which is the sixth term of A2. By applying momentum con-
servation to the seventh term A′

2 we get

23/2i2k1 · ξ2k2dξ1a(k1c + k2c + pc)Tr (P−C/ (n−1)Mp	
cda)L1.

(36)

k2c has no contribution; taking pC = H , we generate the
third term A2 of (29). One might suppose that k1c from (36)
is an extra singularity; however, the presence of this term is
needed. Indeed if we take the contribution k1c from (36) and
add it to the last term of A′

2 we find

23/2i2k1 · ξ2k1cξ1a(k2d + k3d)Tr (P−C/ (n−1)Mp	
cda)L1,

(37)

which is exactly the third term A2. Therefore, we are able
to produce not only all t-channel singularities (29) but also
all its s′, u′, (t + s′ + u′) channel tachyon singularities of
〈VC−2VA0VA0VT 0〉 are produced. Let us deal with singular-
ities that appear in (27). A′′

3 is the same as A3. The fourth
and fifth terms of A′′

2 are equivalent to the fifth and seventh
terms of A2. Applying momentum conservation to the sixth
term A′′

2, we get

2L1k1dξ1 · ξ2Tr (P−H/ (n)Mp	
cd)(k1c + k2c + pc). (38)

k1c has no contribution to the above interaction. The contri-
bution from k2c produces the eighth term A2, and to make a
consistent result for both symmetric amplitudes, one imposes
the following restricted Bianchi identity:

pcHa0...ap−2ε
a0...ap−2cd = 0. (39)

Using the direct scattering amplitude 〈VC−2Vφ0Vφ0VT 0〉
the following Bianchi identity holds in terms of both the RR
field strength and the RR potential in the complete space-
time:

εa0···ap
(

− pap (p + 1)Hi j
a0···ap−1 − p j Hi

a0···ap + pi H j
a0···ap

)

= dH p+2 = 0 (40)

or

pa0ε
a0···ap

(
− pap p(p + 1)Ci ja1···ap−1 − p jCia1···ap

+ piC ja1···ap
)

= 0. (41)

If we apply momentum conservation to the first and third
termsA′′

2 and simultaneously take into account the restricted
world volume (39), then we actually reconstruct the sum of
the first and sixth terms of A2 as well as the third and fourth
terms A2. The same holds for the second term A′′

2 and we
regenerate the second term A2. Hence, in comparison with
(29) and using the restricted world volume Bianchi identities
we are able to produce all t-channel gauge field singularities
as well as s′, u′, (t+s′ +u′) channel tachyon singularities of
〈VC−1VA0VA−1VT 0〉. Unlike the 〈VC−2Vφ0Vφ0VT 0〉 analysis,
here we have no bulk singularity structures at all. Hence,
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brane singularities have been matched without producing any
extra residual contact interactions.

7 Contact term comparisons

To be able to obtain all the restricted Bianchi identities, we
try to compare all contact interactions between (19) and (27)
with all order contact terms of (29). If we replace k3c =
−(k1c + k2c + pc) to A′

1 of (19) (also with A′′
1) and use the

following Bianchi identity:

pcε
a0..ap−5cbda = 0, (42)

then we produce all contact interactions of A1 for the p =
n+3 case. The leading order couplings can be produced if we
would normalize the amplitude by (μ′

pβ
′π1/2) and compare

it with the following coupling in the EFT:

β ′μ′
p(2πα′)3Tr (Cp−4 ∧ F ∧ F ∧ .DT ) (43)

Recently the method of getting all order contact interac-
tions has been released in [24,26]. One can apply the higher-
derivative corrections to the EFT couplings to produce all
non-leading terms. For example, if we replace the expansion
of L3 in the amplitude, then one can derive all order con-
tact interactions of the amplitude for the p = n + 3 case as
follows:

8β ′(πα′3)μ′
p

[ ∞∑
n=0

cn

(
α′

2

)n

(DaDa)
nTr (Cp−4 ∧ F ∧ F ∧ DT )

+
∞∑

p,n,m=0

f p,n,m

(
α′

2

)p

(DaDa)
p (

α′)2m+n
Cp−4 ∧ Tr

×
(
Da1 · · · Dam Db1 · · · Dbn ((F ∧ Dam+1 · · · Da2m F) ∧ Db1

· · · Dbn Da1 · · · Da2m DT )

)]
. (44)

Note that bothA′′
1 andA′

1 satisfy the Ward identity asso-
ciated with the gauge fields.

Making use of the Bianchi identities we are able to gen-
erate all contact interactions 〈VC−2VA0VA0VT 0〉 from (29)
without any ambiguity. For instance, the first contact term of
the amplitude for the p = n + 1 case is

32

(p − 1)! (μ
′
pβ

′π2)Ha0···ap−2ξ1apξ2ap−1ε
a0···ap . (45)

This contact interaction can be reconstructed by taking into
account the following gauge invariant coupling in an EFT:

2β ′μ′
p(2πα′)2Tr (Cp−2 ∧ F ∧ DT ). (46)

Notice that (43) is found by expanding the exponential of
WZ action and using the multiplication rule of the super-
matrices. If we consider the expansions of L1, L2 into the

amplitude then one finds the contact interactions to the next
leading order for the p = n + 1 case

32

(p − 1)! (μ
′
pβ

′π2)Ha0···ap−2ε
a0···ap

×
{

− π2

6

(
2k2 · ξ1k2ap−1ξ2ap − 2k1 · ξ2k1ap−1ξ1ap

+ 2k1 · ξ2ξ1ap−1k2ap + 2k2 · ξ1ξ2apk1ap−1 − tξ1apξ2ap−1

+ 2ξ1 · ξ2k1ap k2ap−1

)[
t + 2(s′ + u′)

]

+ π2

6
ξ1apξ2ap−1(s

′ + u′)2

+
(

π2

3
k3 · ξ1k2ap−1ξ2ap

[
2(t + u′) + s′

]
− [1 ↔ 2]

)}
.

(47)

All terms in (47) are related to the corrections of the EFT
couplings. One can explore the following EFT couplings that
regenerate the contact terms in (47):

− 1

12
β ′μ′

p(2πα′)4
[

− i DβFaαD
αFbβDcT

+ 3i

2
FacDαFβbD

αDβT − 3i

2
DαFβbFacD

αDβT

− 1

2
DaD

αDcFbαDβD
βT + FaαD

βDαDβDbDcT

−1

2
DaD

αDβD
βFbαDcT + DbDcFaαD

βDαDβT

+ 4DαDaDcFβbDαD
βT − 1

2
DaFαβDbD

αDβDcT

− DaD
βDβDcFbαD

αT + 2DbD
αDβFaαDβDcT

+ DαDαDcFβbD
βDaT

+ DaD
βDβFbαD

αDcT + 1

2
DβDαDβDcFaαDbT

− 1

2
DαDβFabDαDβDcT

]
1

(p − 2)!Ca0···ap−3ε
a0···ap−3abc

(48)

where the covariant derivative of the tachyon is DaT =
∂aT − i[Aa, T ]. Note that by the direct scattering amplitude
of a closed string RR field, a tachyon and a gauge field in
Sect. 2, we derived all order α′ higher-derivative corrections
to the last coupling of (48).

7.1 All (t + s′ + u′)-channel tachyon singularities

Let us explore all (t + s′ +u′)- channel tachyon singularities
of the amplitude A′

3 for the p + 1 = n case. Extracting
the trace and normalizing the amplitude we derive them as
follows:
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pcCa0···ap−1ε
a0···ap−1c

(
− t (k3 · ξ1)(k3 · ξ2) + (k3 · ξ2)(k2 · ξ1)s′

+ (k3 · ξ1)(k1 · ξ2)u′ + 1

2
(ξ1 · ξ2)s′u′

)

×
∞∑

n,m=0

cn,m(s′mu′n + s′nu′m)
32β ′μ′

pπ
3

(s′ + t + u′)p! , (49)

which satisfies the Ward identity. These poles can be con-
structed by employing a WZ coupling 2iμ′

pβ
′(2πα′)

∫
Cp∧

DT and all order higher-derivative corrections to two
tachyon–two gauge field couplings. In the effective field
theory all singularities are derived by the following sub-
amplitude and vertices:

A = V α(Cp, T )Gαβ(T )V β(T, T3, A1, A2),

Gαβ(T ) = iδαβ

(2πα′)Tp(s′ + u′ + t)
,

V α(Cp, T ) = 2iμ′
pβ

′(2πα′) 1

p!ε
a0···apCa0···ap−1kap .

(50)

Replacing the vertex of two tachyon-two gauge field cou-
plings in the above field theory amplitude, we obtain all
tachyon singularities in the EFT as follows:

32πα′2β ′μ′
p

εa0···ap−1c pcCa0···ap−1

p!(s′ + t + u′)

×
∞∑

n,m=0

(
(an,m + bn,m)[s′mu′n + s′nu′m]

×
[

− t (k3 · ξ2)(k3 · ξ1) + (k2 · ξ1)(k3 · ξ2)s
′

+ (k1 · ξ2)(k3 · ξ1)u
′ + (ξ1 · ξ2)

1

2
u′s′

])
. (51)

Some of the coefficients are

a0,0 = −π2

6
, b0,0 = −π2

12
, a1,0 = 2ζ(3),

a0,1 = 0, b0,1 = b1,0 = −ζ(3).

These poles (51) are exactly the ones that appeared in S-
matrix elements (49).

7.1.1 All u′, s′ channel tachyon singularities

Given the symmetries of the amplitude, we reconstruct all u′-
channel poles in the EFT. Like by exchanging momenta and
polarizations, all s′-channel singularities can also be exam-
ined:

32μ′
pβ

′π2

(p − 2)! pcCa0···ap−3ε
a0···ap−3cae

×
∞∑

n=−1

bn
(s′ + t)n+1

u′ (2k3 · ξ2)k1aξ1e. (52)

All these u′-channel poles can be constructed by the follow-
ing rule:

A = V α(Cp−2, A1, T )Gαβ(T )V β(T, T3, A2). (53)

V β(T, T3, A2) should be found from the non-Abelian kinetic
term of the tachyons in DBI action. If we employ the cor-
rections that we got from WZ coupling 2iβ ′μ′

p

∫
Cp−2 ∧

F ∧ DT in (15), then we obtain the higher order vertex of
V α(Cp−2, A1, T ) and the other vertices as follows:

V β(T, T3, A2) = iTp(2πα′)(k3 − k) · ξ2,

V α(Cp−2, A1, T ) = 2μ′
pβ

′ (2πα′)2

(p − 2)!ε
a0···ap−1c pc

×Ca0···ap−3k1ap−2ξ1ap−1

∞∑
n=−1

bn(α
′k1 · k)n+1. (54)

k is the off-shell tachyon momentum. Replacing (54) inside
(53), we obtain all order u′ channel tachyon poles in an EFT:

A = 2μ′
pβ

′(2πα′)2

(p − 2)!u′ εa0···ap−1c pcCa0···ap−3k1ap−2ξ1ap−1 (2k3 · ξ2)

×
∞∑

n=−1

bn(t + s′)n+1,

which are precisely the singularities that appeared in (52).
Eventually, one can show that all t-channel gauge field sin-
gularities are generated by taking into account the following
rule and vertices in the EFT:

A = V a(Cp−2, T3, A)Gab(A)V b(A, A1, A2),

V a(Cp−2, T3, A) = 2μ′
pβ

′(2πα′)2 1

(p − 2)!ε
a0···ap−2ac pc

×Ca0···ap−3kap−2

∞∑
n=−1

bn(α
′k3 · k)n+1,

V b(A, A1, A2) = −iTp(2πα′)2[ξb1 (k1 − k) · ξ2

+ ξb2 (k − k2) · ξ1 + ξ1 · ξ2(k2 − k1)
b],

Gab(A) = iδab

(2πα′)2Tpt
.

k is the off-shell gauge field’s momentum and
V a(Cp−2, T3, A) was derived from the corrections to the
WZ coupling Cp−2 ∧ F ∧ DT . Notice that the kinetic term
of the gauge fields is fixed in DBI action, so one finds that
V b(A, A1, A2) should not receive any higher-derivative cor-
rections. The tachyon expansion that we talked about is also
consistent with effective field theory. This is because we are
able to produce all tachyon and massless poles of the string
amplitude in the EFT as well.

The expansion has also been checked for various other
non-supersymmetric cases, such as all the other three and four
point functions (like CAT,CφφT ). That is why we believe
that the expansion is universal. This might indicate that the
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tachyon momentum expansion is unique. It would be nice to
check it with the higher point functions of non-BPS string
amplitudes. The precise form of the solutions for integrals of
six point functions is unknown. Given the exact symmetries
of the amplitudes and the universal tachyon expansion in
[42], we were able to obtain all the singularity structures
of the amplitude of a closed string RR and four tachyons.
We hope to overcome some other open questions in the near
future.
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