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Abstract The construction of exact solutions in scalar field
inflationary cosmology is of growing interest. In this work,
we review the results which have been obtained with the
help of one of the most effective methods, viz., the method
of generating functions for the construction of exact solu-
tions in scalar field cosmology. We also include in the debate
the superpotential method, which may be considered as the
bridge to the slow roll approximation equations. Based on the
review, we suggest a classification for the generating func-
tions, and find a connection for all of them with the superpo-
tential.

1 Early inflation and the implemented scalar field

Inflationary expansion of the universe during very early
times, once the universe emerged from the quantum gravity
(Planck) era, has been proposed in the late 1970’s and, mainly
in the beginning of the 1980’s and is becoming more accepted
as a necessary stage of the standard Big Bang theory model.
In the work of Starobinsky [1], nonsingular isotropic cosmo-
logical models with a massive scalar field were investigated.
Although this work was concerned more with a bouncing
cosmology rather than inflation, the field equations and the
corresponding slow-roll solutions were already derived in
this paper. These were later employed in the chaotic inflation
model of Linde [9]. The works by Starobinsky [2], Guth [3],
Linde [4] and Albrecht and Steinhardt [5] include the phys-
ical mechanism based on quantum corrections and phase
transitions during the very early stage of the universe. Expo-
nential (de Sitter) expansion is the feature of inflationary
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models which helped to solve the long standing problems of
the standard Big Bang theory model: the horizon, flatness,
homogeneity, isotropy and some other problems.

In Sato’s work [6], the first-order phase transition model
of the early Universe that leads to an exponential expansion
which stretches domains much greater than the horizon scales
was considered. Also, in [7] it was pointed out that fluctua-
tions associated with the phase transition are exponentially
stretched and then may play the role of seed fluctuations for
large-scale structures. Further, the monopole problem was
also shown to be resolved by exponential expansion by Ein-
horn and Sato [8]. The chaotic inflation scenario proposed by
Linde [9] differs from other previous versions since it is not
based on the theory of high-temperature phase transition in
the very early universe, but contains the locally homogeneous
scalar field which is slowly rolling down to the minimum of
the scalar field potential.

After that proposal, many investigations took place of the
inflationary universe connected with a self-interacting scalar
field as the source of gravitation in the Friedmann world. Let
us briefly mention some interesting works concerning the
study of a scalar field in inflationary cosmology.

Homogeneous isotropic cosmological models with a mas-
sive scalar field have been studied in the works [10,11]. It
was shown that inflationary stages are a fairly general prop-
erty of most solutions in the considered model. The general
conditions for inflation were investigated in the work [12]. It
was found that under the lower limit for the amplitude of a
scalar field, the universe naturally enters into and exits out of
an inflationary phase. What is important is that such behavior
takes place under a large variety of scalar potentials which are
polynomial, logarithmic or exponential. It was also stated that
a scalar field is essential for inflation [12]; it is unlikely that
a vector or other non-scalar field will lead to inflation. The
difference between scalar potentials in particle physics and
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those in cosmology has been stressed in the work [13]. The
author wrote: ”... we do not really know which theory of parti-
cle physics best describes the very early universe. One should
therefore keep an open mind as to the form of V (φ)”. Halli-
well chose the exponential potential and showed that it leads
to a solution with power-law inflation, and that this solution
is an attractor. Detailed investigations of power-law inflation
have been carried out in the work [14]. The authors found
the constraints on the model coming from the requirement
of solving the horizon, flatness, reheating and perturbation-
spectrum problems. It was stated also that these constraints
can be suitably satisfied. An exact power-law inflationary
solution possessing an exponential potential was given in the
work [15]. The generic inhomogeneous generalization of this
solution having both scalar and tensor superhorizon “hairs”
was derived in the paper [16].

Let us mention also the investigation carried out by
Ivanov [17] where he found exact solutions for a nonlinear
scalar field in cosmology. The solutions he obtained included
polynomial, trigonometric and exponential potentials. The
method he used for searching for exact solutions was subse-
quently called the Hamilton-Jacobi-like approach.

From the observational point of view, most results which
can be related to observational data have been obtained from
the so-called slow roll approximation of the cosmological
dynamical equations [4,5]. Detailed investigations of vari-
ous physical phenomena from particle physics and GUT the-
ories for the period until the 1990’s can be studied from the
reviews [18–20]. Our attention will be concentrated on exact
solutions of inflationary models, the study of which started
about ten years later, after inflationary cosmology had been
proposed.

Thus we are going to present a brief review of the construc-
tion of exact solutions in the inflationary universe, i.e., the
solutions of self-consistent Einstein and scalar field equations
in Friedmann cosmology. The direct connection between
scalar field cosmology and cosmology based on the perfect
fluid stress-energy tensor needs to be mentioned. This con-
nection is always valid except in the case of dust matter.
Therefore we included the case of exact solutions for perfect
fluid as the source of gravitation.

The construction of exact solutions in inflationary cos-
mology started with the work by Muslimov [21]. The results
presented in that article will be discussed in Sect. 3. Here we
would like to mention that the very method and many inter-
esting exact solutions presented in [17] have been reproduced
and generalized in [21]. New methods and new sets of exact
solutions have been developed in the work [21] as well.

Barrow [22] found a simple way to solve exactly the cos-
mological dynamic equations in terms of a pressure-density
relationship. In this way he obtained the known power-law
and de Sitter forms of inflation and new classes of behavior
in which the expansion scale factor increases as the exponent

of some power of the cosmic time coordinate. The double-
exponential law solution was obtained as well.

The work by Ellis and Madsen [23] was the first where
“the inverse problem” was considered in the framework of
cosmology. Usually one suggests that we know the scalar
potential in the very early universe from HEP, and our task
is to find the scale factor and the scalar field as functions
of time. However Ellis and Madsen [23] suggested starting
from the given scale factor! Indeed, it is clear that the scale
factor may be found from observational data. Then we may
take into account this fact to find the potential and scalar field
from the cosmological equations. This work was done and
examples of exact solutions have been presented for the pure
scalar field (without taking into account radiation which is
also considered there). Further this approach was developed
in the works [24–26].

Reconstruction of models with a scalar field (quintessence)
and dust-like particles (baryons and dark matter) from obser-
vational data was further developed by Starobinsky [27],
Huterer and Turner [28], Nakamura and Chiba [29] using
the luminosity data and in Starobinsky [27] from the growth
factor of inhomogeneities.

Our paper is organised as follows: in Sect. 2, we present
the basic equations of scalar field cosmology. In Sect. 3, we
discuss generating functions for finding solutions, and Sect. 4
is devoted to the classification of the generating functions.
The superpotential method is presented in Sect. 5 and we
conclude with Sect. 6.

2 Basic equations of scalar field cosmology

We consider the model of a self-gravitating scalar field φ with
the potential of self-interaction V (φ). The action of such a
model is

S =
∫

d4x
√−g

(
R + �

2κ
− 1

2
φ,μφ,νg

μν − V (φ)

)
, (1)

where R is the curvature scalar, φ the scalar field, φμ = ∂μφ

the short representation of the partial derivative dφ/dxμ, κ is
Einstein’s gravitational constant, and � is the cosmological
constant, which will mainly be included in the scalar field
potential V (φ) as the constant part of it.

In the standard way one can obtain the energy-momentum
tensor (EMT)

T (s f )
μν = φ,μφ,ν − gμν

(
1

2
φ,ρφ,ρ + V (φ)

)
, (2)

and the Einstein equation

Gμν ≡ Rμν − 1

2
gμνR = κT (s f )

μν , (3)
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may be represented through the trace of the EMT in the form

Rμν = κ

(
−Tμν + 1

2
gμνT

)
= φ,μφ,ν + gμνV (φ). (4)

Varying the action (1) with the scalar field φ, we obtain
the dynamic equation of the scalar field

− ∇μ∇μφ + V ′(φ) = 0, V ′ ≡ dV

dφ
. (5)

We consider the homogeneous and isotropic Universe as the
spacetime with the Friedmann–Robertson–Walker (FRW)
metric

ds2 = −dt2 + a2(t)

(
dr2

1 − εr2 + r2
(
dθ2 + sin2 θdϕ2

))
,

(6)

where ε = 0, ε = 1, ε = −1 for the spatially-flat, closed
and open universe, respectively.

The Einstein Eq. (3) and the equation of the scalar field
dynamics (5) in the FRW metric (6) lead to the system of
equations

ä

a
+ 2ȧ2

a2 + 2ε

a2 = κV (φ), (7)

−3ä

a
= κ

(
φ̇2 − V (φ)

)
, (8)

φ̈ + 3
ȧ

a
φ̇ + V ′(φ) = 0. (9)

Equations (7) and (8) can, in an equivalent way, be replaced
by thier sum and the linear combination 3(7) + (8). Including
the Hubble parameter H = ȧ/a, the system (7)–(9) can be
rewritten in the form

H2 + ε

a2 = κ

3

(
1

2
φ̇2 + V (φ)

)
, (10)

Ḣ − ε

a2 = −κ

2
φ̇2, (11)

φ̈ + 3H φ̇ + V ′(φ) = 0. (12)

We will refer to the system (10)–(12) as the Scalar Cosmol-
ogy Equations (SCEs).

The representation above, Eqs. (10)–(12) has some advan-
tages for the derivation of any of the three Eqs. (10)–(12) from
the other two, and differential consequences of them.

Another representation of the SCEs was first proposed
by Ivanov [17]. Suggesting the dependence of the Hubble
parameter H on the scalar field φ, the transformation of the
Eqs. (10)–(12) for the spatially-flat universe (ε = 0) to the
form, which was called later the Hamilton–Jacobi-like form,
was made. Equation (11) is transformed to

H ′ = −κ

2
φ̇. (13)

Squaring the above equation and making the substitution
φ̇2/2, expressed in term of H ′2, and substituting into (10),

one can obtain

2

3κ

[
dH

dφ

]2

− H2 = −κ

3
V (φ). (14)

It is worthwhile to note that this procedure and the very
equation (14) have been obtained by G. Ivanov in 1981 [17].
Unfortunately this result was published in limited editions
(in Russian) and it was not familiar outside the USSR. Fortu-
nately, in 1990, in the work of A. Muslimov [21], the Ivanov
result was reproduced (Muslimov referenced the Ivanov arti-
cle), and some of the solutions were generalized as well.
In the same year, within the detailed investigation of long-
wavelength metric fluctuations in inflationary models, D.
Salopek and J. Bond [30] obtained the ”separated Hamilton-
Jacobi equation that also governs the semiclassical phase of
the wave functional”. The obtained equation contains a cou-
ple of scalar fields and definitely can be applied to a single
scalar field. Therefore we suggest that Eq. (14) in the cosmo-
logical context should be called the Ivanov–Salopek–Bond
(ISB) equation.

3 Generating function for solving the
Ivanov–Salopek–Bond equation

The structure of Eq. (14) prompts us to find the form of the
potential which can give the exact solution. Indeed, let the
potential V (φ) be of the form

V (φ) = − 2

3κ
F ′2 + (F(φ) + F∗)2 , (15)

where F = F(φ) is a C1 function on φ and F∗ = const. We
will call the function F(φ) the generating function. Com-
paring Eqs. (14) with (15), it is easy to find the solution of
(14)

H(φ) =
√

κ

3
(F(φ) + F∗). (16)

Thus, one can directly from (14) obtain the potential if the
Hubble parameter is given. And vice versa, if one sets the
potential in the form (15), then the solution of (14) will be
defined by the Eq. (16).

3.1 Potential in polynomial form

As an example, let us choose the generating function F(φ)

as the finite series on degrees of the field φ

F(φ) =
p∑

k=0

λkφ
k + F∗. (17)
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Under this circumstance, the potential V (φ) takes the fol-
lowing form

V (φ) = − 2

3κ

⎡
⎣

p−1∑
k=0

(k + 1)λk+1φ
k

⎤
⎦

2

+
[ p∑
k=0

λkφ
k + F∗

]2

. (18)

Let us consider the simple case when F∗ = 0, k = 0, p = 1.
Then the potential becomes

V (φ) = − 2

3κ
λ2

1 + λ2
0 + 2λ0λ1φ + λ2

1φ
2. (19)

The generating function F(φ) and the Hubble parameter are

F(φ) = λ0 + λ1φ, H(φ) =
√

κ

3
(λ0 + λ1φ). (20)

If we additionally set λ0 = 0, then we obtain the solution
for the massive scalar field as in [17], with λ2

1 = m2/2 (for
the sake of simplicity we also set c = h̄ = 1). Thus the
potential takes the form

V (φ) = m2φ2

2
− m2

3κ
. (21)

Solving Eq. (13) one can obtain the evolution of the scalar
field

φ(t) = −m

√
2

3κ
t + φs = −m

√
2

3κ
(t − t∗),

φs = m

√
2

3κ
t∗. (22)

The index “s” (“singularity”) here is related to the values at
the initial time t = 0, i.e., for a singularity in accordance
with big bang theory. The Hubble parameter

H = m

√
κ

6
φ, (23)

has a dependence φ on time (22), an this gives us a possibility
to perform integration and obtain the dependence of the scale
factor on time

a = as exp

(
−m2

6
t2 + m

√
κ

6
φs t

)
. (24)

Thus we obtained the exact solution for the potential (21),
which is represented by the dependence of φ on time (22),
and the scale factor on time (24).

Also, for the first time, solution (24) was obtained in [9] by
using the slow-roll approximation for the potential V (φ) =
m2φ2/2 in contrast to the shifted potential (21).

It is interesting to note that the same solution and its appli-
cation for the calculation of the number of e-folds and scalar
spectral parameter were found and developed later by Wang
[31].

When λ0 �= 0 the solution for the scale factor will differ
by the factor as in front of the exponent

a = as exp

(
−m2

6
t2 + m

√
κ

6
φs t + λ0

√
κ

3

)

= ãs exp

(
−m2

6
t2 + m

√
κ

6
φs t

)
. (25)

Here ãs = as exp
(
λ0

√
κ/3
)
. The potential V (φ) then takes

the form

V (φ) = − 2

3κ
λ2

1 + λ2
0 + 2λ0λ1φ + λ2

1φ
2

=
(
mφ√

2
+ λ0

)2

− m2

3κ
. (26)

Let us note that the linear transformation of the field with-
out changing of the mass

φ̃ = φ√
2

+ λ0

m
(27)

leads to the potential (21) for the field φ̃.
Let us consider the case when k = 1, 2. The generating

function F(φ) takes the form

F(φ) = λ1φ + λ2φ
2. (28)

The potential V (φ) is

V (φ) = − 2

3κ
(λ1 + 2λ2φ)2 + (λ1φ + λ2φ

2)2. (29)

We can make a simplification by considering λ1 = 0. The
potential then takes the Higgs form

V (φ) = − 2

3κ
(2λ2φ)2 + (λ2φ

2)2. (30)

Using the relation (16), we may find H and H ′ expressed
through φ

H =
√

κ

3
λ2φ

2, H ′ = 2

√
κ

3
φ. (31)

Equation (13) takes the form

2

√
κ

3
φ = −κ

2
φ̇. (32)

Performing the integration we find the dependence of φ on
time

φ = exp

[
− 4√

3κ
λ2(t − t∗)

]
. (33)

Substituting this result into (31) and performing the integra-
tion, we will find the scale factor a(t)

a(t) = as exp

[
−λ2κ

8
exp

(
− 8λ2√

3κ
(t − t∗)

)]
. (34)

This is the double-exponental law solution [17,22].
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To make a comparison with Ivanov’s results (with sub-
script ”I” in his notation) [17], let us display the relations
between the parameters of the model

μI = − 16

3κ
λ2

2, λI = −4λ2
2, 3κμI = 4λI .

The case when λ1 �= 0 leads to the scalar field

φ = 1

2λ2
exp

[
− 4√

3κ
λ2(t − t∗) − λ1

4λ2

]
. (35)

The scale factor then takes the following form

a(t)=as exp

[
−
√

κ

3

λ2
1

4λ2
t −

√
3κ

8λ2
exp

(
− 8λ2√

3κ
(t − t∗)

)]
.

(36)

It is useful to note the role of the addition of the constant F∗
to the function F(φ). In our presentation for H(φ) (16), we
can extract the constant part of the Hubble parameter

H(φ) =
√

κ

3
(F + F∗) = H̃(φ) + H∗. (37)

The presence of the constant H∗ will be exhibited as the
additional factor for a(t)

a(t) = eH∗t exp

(∫
Hdt

)
. (38)

In the considered examples above (25) and (36), such fac-
tors can be extracted explicitly.

3.2 Trigonometric potential

The solution for the potential which leads to the Sine-Gordon
type equation was obtained in [17]. Such a setting used the
special choice of the additional parameter. Let us consider
this point in detail.

We choose the corresponding generating function F(φ)

as

F(φ) = A sin(λφ), A, λ − const. (39)

Then the potential is

V (φ) = −2A2λ2

3κ
cos2(λφ) + A2 sin2(λφ). (40)

To obtain the potential suggested in [17], it is enough to
choose the parameter λ in the following way: λ2 = 3κ

2 . Such
a choice leads to the potential

V (φ) = −A2 cos
(√

6κφ
)

. (41)

Equating the parameter A2 = μ, we find the correspondence
of the potential function with that presented in [17].

The Hubble parameter in terms of the scalar field can be
defined from (16)

H(φ) = A

√
κ

3
sin(λφ). (42)

Integrating equation (13), it is necessary to consider the inte-
gral
∫

dx

cos x

which has various functional representations
∫

dx

cos x
= ln

∣∣∣tan
(π

4
+ x

2

)∣∣∣+ c1

= 1

2
ln

1 + sin x

1 − sin x
+ c2, c1, c2 − const. (43)

In [17] the first representation was shown. We take the second
representation in which the scalar field is defined from the
relation

sin(λφ) = tanh
(
Aλ

√
2(t − t∗)

)
. (44)

Applying this result to (42) and performing the integration
over time t , we obtain the scale factor

a(t) = as
[
cosh(Aλ

√
2(t − t∗))

]1/3

= as
[
cosh(A

√
3κ(t − t∗))

]1/3
. (45)

3.3 Exponential potential

The exponential potential in [17] is given as

V (ϕ) = α exp(βϕ), α, β − const. (46)

If we set

F(φ) = A exp(μφ), (47)

then the potential takes the form

V (φ) = A2
(

1 − 2μ2

3κ

)
exp(2μφ). (48)

Comparing this result to the original potential (46), we can
find the relations

α = A2
(

1 − 2μ2

3κ

)
, β = 2μ, A =

√
α

1 − β2

6κ

(49)

In accordance with the general procedure explained at the
beginning of Sect. 3, one can obtain

H(φ) =
√

κ

3
A exp(μφ). (50)

123



301 Page 6 of 14 Eur. Phys. J. C (2018) 78 :301

Then the dependence of the scalar field on time t has a log-
arithmic character

φ(t) = − 1

μ
ln

(
2Aμ2

√
3κ

t

)
+ φs . (51)

The scale factor is evaluated via a power law

a(t) = as(t − t∗)κ/2μ2
. (52)

An addition of the constant F∗ to F(φ) leads to the general-
ization of the solution (52)

a(t) = ase
H∗t (t − t∗)κ/2μ2

, H∗ =
√

κ

3
F∗. (53)

This is the exponential power law solution. Then the potential
acquires the additional terms

V (φ) = A2
(

1 − 2μ2

3κ

)
exp(2μφ) + 2AF∗eμφ + F2∗ . (54)

Muslimov [21] found the generalization of Ivanov’s solu-
tion for the exponential potential. Let us represent this, which
contains both solutions.

If we take the generating function F(φ) in the form (47)
with the potential (54) then

H(φ) =
√

κ

3

(
Aeμφ + F∗

)
. (55)

We can find that

H ′ = κ

3
Aμeμφ. (56)

Integrating (13), we obtain

eμφ =
(

2Aμ2

√
3κ

t + v∗
)−1

, (57)

where v∗ is a constant of integration. Finally we find

φ(t) = − 1

μ
ln

(
2Aμ2

√
3κ

t + v∗
)

. (58)

To obtain Ivanov’s solution [17], we set v∗ = 0 and take into
account the relations (49).

To obtain Muslimov’s solution [21], we set v∗ = 1 and
take into account the relations below

F∗ = 0, � = A2
(

1 − 2μ2

3κ

)
, A = 2/μ, B = A/

√
3

The solution (58) without restrictions on the parameter v∗
gives some generalization.

3.4 The solution with an inverse potential

The potential in [21] was presented in the following way

V (φ) = m2φ−β

(
1 − 1

6
β2φ−2

)
, β > 0. (59)

It is not difficult to check that the same potential can be
obtained from the generating function

F(φ) = mφ−β/2. (60)

Therefore it is clear that the solution can be obtained by a
general scheme. The Hubble parameter is

H(φ) =
√

κ

3
mφ−β/2 + H∗ (61)

As we know the influence of H∗ on the result, we may take
H∗ = 0 for the sake of simplicity.

Integrating (13) we can find the dependence of the scalar
field on time,

φ(t) = [K1(t − t∗)]2/(β+4) + φ∗,

K1 =
√

κ

3

(
β + 4

2mβ

)
. (62)

This result leads to the time dependence of the Hubble param-
eter,

H(t) =
√

κ

3
m [K1(t − t∗)]−β/(β+4) . (63)

Then the scale factor is,

a = asm

√
κ

3

(
β + 4

4

)
K−β/(β+4)

1 exp
(
(t − t∗)4/(β+4)

)
.

(64)

The solution of such a type can be confronted with both a
very early and late time universe. Similar solutions have been
obtained in [22].

3.5 The solution with an intermediate (hyperbolic) function

In the range of the results described above, Muslimov [21]
suggested a new original approach for solving the scalar field
cosmology equation. To simplify calculations, let us, follow-
ing [21], introduce a new variable

x =
√

3κ

2
φ (65)

and the potential function

f 2 = κ

3
|V (φ)| . (66)

For this notation, the Ivanov-Salopek-Bond (ISB) equa-
tion (14) reduces to(
H ′
x

)2 − H2 = ∓ f 2 (67)

The upper case corresponds to the positive sign of the poten-
tial. It is interesting to mention that an equation of this type
was studied by Mitrinovitch in 1937 [32].

Let us search for a solution in the form

H(x) = f (x) cosh
(

coth−1 y(x)
)

, y > 1, (68)
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The other choice is for the lower sign

H(x) = f (x) sinh
(

tanh−1 y(x)
)

, y < 1. (69)

Here we included inverse hyperbolical tangents instead of
inverse hyperbolical cotangents as in Muslimov’s work with
the aim of avoiding plus-minus signs in the final equation.
Using the formulae above, for transition to the function y(x),
we obtain
[
f ′ cosh u + f sinh u u′]2 − [ f (x) cosh u]2 = − f 2. (70)

Here, for the sake of briefness, we introduce the function u
in the following way

u(y) = coth−1 y(x). (71)

We can shift the second term on the left hand side of (70) to
the right hand side and, using the property of the hyperbolic
function, take the root on the left and right hand side of the
equation (considering all values as positive). As the result,
we obtain the equation

f ′ cosh u + f sinh uu′ = f sinh u. (72)

The transition to the function y(x) is performed by inverse
substitution of (71) and by introducing the derivative

u′ = y′

1 − y2 . (73)

Finally we arrive at the following relation

f ′

f
= tanh(coth−1 y)

(
1 − y′

1 − y2

)
. (74)

After simple algebraic transformations, we acquire the Abel
equation

y′ = f ′

f
y3 − y2 − f ′

f
y + 1. (75)

Repeating the same procedure for the lower case, we once
again arrive at the equation (75).

3.6 Kim’s exact solutions

Kim [33] in the article proposed the generating function
G(φ), which we can compare with the Ivanov generating
function F(φ) (15)–(16) with F∗ = 0. The Hubble parame-
ter in the work [33] is represented as

H(φ, φ̇) = − 1

3φ̇

dF2(φ)

dφ
. (76)

To obtain the relation between the generating functions
F(φ) and G(φ) we may simply equalise F(φ) ≡ G(φ).
With the representation (76) the solution of the SCEs can be

obtained with the following formulae

V (φ) = F2(φ) − 2

3
[F ′(φ)]2, (77)

φ̇ = − 2√
3
F ′(φ), H = ȧ

a
= 1√

3
F(φ). (78)

In the work [33], two generating functions were consid-
ered. First of them is for the constant potential V (φ) = � >

0:

F(φ) = √
�. (79)

This gives De Sitter space-time with the scale factor expand-
ing exponentially.

φ̇ = 0, H = HI ≡ √�/3. (80)

The second generating function is given by

F(φ) = e

√
3
2 φ + �e−

√
3
2 φ

2
. (81)

The scalar field and the scale factor behave as

φ =
√

2

3
log

(√
3HI tanh

(
3HI

2
t

))
, (82)

a(t) = a0 sinh1/3(3HI t). (83)

The third generating function

F(φ) = √
�

(
1 + μ

n + 1
|φ|n+1

)
(84)

leads to the power-like potential

V (φ) = �

(
1 + μ

n + 1
|φ|n+1

)2

− 2

3
�μ2φ2n, (85)

where μ, n are constants. The scalar field and the scale factor
are

φ(t) = (2(n − 1)μHI t)
− 1

n−1 ,

a(t) = a0 exp

(
HI t − (2(n − 1)μHI t)

− 2
n−1

2(n + 1)

)
, (86)

where we set φ0 = φ(0) = 0 at the time t = t0.

3.7 Exact solutions for constant-roll inflation

Now, we consider inflationary models with the additional
condition

φ̈ = −(3 + α)H φ̇, (87)

where α is arbitrary constant parameter. Standard slow-roll
inflation occurs when α 	 −3 while for the other ultra-
slow-roll regime, one has α = 0. Such models correspond to
the constant-roll inflation models which interpolate between
these two regimes, and were considered in the papers [34,35].
Also, this approach was used for analysis of cosmological
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models in f (R) gravity on the basis of conformal transforma-
tions from the Jordan frame to the Einstein frame which lead
to Ivanov–Salopek–Bond (Hamilton–Jacobi-like) Eqs. (13)–
(14) [36]. In the works [36,37], it was shown that these types
of models satisfy the latest observational constraints.

Equation (13), in the system of units with κ = 1, and
Eq. (87) gives the condition on the Hubble parameter [35]

d2H

dφ2 = 3 + α

2
H (88)

with general solution

H(φ) = C1 exp

(√
3 + α

2
φ

)
+ C2 exp

(
−
√

3 + α

2
φ

)
.

(89)

From Eq. (14) one has the potential

V (φ) = −αC2
1 exp

(√
2(3 + α)φ

)

+ 2(6 + α)C1C2 − αC2
2 exp

(
−√2(3 + α)φ

)
.

(90)

On the basis of the general solutions (89)–(90), one can find
the specific ones [35]:

• The solutions for α > −3 only:
Power-law inflation,1 which was already considered in

Sect. (3.3)

H = Me

√
3+α

2 φ
, (91)

V (φ) = −αM2 exp
(√

2(3 + α)φ
)

, (92)

φ = −
√

2

3 + α
ln[(3 + α)Mt], (93)

H = 1

(3 + α)t
, (94)

a ∝ t
1

3+α , (95)

where M is an integration constant.
• The solutions for both cases α > −3 and α < −3:
The inflation model with hyperbolic scale factor in the

case of α > −3:

H = M cosh

(√
3 + α

2
φ

)
, (96)

V (φ) = 3M2
(

1 + α

6

[
1 − cosh(

√
2(3 + α)φ)

])
, (97)

φ =
√

2

3 + α
ln

[
coth

(
3 + α

2
Mt

)]
, (98)

H = M coth[(3 + α)Mt], (99)

a ∝ sinh1/(3+α)[(3 + α)Mt]. (100)

1 In the original work [35] the time t was omitted in the expression for
the Hubble parameter (94), but the scale factor was correct.

This solution is equivalent to a solution found in [50] but in
a different context.

The inflation model with hyperbolic scale factor in the
case of α < −3:

H = M cosh

(√
3 + α

2
φ

)
, (101)

V (φ) = 3M2
(

1 + α

6

[
1 − cos(

√
2|3 + α|φ)

])
, (102)

φ = 2

√
2

|3 + α|arctan(e|3+α|Mt ), (103)

H = −M tanh(|3 + α|Mt), (104)

a ∝ cosh1/|3+α|(|3 + α|Mt). (105)

This is approximately hilltop inflation in the vicinity of
φ = 0. On the whole, it is close to that in natural inflation,
but the difference is that the constant roll potential has a neg-
ative cosmological constant. Therefore, the potential (102)
is essentially different from known ones and, as shown in
[35,37], it satisfies observational constraints.

The model with oscillating scale factor:

H = M sinh

(√
3 + α

2
φ

)
, (106)

V (φ) = −3M2
(

1 + α

6

[
1 + cosh(

√
2(3 + α)φ)

])
, (107)

φ = −2

√
2

3 + α
arctanh

[
tan

(
3 + α

2
Mt

)]
, (108)

H = −M tan[(3 + α)Mt], (109)

a ∝ cos1/(3+α)[(3 + α)Mt]. (110)

From the scale factor (110) one has ä(t) < 0; nevertheless,
this solution corresponds to the oscillatory dynamics of the
early universe.

4 The classification of generating functions

We propose a classification of generating functions as they
appeared in the literature in chronological order. As the first
class, we name the Ivanov generating function F(φ) (15)–
(16). It was not represented in direct form in [17], but in the
present publication for the first time, using this generating
function, we recover and generalise all solutions of Ivanov’s
work [17].

Now we continue the classification of the generating func-
tions that occur in the literature.

4.1 The second class of generating functions

Chimento, Cossarini, and Jakubi (1993–1995) in the papers
[38,39] represented the potential of the scalar field in the
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form

V [φ(a)] = F(a)

a6 , (111)

where F(a) is a new type of generating function. The scalar
field equation can be integrated and it yields

1

2
φ̇2 + V (φ) − 6

a6

∫
da

F

a
= C

a6 , (112)

where C is an arbitrary integration constant. Thus, the prob-
lem of generation of exact solutions has reduced to the
quadratures:

�t = √
3
∫

da

a

[
6

a6

∫
da

F

a
+ C

a6

]−1/2

, (113)

�φ = √
6
∫

da

a

[−F + 6
∫
daF/a + C

6
∫
daF/a + C

]1/2

, (114)

where �t ≡ t − t0, �φ ≡ φ − φ0 and t0, φ0 are arbitrary
integration constants.

For the generating function

F(a) = Bas
(
b + as

)n
, (115)

where B(> 0), b(> 0), s and n are constants and s(n+1) =
6. If we take C = 0, the potential is simplified to

V (φ) = B

[
cosh

(
s

2
√

6
�φ

)]2n

. (116)

This potential has a non-vanishing minimum at �φ = 0
for s > 0, which is equivalent to an effective cosmological
constant. When s < 0, the origin becomes a maximum, and
the potential vanishes exponentially for large φ.

In [38] the Eq. (113) was evaluated for some values of s:

�t =
√

3

B

[
arcsinh

(
a√
b

)
− a

(b + a2)1/2

]
, s = 2. (117)

a =
{
b
[
exp
(√

3B�t
)

− 1
]}1/3

, s = 3. (118)

For s > 0, the evolution begins from a singularity as �t1/3

and is asymptotically De Sitter with �φ → 0 for t → ∞.
On the other hand, for s < 0 the evolution has a deflationary
behaviour from a De Sitter era in the far past to a Friedmann
behavior �t1/3 when t → ∞.

4.2 The third class of generating functions

In the paper Schunck and Mielke [40] the Eqs. (7)–(9) are
written in the following form

Ḣ = V (H) − 3H2, (119)

φ̇ = ±√
2
√

3H2 − V (H), (120)

where V (φ) = V (φ(t)) = V (φ(t (H))) = V (H).

The potential as a function of the Hubble parameter V =
V (H) is defined as

V (H) = 3H2 + g(H). (121)

By choice of the graceful exit function g(H), the exact solu-
tions of the SCES can be generated.

The choice for power–law and intermediate inflation are

g(H) = −AHn, (122)

where n is real and A is a positive constant.
For n = 0, the following solutions were found:

H(t) = −(At + C1), (123)

a(t) = a0 exp

(
− 1

2A
(At + C1)

2 + C2

)
, (124)

φ(t) = ±
√

2A

κ
(At + C1 − C3), (125)

V (φ) = 3

(√
φ

2A
+ C3

)2

− A. (126)

For n = 1

H(t) = C1 exp(−At), (127)

a(t) = a0 exp

(
−C1

A
exp(−At) + C2

A

)
, (128)

φ(t) = ±
√

8

A

[√
C1 exp

(−At

2
− C3

)]
, (129)

V (φ) = A

8
e2C3φ2

(
3A

8
e2C3φ2 − A

)
. (130)

For n = 2

H(t) = 1

At + C1
, (131)

a(t) = a0(C2(At + C1))
1/A, (132)

φ(t) = ±
√

2

A
ln

(
1

C3(At + C1)

)
, (133)

V (φ) = (3 − A)C2
3 exp(±√

2Aφ), (134)

For n �= 0, 1, 2

H = (A(n − 1)(t + C1))
1/(1−n) , (135)

a(t) = a0 exp

[
A(n − 1)(t + C1)

](2−n)/(2(1−n))

,

+C1)
(2−n)/(1−n)

]
, (136)

φ(t) + C3 =
√

2

A

2

2 − n

[
A(n − 1)(t + C1)

](2−n)/(2(1−n))

,

(137)
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V (φ) =
√

A

8
(2 − n) (φ + C3)

2/(2−n)

×
(

3
A

8
(2 − n)2 (φ + C3)

2

−A

(
A

8

)n/2

(2 − n)n (φ + C3)
n

)
. (138)

4.3 The fourth class of generating functions

Kruger and Norbury [41] proposed the generating function
F = F(φ) via,

φ̇ ≡ ±√(F − 1)V . (139)

Then the scalar field dynamic equation transforms to,

φ̈ ±
√

3

2
V
√
F2 − 1 + V ′ = 0. (140)

Equations (139) and (140) form a set of coupled equations
which are equivalent to equation (12). They can be uncoupled
by differentiating (139) with respect to time and substituting
φ̈ in (140). Using the evident relation φ̈ = d(φ̇2)/(2dt), by
taking time derivative of the square of Eq. (139), we have,

φ̈ = 1

2

[
(F − 1)V ′ + V F ′] , (141)

where F ′ ≡ dF/dφ. Then, inserting the expression for φ̈

into (140) we obtain,

(F + 1)V ′ + V F ′ ± √
6V
√
F2 − 1 = 0. (142)

It can be seen that if one chooses F ≡ F(φ), then Eq. (142)
is always separable and the potential is given by,

V = β exp

(
−
∫

F ′ ± √
6
√
F2 − 1

F + 1
dφ

)
, (143)

where F ≡ F(φ) and β is a constant.
The choice of the generating function in the work [41], is

F = cosh(λφ). The the solution can be obtained from (143)
and (139):

V (φ) = C (1 + cosh λφ)∓(2
√

6/λ)−1 , (144)

These equations are only consistent if all upper or all lower
signs are taken, i.e., one should not mix upper and lower
signs. For the sake of simplicity, we chose λ = √

6.
The upper “−” sign in Eq. (144), corresponding to the

upper “+” sign in the definition (139), gives

V (φ) = C

(1 + cosh λφ)3 . (145)

The lower “+” sign in (144), corresponding to the lower “−”
sign in the definition (139), leads to

V (φ) = C(1 + cosh λφ). (146)

Using this result (146) in Eq. (139), we obtain

φ̇ = −√
C sinh λφ. (147)

The solution for φ(t) yields

φ(t) = 2

λ
coth−1

{
exp
[
λ
√
C(t − D)

]}

= 1

λ
ln

⎛
⎝exp

[
λ
√
C(t − D)

]
+ 1

exp
[
λ
√
C(t − D)

]
− 1

⎞
⎠ , (148)

where D is a constant. The form of the potential suggests that
φ(t) be a function that decreases from an initial maximum
value similar to the chaotic inflation model. We can choose
D = 0 and so (148) can be written as,

φ(t) = 1

λ
ln

[
exp(λ

√
Ct) + 1

exp(λ
√
Ct) − 1

]
. (149)

This solution can be used to determine the evolution of the
scale factor with time for the expanding (“+” square root)
solution

a(t) = a0

[
exp(2λ

√
C t) − 1

] 1
3
. (150)

4.4 The fifth class of generating functions

Charters and Mimoso [42] in the paper proposed a generating
function in the following form

x(φ) = φ̇/H. (151)

The scalar field’s dynamical equations are transformed to the
following

V (φ) = A

(
3 − 1

2
x2(φ)

)
exp

(
−
∫

x(φ)dφ

)
, (152)

H(φ) = ±√
A exp

(
−1

2

∫
x(φ)dφ

)
, (153)

φ̇2 = x2(φ) exp

(
−
∫

x(φ)dφ

)
. (154)

Further, in [42] the known and new exact solutions were
obtained by the special choice of the generating function
x(φ).

For example, the following type of x(φ) = λφ corre-
sponds to the generalization of the Easther solution [43]:

V (φ) = A
(

3 − λ2φ2/2
)
eλφ2/2, (155)

a(φ) = a0φ
1/λ, (156)

t (φ) = 1

2λ
√
A

[
Ei

(
λφ2

0

4

)
− Ei

(
λφ2

4

)]
, (157)

where Ei is the exponential integral function.

123



Eur. Phys. J. C (2018) 78 :301 Page 11 of 14 301

4.5 The sixth class of generating functions

Harko et al. [44] introduced a new generating function G
with dynamical equations

dG

dφ
+ 1

2V

dV

dφ
coth G +

√
3

2
= 0, (158)

Ḣ = −1

2
φ̇2 = −V sinh2 G, (159)

where the function G can be defined via the scalar field from
the Eq. (159) as

G(φ) = arccosh

√
1 + φ̇2

2V (φ)
. (160)

In [44] the authors considered the case when the scalar field
potential can be represented as the function of G in the form

1

2V

dV

dφ
=
√

3

2
α1 tanh G, (161)

where α1 is an arbitrary constant. With this choice, the evo-
lution equation takes the simple form

dG

dφ
=
√

3

2
(1 + α1) . (162)

Performing the integration one can obtain the general solu-
tion

G (φ) =
√

3

2
(1 + α1) (φ − φ0) , (163)

where φ0 is an arbitrary constant of integration. Using the
form (163) of G, one can obtain the self-interaction potential
of the scalar field and the scale factor

V (φ) = V0 cosh
2α1

1+α1

[√
3

2
(1 + α1) (φ − φ0)

]
, (164)

a = a0 sinh
1

3(1+α1)

[√
3

2
(1 + α1) (φ − φ0)

]
. (165)

A simple solution of the gravitational field equations for
a power-law type scalar field potential can be obtained by
assuming for the function G the following form

G = arccoth

(√
3

2

φ

α2

)
, α2 = constant. (166)

With this choice of G, Eq. (158) immediately provides the
scalar field potential given by

V (φ) = V0

(
φ

α2

)−2(α2+1)
[

3

2

(
φ

α2

)2

− 1

]
, (167)

where V0 is an arbitrary constant of integration. The time
dependence of the scalar field is given by a simple power

law,

φ(t)

α2
=
[√

2V0 (α2 + 2)

α2

] 1
α2+2

(t − t0)
1

α2+2 . (168)

The scale factor can be obtained from da/dφ =
[
(1/

√
6)

coth G] a = (φ/2α2) a, and it has exponential dependence
on the scalar field and time

a = a0 exp

(
φ2

4α2

)

= a0 exp

⎧⎨
⎩

1

4α2

[
(α2 + 2)

√
2V0

α2

] 2
α2+2

(t − t0)
2

α2+2

⎫⎬
⎭ ,

(169)

were a0 is an arbitrary constant of integration.

5 The superpotential method

The superpotential method for the standard inflationary
model (1) was successfully applied for solving the SCEs (7)–
(9). The main idea was [45,46] to represent the SCEs in the
form of the slow roll approximation. i.e., in the equations
for a spatially-flat universe (we obtain them from (7)–(9) by
setting ε = 0)

H2 = 1

3

(
1

2
φ̇2 + V (φ)

)
, (170)

Ḣ = −1

2
φ̇2, (171)

φ̈ + 3H φ̇ + V ′(φ) = 0, (172)

we should omit φ̈, φ̇2. After that, the SCEs in the slow roll
regime take the following form

H2 	 1

3
V (φ), (173)

Ḣ = −1

2
φ̇2, (174)

3H φ̇ 	 −V ′(φ). (175)

To obtain the desired form of the equations, the potential of
total energy [47,48] (or the superpotential, see, for example,
[49]) was introduced, as the sum of kinetic energy (in terms
of scalar field argument U (φ) = φ̇) and the potential energy

W (φ) = 1

2
U 2(φ) + V (φ), U (φ) = φ̇. (176)

After this substitution, the SCEs take the following form:

H2 = 1

3
W (φ), (177)

Ḣ = −1

2
U (φ)2, (178)

3H φ̇ = −W ′(φ). (179)
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As we can see the system of equations above exactly repro-
duce the SCEs in slow roll form (173)–(175) if we substitute
W (φ) instead of V (φ) and U (φ) instead of φ̇.

As we know, any one from the presented exact SCEs in the
slow roll form (177)–(179) can be derived as a consequence
(or a differential consequence) of the remaining two. In our
approach, we exclude from consideration equation (178) in
the first step.

Excluding from (177) the Hubble parameter H , and insert-
ing it into (179), taking into account the superpotential defi-
nition (176), we have the consequence of (177) and (179) in
the form
√

3U 2W 1/2 = −W ′. (180)

Integrating (180) with respect to W , we obtain the relation:

W = 3

4

(∫
U (φ)dφ

)2

, (181)

which leads to the new method of exact solution construction
in cosmology, viz., by suggesting that evolution of the scalar
field is given, one can determine the superpotential by solving
the integral on the right hand side of (181)

∫
φ̇2dt . Knowing

W , one can find H from the Friedmann equation (177) with
the following relation

H = 1

4

√
3

(∫
U (φ)dφ

)
. (182)

Then, by integration, one can find the scale factor a(t).
Thus, the proposed method presents some combination

of the two methods: slow roll-like presentation of the exact
equations [47,48] and obtaining cosmological solutions for
the given scalar field evolution [50].

The advantage of the proposed method lies in the essen-
tial simplification of the integration procedure: one needs
to calculate only one integral for obtaining a superpoten-
tial and Hubble parameter. Then the potential V (176), as
well as the scale factor a(t), are calculated from related
definitions. The exhibition of the simplicity of the pro-
cedure, and its effectiveness can be found in the appli-
cations of the method to cosmology on the brane, in
phantom and tachyon fields [51–53]. The two last have
a very restricted number of exact solutions which can
be essentially extended by virtue of the superpotential
method.

We can have a look at the superpotential method from
another position. The system (170)–(172) has three
unknowns, φ(t), V (φ) and H(t) (or a(t)). To solve it, one
of these variables has to be given a priori. It is customary to
look for the solution for a given V (φ), but as it is known, it is
very difficult to solve the SCEs for a given potential exactly.

In the superpotential approach, it is proposed to reduce
the equations to a simpler form which helps to solve them

exactly. In order to do this, let us consider the superpotential
function W (φ) defined in (176)

W (φ) = 1

2
U (φ)2 + V (φ), U (φ) = φ̇.

Now, with the change of variable dt = dφ/φ̇ and using the
inverse transformation from U (φ) to φ̇, one can obtain

dW

dφ
= dV

dφ
+ φ̈. (183)

Hence, the SCEs (170)–(172) can be rewritten in the slow
roll form (173)–(175). Therefore we can try to solve SCEs in
the superpotential presentation because the slow roll approx-
imation was intensively studied.

The superpotential W (φ) (> 0) shows up as the main
part of the potential function, driving the dynamics of the
Hubble parameter H or the scale factor. To solve them, note
that Eq. (177) defines ȧ/a as a function of φ, H(φ), which
when inserted into Eq. (179), gives the scalar field φ(t) as a
function of t , at least in quadratures

− 3H(φ)

(
dW

dφ

)−1

dφ = dt. (184)

Finally, inserting φ(t) into Eqs. (176) and (179) gives
V (φ) and a(t), respectively, and the solution is completed.

Obviously, one could simply have begun by giving
H=H(φ), but it is usually desirable to have some description
of the potential instead, and for this reason it is preferable to
give W (φ). One could also use H(t) to determine φ(t), since

1

2
φ̇2 = −dH(t)

dt
, (185)

implies that

�φ(t) = ±
∫ √

−2
dH(t)

dt
dt, (186)

where �φ(t) = φ − φ∗, φ∗ is the integration constant. So
since W = 3H2(t), a complete knowledge of H(t) fully
determines the solution to the problem.

Also, we can obtain potential V from the superpotential
W

V (φ) = W (φ) − W ′2
φ (φ)

6W (φ)
. (187)
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Table 1 Types of generating functions and connections between them through superpotential W

References Kind of generating function Connection with W

(I) Ivanov [17]; Fomin and Chervon [49] H(φ) = 1√
3

(F(φ) + F∗) F(φ) = √
W − F∗

(II) Chimento et al. [38] F(a) = V [φ(a)]a6 F(a(φ)) = a6
[
W − W ′2

φ

6W

]

(III) Schunck and Mielke [40] g(H) = V (H) − 3H2 g(H(φ)) = −W ′2
φ

6W

(IV) Kruger and Norbury [41] F(φ) = 1 +
(

φ̇2

V (φ)

)
F(φ) = 6W 2+W ′2

φ

6W 2−W ′2
φ

(V) Charters and Mimoso [42] x(φ) = φ̇/H x(φ) = −W ′
φ

W

(VI) Harko et al. [44] φ̇ = 2V (φ) sinh2 G(φ) coth G(φ) =
√

6W
W ′

φ

5.1 Examples of exact solutions

Firstly, we consider the superpotential W = λφ2n . For this
type of superpotential, we have

φ(t) =
[
φ2−n

0 ± 2n(n − 2)

√
λ

3
(t − t0)

] −1
n−2

, (188)

V (φ) = λφ2n − λ
2n2

3
φ2(n−1), (189)

a(t) = a0 exp

⎧⎨
⎩

−1

4n

[
φ2−n

0 ± 2n(n − 2)

√
λ

3
(t − t0)

] −2
n−2

⎫⎬
⎭ .

(190)

Another potential used in the literature is that of a hyper-
bolic cosine W = V0 (cosh(βφ) − 1) [54]. The solution
found there, with φ0=0, is

φ(t) = −2

β
arcsinh

(
tan

(√
V0

6
β2t

))
, (191)

V (φ) = V0 (cosh(βφ) − 1) − V0
β2

6
(cosh(βφ) + 1) ,

(192)

a(t) = a0 cos
2

β2

(√
Vo
6

β2t

)
. (193)

The expressions for generating functions by means of
superpotential W are represented in the Table 1.

6 Conclusion

The space of exact solutions in scalar field cosmology is very
huge. In this work, we review exact solutions in inflationary
cosmology and the method of finding such solutions. There
are basically three methods of constructing such solutions.
For any scale factor a(t), we can find the potential and kinetic
energy to be satisfied in the self-consistent system of Einstein

and scalar field equations. Secondly, from the evolution of
the scalar field φ = φ(t), we can find the scale factor a(t) and
the potential V (t), thus defining the exact solution. Thirdly,
choosing the generation function, represented in this given
review, one can, once again, obtain a great number of exact
solutions.

Thus, as the next step of the investigation, we suggest
analysing the method of confrontation of theoretical predic-
tions from exact solutions with observational data.
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