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Abstract We construct a higher derivative theory involv-
ing an axionic field and the Weyl tensor in four dimensional
spacetime. Up to the first order of the coupling parameters,
the charged black brane solution with momentum dissipation
in a perturbative manner is constructed. Metal–insulator tran-
sitions are implemented when varying the system parameters
at zero temperature. Also, we study the transports including
DC conductivity and optical conductivity at zero charge den-
sity. We observe the exact particle–vortex duality for some
specific momentum dissipation strength.

1 Introduction

The quantum critical (QC) system has long been a central
and challenging subject in condensed matter physics [1]. It
is believed to account for the most interesting phenomena,
such as the strange metal and pseudo-gap phase, in strongly
correlated quantum materials. The QC system is associated
with a QC phase transition and a QC phase. Since the QC sys-
tem is strongly correlated, the conventional perturbative tools
in traditional field theory, unfortunately, lose their power. We
need to develop novel non-perturbative techniques and meth-
ods.

The AdS/CFT correspondence [2–5], mapping a strongly
coupled quantum field theory to a weakly coupled gravita-
tional theory in the large N limit, provides a powerful tool
to the study of QC physics and has led to great progress.
Especially, the metal–insulator transition (MIT), a special
example of the QC phase transition, has been widely stud-
ied in the holographic framework; for instance see [6–19]
and the references therein. To implement an MIT in a holo-
graphic framework, the key point is to deform the infrared
(IR) geometry to a new fixed point by the introduction of
momentum dissipation [6,7].
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Holographic QC phase at zero density has also been
intensely explored in [20–31]. By studying transport phe-
nomena, in particular the optical conductivity, from a probe
Maxwell field coupled to the Weyl tensorCμνρσ on top of the
Schwarzschild–AdS (SS–AdS) black brane background [20–
28], one observed a non-trivial frequency dependent con-
ductivity attributed to the introduction of the Weyl tensor. It
exhibits a peak, which resembles the particle response and we
refer to this as the Damle–Sachdev (DS) peak [32], or a dip,
which is similar to the behavior of the vortex response, and
is analogous to the one in the superfluid–insulator quantum
critical point (QCP)1 [20–22].

But the peak is not the standard Drude peak and the DC
conductivity has a bound which cannot approach zero. When
higher derivative (HD) terms are introduced, an arbitrarily
sharp Drude-like peak can be observed at low frequency in the
optical conductivity and the bound of conductivity is violated
such that a zero DC conductivity can be obtained at a specific
parameter2 [27]. Another step forward is the construction
of a neutral scalar hair black brane by coupling the Weyl
tensor with a neutral scalar field, which provides a framework
to describe the QC phase and a transition away from QCP
[30,31].

In this paper, we shall construct a higher derivative theory
including the four derivative terms, a simple summation of
the Weyl tensor as well as a term from the trace of axions
coupling with the gauge field, and a six derivative term, a
mixed term of the product of the Weyl tensor and the axionic
field coupling with the gauge field, and we obtain a charged
black brane solution in a perturbative manner. By using a per-
turbative method, some charged black brane solutions from

1 Those kinds of peak and dip features have also been observed in probe
branes and DBI action [33] and just higher terms in F2 with F being
the Maxwell field strength [17].
2 We would like to point out that this bound in the conductivity is
formalized in “almost” general theories in [34,35]. But in more generic
theories [16,36,37], this bound is also violated.
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higher derivative gravity theory have been constructed; for
instance see [14,38–42] and the references therein. Espe-
cially, in [14], it is the first time that an MIT is realized in
the framework of higher derivative gravity. Along the line of
[14], we shall study the MIT physics of our present model.
Also, we explore the QC phase of this model at zero charge
density.

We organize this paper as follows. In Sect. 2, we construct
the higher derivative model coupling axionic field and Weyl
tensor with the gauge field. Then the perturbative black brane
solution is obtained in Sect. 3. In Sect. 4, we calculate the
DC conductivity at finite charge density and study the MIT
at zero temperature. The conductivity at zero charge den-
sity is explored in Sect. 5. A brief discussion is presented in
Sect. 6. The constraint on the coupling parameters is obtained
in Appendix A.

2 Holographic model

We construct a higher derivative holographic effective theory
including metric, axions and gauge field as follows:

S0 =
∫

d4x
√−g

(
R + 6

L2 − �̄

)
, (1a)

SA =
∫

d4x
√−g

(
− L2

8g2
F

FμνX
μνρσ Fρσ

)
, (1b)

where

X ρσ
μν = I ρσ

μν − 4γ1,0L
2�̄I ρσ

μν − 8γ0,1L
2C ρσ

μν

− 8γ1,1L
4�̄C ρσ

μν , (2a)

�̄ ≡ Tr [�] ≡ �μ
μ, �μ

ν = 1

2

∑
I=x,y

∂μφI ∂νφI . (2b)

A pair of spatial linear dependent axionic fields, φI = αxI
with I = x, y and α being a constant, are introduced in
the above action, which are responsible for dissipating the
momentum of the dual boundary field. L is the radius of
the AdS spacetimes. gF and γm,n with m, n = 0, 1 are the
dimensionless coupling parameters. In what follows, we shall
set gF = 1. �

μ
ν is the second order derivative term with

respect to axions. The first term in the tensor X gives the
standard Maxwell term. I ρσ

μν is an identity matrix defined as
I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν . The second term can be classified

as a four derivative term, which is the term with n = 0,m =
1 in [36,37] (Eq. (2.13) in [36]). The third term is also a
four derivative one, constructed by the Weyl tensor, which
has been well studied in [14,43]. For consistency with the
current literature [20,43,44], we denote γ0,1 = γ in what
follows. The last term is a 6 derivative term constructed by
axions and the Weyl tensor. More higher derivative terms can
be constructed in terms of axions, the Weyl tensor and the

gauge field, which we leave for future study. It is easy to
see that the new tensor X possesses the same symmetry as
Xμνρσ = X[μν][ρσ ] = Xρσμν , like in [20,43,44].

The equations of motion (EOMs) can be straightforwardly
derived from the above action (1),

∇μ[∇μφI (1 − γ1,0L
4F2 − γ1,1L

6Cμνρσ FμνFρσ )] = 0,

(3a)

∇ν(X
μνρσ Fρσ ) = 0, (3b)

Rμν − 1

2
Rgμν − 3

L2 gμν − L2

2
(1 − 4γ1,0L

2�̄)

(
FμρF

ρ
ν

− 1

4
gμνFρσ F

ρσ

)

− L2

2
(1 − γ1,0L

4F2 − γ1,1L
6Cμνρσ FμνFρσ )

×
⎛
⎝ ∑

I=x,y

∂μφI ∂νφI

⎞
⎠ + 1

2
gμν�̄

− L4(γ + γ1,1L
2�̄)(G1μν + G2μν + G3μν) = 0, (3c)

where

G1μν = 1

2
gμνRαβρσ F

αβFρσ − 3R(μ|αβλ|F α
ν) F

βλ

− 2∇α∇β

(
Fα

(νF
β

μ)

)
, (4a)

G2μν = −gμνRαβF
αλFβ

λ + gμν∇α∇β(Fα
λF

βλ)

+�(F λ
μ Fνλ) − 2∇α∇(μ(Fν)βF

αβ)

+ 2RναF
β

μ Fα
β + 2RαβF

α
μF

β
ν + 2RαμF

αβFνβ,

(4b)

G3μν = 1

6
gμνRF

2 − 1

3
RμνF

2 − 2

3
RFα

μFαν

+ 1

3
∇(ν∇μ)F

2 − 1

3
gμν�F2. (4c)

Following Ref. [20], we can construct the electromagnetic
(EM) dual theory of (1) with (2), which is

SB =
∫

d4x
√−g

(
− L2

8ĝF
Gμν X̂

μνρσGρσ

)
, (5)

where ĝ2
F ≡ 1/g2

F and Gμν ≡ ∂μBν − ∂νBμ. The tensor X̂
is defined by

X̂ ρσ
μν = −1

4
ε αβ
μν (X−1)

γ λ
αβ ε

ρσ
γλ , (6)

1

2
(X−1) ρσ

μν X αβ
ρσ ≡ I αβ

μν , (7)

where εμνρσ is a volume element. The tensor X̂ possesses
the same symmetry as X , i.e., X̂μνρσ = X̂[μν][ρσ ] = X̂ρσμν .

When X ρσ
μν = I ρσ

μν , the modified Maxwell theory (1b) is
reduced the standard Maxwell one. In this case, one can easily
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deduce that X−1 = X and so X̂ ρσ
μν = I ρσ

μν from Eqs. (7)
and (6). Hence, the actions (1b) and (5) are identical, which
demonstrates that the standard Maxwell theory is self-dual.

It has been shown in [20] that, when the higher derivative
termγ is introduced, the EM self-duality is violated. Here, we
demonstrate that even if only the γ1,0 coupling term is intro-
duced, the EM self-duality is also violated. We first evaluate
the inverse of X in terms of (7), which is

(X−1) ρσ
μν = 1

1 − 4γ1,0L2�̄
I ρσ
μν . (8)

Immediately, from Eq. (6), we find

X̂ ρσ
μν = (X−1) ρσ

μν = 1

1 − 4γ1,0L2�̄
I ρσ
μν . (9)

Since X̂ �= X , the EM self-duality is violated.

3 Black brane solution

Since the EOM (3) are a set of third order differential equa-
tions with high nonlinearity, it has been hard to solve it ana-
lytically or even numerically so far. So following the strategy
in [14] (also see [38–42]), we shall construct analytical solu-
tions up to the first order of those coupling parameters.3 To
this end, we take the following ansatz:

ds2 = − r2

L2 f (r)dt2 + L2

r2 f (r)
dr2 + r2

L2 g(r)(dx
2 + dy2),

(10a)

A = At (r)dt, (10b)

where the UV boundary is at r → ∞. Note that, when we
take the following ansatz ofφI :φI = αxI , Eq. (3a) is satisfied
automatically. So we only need to expand the functions f (r),
g(r) and At (r) in powers of γ0,1, γ and γ1,1 up to the first
order as

f (r) = f0(r) + γ1,0Y1,0(r) + γY (r) + γ1,1Y1,1(r), (11a)

g(r) = 1 + γG(r) + γ1,1G1,1(r), (11b)

At (r) = At0(r) + γ1,0H1,0(r) + γ H(r) + γ1,1H1,1(r),

(11c)

where f0(r) and At0(r) are the zeroth order solutions, which
have been worked out in [45], while Yi, j (r), Gi, j (r) and
Hi, j (r) are the first order solutions of γi, j . Note that we do

3 When the Weyl terms are turned off, i.e., γ = 0 and γ1,1 = 0, the
black brane can be worked out analytically [36,37]. We shall make a
qualitative comparison on the DC conductivity between [36,37] and our
present results in Sect. 4.2.

not include the correction from γ0,1 into the function of g(r),
so that we can make a direct comparison with the analytical
solution in [36,37].

By directly solving Eq. (3) to the zeroth and first order of
the coupling parameters, we can determine these functions:

f0(r) = 1 − M

r3 + q2

r4 − α2L4

2r2 , At0(r) = μ − 2q

r L2 ,

(12a)

Y1,0(r) = −4α2q2L4

3r6 , H1,0(r) = 8α2qL2

3r3 , (12b)

Y (r) = c0q2

r5
− c0M

2r4 + c1α
2L4

2r2 − c0

r
+ 20Mq2

9r7

− 104q4

45r8 + 10α2q2L4

9r6 − 32q2

9r4 ,

G(r) = −c0

r
+ c1 + 4q2

9r4 ,

H(r) = − c0q

r2L2 − 4Mq

r4L2 + 296q3

45r5L2
− 8α2qL2

9r3 , (12c)

Y1,1(r) = d0M

2r4 − d0q2

r5
+ α2d1L4

2r2 + d0

r

+ 64α2Mq2L4

45r9 − 496α2q4L4

315r10

+ 28α4q2L8

45r8 − 32α2q2L4

45r6 ,

G1,1(r) = d0

r
+ d1 + 8α2q2L4

45r6 ,

H1,1(r) = d0q

r2L2 − 8α2MqL2

3r6 + 208α2q3L2

45r7 − 8α4qL6

15r5
.

(12d)

(μ, q, M, c0, c1, d0, d1) are seven integration constants, which
are not independent from one another. Below, we shall derive
the relations among them.

First, we can make the coordinate transformations

r → r + 1

2
γ c0 − 1

2
d0γ1,1, (13a)

(x, y) → (x, y)

(
−1

2
d1γ1,1 − γ c1

2
+ 1

)
, (13b)

and a redefinition of the axionic charge α

α → α

(
1

2
d1γ1,1 + γ c1

2
+ 1

)
, (14)

such that the integration constants (c0, c1, d0, d1) can be
eliminated. Using the conditions that f and At vanish at
the horizon r = rh , we obtain the relations for (μ, q, M):
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q = μrh L2

2
− γ1,0

2α2μL6

3rh

+ γ

(
5α2μL6

18rh
+ 29μ3L6

180rh
− μL2rh

)

+ γ1,1

(
α4μL10

5r3
h

+ 11α2μ3L10

90r3
h

− 2α2μL6

3rh

)
, (15a)

M = r3
h − 1

2
α2L4rh + 1

4
μ2L4rh − γ1,0

α2μ2L8

3rh

+ γ

(
5α2μ2L8

18rh
+ 7μ4L8

45rh
− 4

3
μ2L4rh

)

+ γ1,1

(
8α4μ2L12

45r3
h

+ 71α2μ4L12

630r3
h

− 22α2μ2L8

45rh

)
.

(15b)

It is convenient to work with dimensionless quantities. So
we make the following rescaling:

r → rhr, (t, x) → L2

rh
(t, x), At → rh

L2 At ,

M → Mr2
h , Q → Qr2

h , α → rh
L2 α. (16)

Under this rescaling, we can set L = 1 and rh = 1. Then the
dimensionless temperature can be given by

T = −2α2 + μ2 − 12

16π
− γ1,0

α2μ2

12π
+ γ

μ2
(
μ2 − 60

)
720π

+ γ1,1
α2μ2

(
8α2 + 3μ2 − 84

)
360π

. (17)

Note that all the above quantities q, M and T have been
expanded to the first order of the coupling parameters
(γ1,0, γ, γ1,1). This black brane is characterized by two
parameters, i.e., the temperature T/μ and the strength of the
momentum dissipation α/μ. μ is interpreted as the chemical
potential of the dual field and can be treated as the unit for
the grand canonical system. For later convenience, we denote
T̄ ≡ T/μ and ᾱ ≡ α/T .

In addition, for the convenience of calculation, we shall
work with the coordinate u = 1/r . Then, in terms of μ, we
reexpress f (u), g(u) and At (u) as follows:

f (u) = (1 − u)p(u), (18a)

p(u) = −1

4
μ2u3 − α2u2

2
+ u2 + u + 1

− 1

3
γ1,0α

2μ2u3(u2 + u − 1)

+ γ
1

180
μ2u3(2μ2(13u4 − 14) + 50α2(u3 − 1)

+(μ2 − 100)(u3 + u2 + u) + 240)

+ γ1,1
1

630
α2μ2u3(14α2(8u5 + u4 + u3 + u2 + u

− 8) − 28(8u5 + 8u4 + 8u3 + 4u2 + 4u − 11)

+μ2(62u6 + 6u5 + 6u4 + 6u3 + 6u2

+ 6u − 71)), (18b)

g(u) = 2

45
α2μ2u6γ1,1 + 1

9
γμ2u4 + 1, (18c)

At (u) = μ(1 − u)

[
1 + 4

3
α2u(u + 1)γ1,0

+ γ (2u(u2 + u + 1) − 1

9
α2u(u(9u + 5) + 5)

− 1

90
μ2u(u(u(74u + 29) + 29) + 29))

+ 1

45
α2uγ1,1(60(u4 + u3 + u2 + u + 1)

− 6α2(u(u(u(5u + 3) + 3) + 3) + 3)

−μ2(u(u(u(u(26u + 11) + 11) + 11)

+ 11) + 11))

]
. (18d)

4 DC conductivity at finite density

4.1 The derivation of the DC conductivity

In this section, we follow the procedure in [8,14,46,47] to
calculate the DC conductivity. To this end, we turn on the
following consistent perturbations:

δgtx = 1

u2 htx (u)[1 + γG(u) + γ1,1G1,1(u)],
δAx = −Ex t + ax (u), δφx = χx (u). (19)

Then one can define a radial conserved current in the bulk as

J x = 1

2

√−gXμνρσ Fρσ . (20)

Up to the first order of the coupling parameters, this con-
served current can be evaluated as

J x = −Qhtx (u) + f (u)a′
x (u) − 4α2u2γ1,0 f (u)a′

x (u)

− 2

3
u2 f (u)(α2u2γ1,1 + γ )

×( f ′′(u)a′
x (u) + 3A′

t (u)h′′
t x (u)). (21)

We have defined Q = J t in the above equation. It is the
conserved electric charge density. Once J x is at hand, the
DC conductivity can be evaluated in terms of Ohm’s law,

σDC = J x

Ex
. (22)

Since J x is a radial conserved quantity, the DC conduc-
tivity can be evaluated at the horizon u = 1. First, we extract
the value of htx at the horizon from the t, x component of
the Einstein equation, which reads
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γ1,0

(
1

4
htx (G1,1((A

′)2
t − 2 f ′′ + 8 f ′ + 12) − 2 f ′G ′

1,1)

+ 1

3
α2u2A′

t (2 f f ′′a′
x + htx A

′
t ( f

′′ − 2 f ′))
)

− 1

6
f a′

x A
′
t (4α2u2γ1,1 f

′′ + 4γ f ′′ + 3)

+ htx

(
1

6
(3γ1,1 f

′G ′
1,1−2γ (A′)2

t ( f
′′ − 2 f ′)+3γ f ′G ′)

+ 1

6
α2(2u2γ1,1(A

′)2
t (2 f ′ − f ′′) + 3)

− 1

4
(A′)2

t + f ′′

2
− 2 f ′ − 3

)
= 0. (23)

Notice that the above equation has taken value at u = 1. In
addition, we also need to add a regular boundary condition
of ax at the horizon, which is

a′
x = Ex

f
. (24)

Collecting Eqs. (21)–(24), we can obtain the DC conductiv-
ity:

σ0 = 1 + 1

ᾱ2 + γ1,0

(
28μ2

3
− 8

3
μ4ᾱ2 − 3μ4

5ᾱ2 − 4μ2ᾱ2 − 4μ2

5ᾱ2

− 38μ4

15

)
+ γ

⎛
⎝4 − 4

3
μ2ᾱ2 +

8μ2

15 − 4

ᾱ2 + μ2

9

⎞
⎠

+ γ1,1

(
−4

3
μ4ᾱ4 − 1

5
μ4ᾱ2 + μ4

3ᾱ2 + 4μ2ᾱ2

− 4μ2

ᾱ2 + 10μ4

9
− 8μ2

3

)
. (25)

When γ1,0 = 0 and γ1,1 = 0, the result (25) reduces
to Eq. (37) in [14]. To compare with our present results,
involving more coupling terms, we would like to present a
brief review [14]:

• There is a relation,

σ0(γ, T ) 	 const. − σ0(−γ, T ), (26)

which can be seen to hold when ᾱ is fixed. It can be
viewed as a special particle–vortex duality in [48,49].

• A metal–insulator transition (MIT) happens at zero tem-
perature for a given nonzero γ when we change the
axionic charge ᾱ.

• There is a mirror symmetry at zero temperature4

∂σ0

∂ T̄
(γ, ᾱ) = −∂σ0

∂ T̄
(−γ, ᾱ). (27)

4 This mirror symmetry also may be applicable at finite temperature.

Next, we shall analyze the behavior of the DC conductivity
and explore the MIT. Before proceeding, we introduce the
definition of metallic phase and insulating phase adopted in
many holography references [6–19,50]:

• Metallic phase: ∂T σ0 < 0.
• Insulating phase: ∂T σ0 > 0.
• Critical point (line): ∂T σ0 = 0.

4.2 DC conductivity without Weyl term

In Appendix A, we analyze the causality and instabilities of
the vector modes at zero density. When we only consider the
γ1,0 term, the analysis and the requirement of the positive DC
conductivity indicate −3/40 ≤ γ1,0 ≤ 1/40. But it is hard
to analyze the causality and instabilities of the vector modes
at finite density even if we have an analytical perturbative
black brane solution. We shall leave this problem for future
study. Here, we only approximately impose a further con-
straint from the requirement of the positive DC conductivity
at finite density.

Figure 1 show the DC conductivity σ0 as a function of the
temperature T̄ with different γ1,0 and ᾱ. We find that, when
γ1,0 = 0.025, σ0 is negative for small ᾱ and low temperature
T̄ . Further detailed exploration indicates that the positive
definiteness of the DC conductivity constrains γ1,0 in the
range

− 3/40 ≤ γ1,0 ≤ 1/100. (28)

Also, we, respectively, show the DC conductivity as a
function of ᾱ for γ1,0 belonging to the range (28) at zero
temperature and finite temperature in Fig. 2. Figures 1 and 2
show that our result is qualitatively the same as that found in
[36]:

• At zero temperature, the DC conductivity monotonously
decreases in terms of ᾱ.

• At finite temperature, the DC conductivity is qualitatively
similar to that at zero temperature when γ1,0 > 0. Mean-
while for −3/40 ≤ γ1,0 < 0, the DC conductivity no
longer monotonously decreases but has a minimum at
some finite value of ᾱ.

• When ᾱ is fixed, the DC conductivity monotonously
decreases in terms of T̄ for γ1,0 > 0, which demon-
strates a metal phase. When the sign of γ1,0 changes, an
opposite behavior is found, which is an insulator phase.

Therefore, our system up to the first order of the coupling
parameters captures the main properties as shown in [36].

Finally, we present some comments on comparing with
the 4 derivative Weyl term studied in [14].
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Fig. 1 DC conductivity σ0 as a function of the temperature T̄ with different γ1,0 and ᾱ

Fig. 2 DC conductivity σ0 as a function of ᾱ with different γ1,0 at zero temperature (left plot) and finite temperature (right plot), respectively

Fig. 3 ∂T̄ σ0 as a function of ᾱ at zero temperature for different γ1,0

• Different from that for the four derivative Weyl term, no
MIT happens for a given nonzero γ1,0 when changing ᾱ

(see Fig. 3). But the mirror symmetry on ∂σ0
∂ T̄

(ᾱ) (27) at
zero temperature holds when the sign of γ1,0 changes.

• Equation (26) holds when the sign of γ1,0 changes and ᾱ

is fixed.

4.3 DC conductivity from four derivative theory

When only the four derivative Weyl term γ is involved, an
MIT occurs at zero temperature by varying the axionic charge
ᾱ. In particular, the quantum critical line is independent of
the coupling parameter γ [14].

Fig. 4 Left plot: σ0 as a function of T̄ with γ1,0 = 0.0005, ᾱ = 2.5
and for different γ . Right plot: σ0 as a function of T̄ with γ = 10−4,
ᾱ = 2.5 and for different γ1,0

In this section, we consider the mixed effect on DC con-
ductivity in the four derivative theory including both γ1,0 and
γ terms. The main properties are summarized as follows:

• Equations (26) and (27) hold for fixed ᾱ and changing
the signs of γ and γ1,0 (Fig. 4 and left plot in Fig. 5).

• For positive (negative) small γ1,0, an MIT can be
observed for negative (positive) γ (see right plot in
Fig. 5). But different from the case only involving the
four derivative term in [14], the quantum critical line is
dependent on γ (Fig. 6). It provides a new platform of
QCP such that we can study the holographic entangle-
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Fig. 5 ∂T̄ σ0 as a function of ᾱ at zero temperature

ment entropy and the butterfly effect close to QCP as in
[13,14,51]. We shall explore them in our present model
in the future.

Before proceeding, we present some comments on the
phase diagram for the MIT from four derivative theory at
zero temperature (Fig. 6). For γ1,0 < 0 and γ > 0, with the
increase of the strength of momentum dissipation, there is a
phase transition from metallic phase to insulating one. This
phenomenon is consistent with that of the usual charged par-
ticle excitations. On the other hand, for γ1,0 > 0 and γ < 0,
we find that with the increase of the strength of momentum
dissipation, the phase transition is opposite, i.e., the stronger
momentum dissipates, the more insulating is the material. A
better description of this phenomenon is provided by consid-
ering the excitations of vortices. Just as described [20], the
EM duality of the bulk theory, which is related by changing
the sign of γ , corresponds to the particle–vortex duality in
the dual holographic CFT. Figure 6 shows such a duality;
when we change the sign of γ , there is a duality between
metallic and insulating phase. In fact, the phenomena can be
easily concluded from Eq. (26). Finally, we would like to
mention two corresponding examples. One is the transition
observed in [20] from the Drude-like peak at low frequency
optical conductivity, which is interpreted as the charged par-
ticle excitations, to the dip, which resembles the excitations
of vortices. Another one is the observation in [43] that the
momentum dissipation drives the Drude-like peak into the
dip of the low frequency optical conductivity for γ > 0.
Meanwhile for γ < 0, the opposite scenario appears. When
the sign of γ changes, an approximate duality in optical con-
ductivity is also observed for fixed strength of momentum
dissipation. This duality is also observed in the next section.

4.4 DC conductivity from six derivative theory

Now, we turn to a study of the effect of the six derivative
term. For simplicity, we turn off the four derivative terms,
i.e., we set γ1,0 = 0 and γ = 0. Figure 7 exhibits the DC
conductivity σ0 as a function of the temperature T̄ for some

representative ᾱ and γ1,1. The left plot in Fig. 8 shows ∂T̄ σ0

as a function of ᾱ at zero temperature, while the right plot
shows the phase diagram in the (γ1,1, ᾱ) plane for the MIT at
zero temperature. We find that the properties of DC transport
from six derivative theory is very similar to that from four
derivative theory only involving the Weyl term [14]; here
the mirror symmetries (26) and (27) hold for fixed ᾱ and
changing the signs of γ1,1 in the phase diagram in the (γ1,1, ᾱ)

plane for the MIT at zero temperature. One difference is that
the quantum critical line is shifted to ᾱ 	 0.9.5 It is also
interesting to explore the DC conductivity at finite density
from the six derivative theory only involving Weyl terms and
compare the results with present results, including the mixed
effect of both axions and Weyl tensor. We leave this problem
for future study.

5 Transports at zero density

In this section, we study the transports at zero density. In this
case, the black brane solution reduces to the neutral one [45],

ds2 = 1

u2

(
− f (u)dt2 + 1

f (u)
du2 + dx2 + dy2

)
,

f (u) = (1 − u)p(u), (29)

p(u) =
√

1 + 6α̂2 − 2α̂2 − 1

α̂2 u2 + u + 1.

Note that we have parameterized this black brane solution
by one scaling-invariant quantity α̂ = α/4πT with T =
p(1)/4π . Based on this neutral geometry background, we
shall study the transport starting from four derivative and six
derivative theory, respectively.

5.1 Four derivative theory

In this section, we study the properties of the conductivity in
four derivative theory and see how the new higher derivative
coupling term γ1,0 affects them. Figure 9 shows the optical

5 The quantum critical line from four derivative theory only involving
the Weyl term is located at ᾱ 	 0.82.
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Fig. 6 Phase diagram over (γ, ᾱ) plane for the MIT from four derivative theory at zero temperature (left plot for γ1,0 = −10−4 and right plot for
γ1,0 = 10−4)

Fig. 7 DC conductivity σ0 as a function of the temperature T̄ for some representative ᾱ and γ1,1

Fig. 8 Left plot: ∂T̄ σ0 as a function of ᾱ at zero temperature. Right plot: Phase diagram over (γ1,1, ᾱ) plane for the MIT from six derivative theory
at zero temperature

conductivity σ(ω̂) as a function of ω̂ with representative γ1,0,
γ and α̂. Comparing Fig. 9 with Fig. 1 in our previous work
[43], we observe that, for the system with positive (nega-
tive) γ and γ1,0, the transition from peak (dip) to dip (peak)
appears to go easier with the increase of α̂.

As revealed in [43], particle–vortex duality is recovered
with the change of γ → −γ for a specific value of α̂ =
2/

√
3. Now we want to explore if this phenomenon is generic

when a new higher derivative coupling term γ1,0 is taken
into account. Figure 10 shows the DC conductivity σ0 as a
function of α̂ for the representative γ and γ1,0. We find that,
for a given γ1,0, all the lines of σ0(α̂) with different γ intersect

at one point α̂ = 2/
√

3, which is similar to that found for
only the Weyl term γ being involved. It indicates that σ0(α̂) is
independent of γ for α̂ = 2/

√
3, which can also be deduced

from the expression for DC conductivity (A16). But we note
that the value of σ0(α̂ = 2/

√
3, γ ) is not equal to unity.

Also, the relation σ0(α̂ = 2/
√

3, γ ) = 1
σ0(α̂=2/

√
3,−γ )

does

not hold. It indicates the exact duality of the DC conductivity
only with the Weyl term for α̂ = 2/

√
3 is violated when the

γ1,0 term is taken into account. Furthermore, we study the
optical conductivities of both the original EM theory and its
dual theory for the specific value of α̂ = 2/

√
3, shown in

Fig. 11, and we find that the exact particle–vortex duality is
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Fig. 9 The optical conductivity σ(ω̂) as a function of ω̂ with representative γ1,0, γ and α̂

Fig. 10 The DC conductivity σ0 versus α̂ for the representative γ and γ1,0

Fig. 11 The optical conductivity as a function of ω̂ for various values
of γ , γ1,0 and fixed α̂ = 2/

√
3. The solid and dashed curves are the

conductivity of the original EM theory and its dual theory, respectively

(red for γ = 1/12 and γ1,0 = 1/100 and blue for γ = −1/12 and
γ1,0 = −1/100)

indeed violated when γ → −γ and γ1,0 → −γ1,0. It is easy
to check that if we fix γ1,0, the particle–vortex duality is also
violated when γ → −γ .

5.2 Six derivative theory

Now, we turn to a study of the case in six derivative the-
ory. Figure 12 shows the optical conductivity with γ1,1 being
turned on. We observe that, for positive γ1,1 and small α̂, a
small peak is displayed in the low frequency region. With the
increase of α̂, the small peak starts to develop into a dip (left
plot in Fig. 12). Meanwhile for negative γ1,1, an opposite
scenario is found (right plot in Fig. 12). The phenomenon is
similar to that with the γ term.

Also, we note that, for the specific value of α̂ = 2/
√

3,
the DC conductivity σ0 = 1 and is independent of γ1,1 (see
Fig. 23), which is similar to that with only the Weyl term
[43]. Furthermore, we study the particle–vortex duality of
this case, shown in Fig. 13. It is obvious that, for small γ1,1,
the particle–vortex duality approximately holds. Meanwhile,
for the specific value of α̂ = 2/

√
3, the duality exactly holds.

Though here we do not work out the analytical understand-
ing on the particle–vortex duality for the specific value of
α̂ = 2/

√
3, it seems to originate from the Weyl term. The

additional γ1,0 term violates this exact duality. Further, we
examine the duality from another six derivative term with
X ρσ

μν = −4γ1C2 I ρσ
μν , of which the original theory has been

studied in our previous work [44]. Again, the particle–vortex
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Fig. 12 The optical conductivity σ(ω̂) as the function of ω̂ with representative γ1,1 and α̂

Fig. 13 The optical conductivity as a function of ω̂ for various values of γ1,1 and α̂. The solid and dashed curves are the conductivity of the original
EM theory and its dual theory, respectively (red for γ1,1 = 1/50 and blue for γ1,1 = −1/50)

Fig. 14 The optical conductivity as a function of ω̂ for γ1 = ±0.02 and α̂ = 2/
√

3. The solid and dashed curves are the conductivity of the
original EM theory and its dual theory, respectively (red for γ1 = 0.02 and blue for γ1 = −0.02)

duality exactly holds for α̂ = 2/
√

3 when γ1 → −γ1 (see
Fig. 14). In future, we will further test the robustness of this

phenomenon by exploring that with the higher order terms
of the Weyl coupling.
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6 Discussions

In this work, we extend our previous work [14,43] to con-
structing a higher derivative theory including the coupling
among the axionic field, the Weyl tensor and the gauge field.
To be more specific, we construct four derivative terms, a
simple summation of the Weyl term Cμνρσ coupling with
the gauge field, as well as a term from the trace of axions
coupling with the gauge field, and a six derivative term, a
mixed term by the product of Weyl tensor and the axionic
field, coupling with the gauge field.

Following the strategy in [14], we construct the charged
black brane solution with momentum dissipation in a pertur-
bative manner up to the first order of the coupling parameters.
We study the QCP from 4 and six derivative theory, respec-
tively. For four derivative theory, because of the introduction
of γ1,0, the quantum critical line is independent of γ , which is
different from the case only involving the 4 derivative term
in [43]. It provides a new platform of QCP such that we
can study holographic entanglement entropy and the butter-
fly effect close to QCP, which may inspire new insight. For
six derivative theory, the quantum critical line is independent
of the coupling parameter γ1,1, which is similar that in [14].

Also, we study the transport phenomena including DC
conductivity and optical conductivity at zero charge density,
which is away from the QC phase. For four derivative theory,
the momentum dissipation makes the transition from peak
(dip) to dip (peak) easier, comparing with that in our previous
work [43]. In addition, we find that for the specific value of
α̂ = 2/

√
3, the exact particle–vortex duality, holding for only

the γ term, survives [43] and is violated when the γ1,0 term
is turned on. For the six derivative theory, particle–vortex
duality exactly holds for α̂ = 2/

√
3. Meanwhile the effect

of the momentum dissipation on the transition between the
gap and the dip is similar to that in four derivative theory.

It is definitely a novelty and an interesting matter to com-
pute the optical conductivity at finite chemical potential μ.
However, even if we have obtained the perturbative black
brane solution to the first order of γ in Sect. 3, we still need
to solve the linear perturbative differential equations beyond
the second order to obtain the optical conductivity. It is a hard
task and so we shall leave it for the future. In addition, this
simple model including the mixed terms between the Weyl
tensor and the axions can be straightforwardly generalized to
include the charge complex scalar field such that we can study
the superconducting phase. It is also interesting and valuable
to further explore the transport of our present model at full
momentum and energy spaces, which certainly will reveal
more information of the systems. This work deserves further
study and we plan to publish our results in the near future.
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Appendix A: Bounds on the coupling

In this appendix, we explore the constraints on the coupling
parameters. We mainly examine the causality of the dual
boundary theory, the instabilities of the vector modes and the
positive definiteness of the DC conductivity at zero charge
density. We also discuss the constraint from the requirement
that the graviton mass is real, i.e., m2

g > 0.

1. Bounds on the coupling at zero charge density

To examine the causality of the dual boundary theory and the
instabilities of the vector modes, we decompose the perturba-
tions of gauge field in the Fourier space as Aμ(t, x, y, u) ∼
eiq·xAμ(u,q), with q · x = −ωt + qx x + qy y, and write
down the EOMs as follows:

A′
t + q̂ f

ω̂

X5

X3
A′
x = 0, (A1)

A′′
t + X ′

3

X3
A′
t − p2q̂

f

X1

X3
(q̂ At + ω̂Ax ) = 0, (A2)

A′′
x +

(
f ′

f
+ X ′

5

X5

)
A′
x + p2ω̂

f 2

X1

X5
(q̂ At + ω̂Ax ) = 0,

(A3)

A′′
y +

(
f ′

f
+ X ′

6

X6

)
A′
y + p2

f 2

(
ω̂2 X2

X6
−q̂2 f

X4

X6

)
Ay =0,

(A4)

where the prime denotes the derivative with respect to u and
the dimensionless frequency and momentum ω̂ ≡ ω

4πT =
ω
p , q̂ ≡ q

4πT = q
p , with p ≡ p(1) = 4πT , are intro-

duced. Due to the rotational symmetry in xy-plane, we
have set qμ = (ω, q, 0). Also we choose the gauge as
Au(u,q) = 0. At the same time, a tensor X ρσ

μν defined as
X B
A = {X1(u), X2(u), X3(u), X4(u), X5(u), X6(u)}, with

A, B ∈ {t x, t y, tu, xy, xu, yu}, has been introduced to sim-
plify the expression of the perturbative EOMs. Since the
background is rotationally symmetric in the xy-plane, we
have X1(u) = X2(u) and X5(u) = X6(u). Combining
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Eqs. (A1) and (A2), one has a decoupled EOM for At (u, q̂),
which is

A′′′
t +

(
f ′

f
− X ′

1

X1
+ 2

X ′
3

X3

)
A′′
t

+
(

−p2q̂2X1

f X3
+ p2ω̂2X1

f 2X5
+ f ′X ′

3

f X3
− X ′

1X
′
3

X1X3
+ X ′′

3

X3

)
A′
t = 0.

(A5)

By making a transform as Aμ → Bμ and Xi → X̂i , we
can obtain the EOMs of the dual EM theory from the above
equations. Note that from Eq. (6), it is easy to deduce that
X̂ B
A is also diagonal with X̂i = 1/Xi .
Since Ax can be expressed by At in terms of Eq. (A1), there

are only two independent vector modes, At and Ay , which
correspond to EOMs (A5) and (A4). They can be formulated
in Schrödinger form as

− ∂2
z ψi (z) + Vi (u)ψi (z) = ω̂2ψi (z). (A6)

Notice that we have made a coordinate transformation,
dz/du = p/ f , and a separation of variable, Ai (u) =
Gi (u)ψi (u), where At̄ (u) := A′

t (u) and i = t̄, y. For later
convenience, we decompose the effective potential Vi (u) into
both a momentum dependent part and an independent one,

Vi (u) = q̂2V0i (u) + V1i (u), (A7)

where [27]

V0t̄ = f
X1

X3
, V0y = f

X3

X1
, (A8)

V1t̄ = f

4p2X2
1

[3 f (X ′
1)

2 − 2X1( f X
′
1)

′], (A9)

V1y = f

4p2X2
1

[− f (X ′
1)

2 + 2X1( f X
′
1)

′]. (A10)

Before proceeding, we present the main ingredients con-
straining the coupling parameters as follows.

• If Vi (u) satisfies

0 ≤ Vi (u) ≤ 1, (A11)

the modes meet the requirements of both causality and
the stability of the dual boundary theory [52–54].

• When Vi (u) violates the lower bound, the modes may be
instable. We need further analyze the zero energy bound
state of the potential.

• An additional condition is the requirement of positive
definiteness of the real part of the conductivity, especially
the DC conductivity.

Next, we analyze the constraint on the coupling parameters.

a. Four derivative theory

When only the coupling parameter γ1,0 survives, some
related discussions have been explored in [36]. But here one
only discusses the Schrödinger potential of the perturbation
Ax . Here, we shall present a more detailed discussion in our
present framework.

In terms of the expression of the DC conductivity [20,23]

σ0 = √−ggxx
√−gtt guu X1X5 |u=1, (A12)

we can explicitly write it down when only γ1,0 survives,

σ0 = 1 − 24γ1,0 − 8γ1,0

α̂2 + 8
√

1 + 6α̂2γ1,0

α̂2 . (A13)

Figure 15 shows σ0 as a function of α̂ for sample values
of γ1,0. We see that, for γ1,0 ≤ 1/24, σ0 is positive for all
values of α̂. Meanwhile, for γ1,0 > 1/24, it vanishes for
some finite α̂. This can also be seen from the following:
when α̂ → +∞, σ0 = 1−24γ1,0. Therefore, a non-negative
σ0 gives a constraint on γ1,0 as γ1,0 ≤ 1/24.

Next, we turn to a discussion of the bounds of γ1,0

imposed by the causality and the instabilities. First, it is
easy to find that in the limit of large momentum, since
X1 = X3 = 1 − 4p2α̂2γ1,0u2 for only γ1,0 we have sur-
viving V0t̄ = V0y = f (u), which are the dominant terms.
Obviously, V0t̄ and V0y are independent of the parameter
γ1,0 and satisfy the constraint (A11). Meanwhile for the case
of the small momentum region, the dominant terms are V1,i

(i = t̄, y), which are shown for representative values of γ1,0

and α̂ in Fig. 16. We can see that there is a negative minimum
in V1i . So we need to analyze the zero energy bound state of
the potentials, which is [54]

ñ1t̄ = I/π + 1/2,

I ≡
(
n − 1

2

)
π =

∫ u1

u0

p

f (u)

√−V1t̄ (u)du, (A14)

where n is a positive integer and the potential well in the
integral interval [u0, u1] is negative. Both ñ1t̄ and ñ1y as a
function γ1,0 for representative α̂ are exhibited in Fig. 17.
The detailed analysis indicates that, when γ1,0 belongs to the

Fig. 15 The DC conductivity as a function of α̂ for only γ1,0 surviving
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Fig. 16 The potentials V1t̄ (u) (plots above) and V1y(u) (plots below) with different γ1,0 and α̂

Fig. 17 ñ1t̄ and ñ1y as a function of γ1,0 for representative α̂

Fig. 18 The DC conductivity as a function of α̂ when both γ1,0 and γ are turned on

region γ1,0 < −3/40 and 1/40 < γ1,0 < 1/24, the ñ1i are
greater than unit and unstable modes develop. Combining
the observation from DC conductivity, we can infer that the
allowed region for γ1,0 is

− 3/40 ≤ γ1,0 ≤ 1/40. (A15)

Also, we have checked that, for finite momentum, no unstable
mode appears for the constraint (A15). Note that the lower
bound of γ1,0 is consistent with that found in [36], but the

upper bound becomes tighter than that in [36], which results
from the instability of the mode At .

Now, we begin to discuss the bounds on the coupling when
both γ1,0 and γ are turned on. We mainly restrict γ to the
region −1/12 ≤ γ ≤ 1/12 and explore the constraint of
γ1,0. First, in this case we derive the DC conductivity as

σ0 = 1 + 2

3

(
2 + 4(−1 − 2α̂2 + √

1 + 6α̂2)

α̂2

)
γ
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Fig. 19 The potentials V0t̄ (u) with representative γ1,0, γ and α̂

− 4α̂2

(
2 + −1 − 2α̂2 + √

1 + 6α̂2

α̂2

)2

γ1,0, (A16)

which we plot as a function of α̂ for sample values of γ1,0

and γ in Fig. 18. Since with the increases of α̂ the positive
γ lowers the DC conductivity, it gives a tighter constraint
on γ1,0. Specially, when γ = 1/12, to have positive σ0,
γ1,0 ≤ 1/36 should be imposed. It can also be deduced thus:
in the limit of α̂ → +∞, σ0 = 1 − 4γ − 24γ1,0. Second, we
examine the potential V0,t̄ , which is shown in Fig. 19. We see
that, for γ1,0 = 1/36 and γ = −1/12, an infinite positive
and negative well appears in the limit of α̂, which signals
an instability. This instability is due to turning on of γ1,0 for
γ = −1/12. We find that, when we tune γ1,0 to become
smaller, so that γ1,0 ≤ 7/500, the infinite well gradually
disappears (see Fig. 20). Therefore, if we set −1/12 ≤ γ ≤
1/12, then the constraint −3/40 ≤ γ1,0 ≤ 7/500 should be
imposed. At the same time, it is easy to see that, for the above
range of γ and γ1,0, the potential V0,y satisfies the constraint
(A11). Third, we analyze the potential V1t̄ , which is shown
in Fig. 21. We see that V1t̄ develops a negative minimum. So
to determine the range of the parameter γ1,0, we study ñ1t̄
as a function of γ1,0 for the representative values of γ and
α̂, which are plotted in Fig. 22. A detailed analysis indicates
that, when γ1,0 belongs to the region −3/40 ≤ γ1,0 ≤ 1/100,
no unstable mode appears. Therefore, the constraint on γ1,0

and γ is

− 1/12 ≤ γ ≤ 1/12, −3/40 ≤ γ1,0 ≤ 1/100. (A17)

Fig. 20 The potentials V0t̄ (u) with γ = −1/12 and α̂ = +∞ and
different γ1,0

b. Six derivative theory

In this section, we study the bounds on the coupling γ1,1 with
other coupling vanishing. First, we derive the DC conductiv-
ity:

σ0 = 1 − 2

3
α̂2

(
−2 − 4(−1 − 2α̂2 + √

1 + 6α̂2)

α̂2

)

×
(

2 + −1 − 2α̂2 + √
1 + 6α̂2

α̂2

)
γ1,1. (A18)

We plot it as a function of α̂ for sample values of γ1,1 in
Fig. 23, in which we see that there are lower and upper bounds
set by DC conductivity. By detailed analyzing, we find that
−1/3 ≤ γ1,1 ≤ 1/24. Specially, the upper bound can be
deduced from that in the limit of α̂ → +∞, σ0 = 1−24γ1,1.
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Fig. 21 The potentials (4πT )2V1t̄ (u) with representative γ1,0, γ and α̂

Fig. 22 ñ1t̄ as a function γ1,0 for representative γ and α̂

Then we consider the constraint from V0t̄ , which is shown
in Fig. 24. We see that, for γ1,1 = −1/3, with the increase
of α̂, the condition (A11) is violated, which indicates that a
tighter lower bound should be imposed on γ1,1. A detailed
examination indicates that −1/50 ≤ γ1,1 ≤ 1/24. Also, we
examine V0y for this range γ1,1 ∈ [−1/50, 1/24] and find
that it satisfies the condition (A11).

Now, we examine the potential V1,t̄ , which we plot in
Fig. 25. As in the previous case, a negative minimum appears
in V1,t̄ . So we further plot ñ1t̄ as a function of γ1,1 for the
representative values of α̂, which are shown in Fig. 26. We
find that, for the range

− 1/50 ≤ γ1,1 ≤ 1/50, (A19)

no unstable mode appears. A similar analysis also indicates
that, for γ1,1 satisfying the constraint (A19), ñ1y ≤ 1. In
addition, this range of γ1,1 is also a physically viable region
for finite momentum.

Fig. 23 The DC conductivity as a function of α̂ when only γ1,1 is
turned on

2. Bounds on the coupling at finite charge density

In this section, we discuss the bounds on the coupling at finite
charge density on top of the perturbative black brane geom-
etry in Sect. 3. Since the perturbative equations of vectors
involve a set of third order differential equations with high
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Fig. 24 The potentials V0t̄ (u) with representative γ1,1 and α̂

Fig. 25 The potentials (4πT )2V1t̄ (u) with representative γ1,1 and α̂

Fig. 26 ñ1t̄ as a function γ1,1 for representative α̂

nonlinearity, it is hard to decoupling them at finite charge den-
sity, like that at zero charge density. Therefore, it is difficult
to study the bounds on the coupling at finite charge density
by the method of Schrödinger potentials at zero charge den-
sity as Appendix A.1 or the quasi-normal modes of vector
modes. We hope that these problems can be worked out in
the future. Here, we only give the constraints on the coupling
parameters at finite charge density from the requirement that
the mass of the graviton is real.

It has been demonstrated in [55] (also refer to [15,56]) that
the holographic lattices give the graviton an effective mass.
In our present model (1), the effective graviton mass is

m2
g = 1 − 1

2
γ1,0 I

ρσ
μν FμνFρσ − γ1,1C

ρσ
μν FμνFρσ .

(A20)

Fig. 27 m2
g as a function of u at zero temperature for representative ᾱ

and γ1,0 (γ = 0 and γ1,1 = 0)

Obviously, m2
g > 0 for the case of zero charge density. In

what follows, we shall discuss the bounds on the coupling
parameters at finite charge density.

We first turn on γ1,0. Figure 27 shows m2
g as a function

of u at zero temperature for representative ᾱ and γ1,0. We
can see that m2

g > 0 when γ1,0 satisfies the constraint (A15),
which is the constraint at zero charge density.

Second, we turn on both γ1,0 and γ . Figure 28 shows
that if γ1,0 and γ satisfy the constraint (A17), set at zero
charge density, m2

g > 0 for large ᾱ (right plot in Fig. 28),
but m2

g > 0 is violated for small ᾱ (left plot in Fig. 28). By
detailed analysis, we constrain γ1,0 and γ in the region

− 1/12 ≤ γ ≤ 1/12, −3/40 ≤ γ1,0 ≤ 6/1000. (A21)

Finally, we analyze the constraint on γ1,1 (γ1,0 and γ

are turned off). The left plot in Fig. 29 shows that, when
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Fig. 28 m2
g as a function of u at zero temperature for representative ᾱ, γ1,0 and γ (γ1,1 = 0)

Fig. 29 Left plot: m2
g as a function of u at zero temperature for representative ᾱ and γ1,1 (γ1,0 = 0 and γ = 0). Right plot: m2

g as a function of u
at zero temperature for γ1,1 = −1/100 and different ᾱ (γ1,0 = 0 and γ = 0)

γ1,1 reaches its lower bound set at zero charge density, m2
g

becomes negative for u approaching the horizon. Further
analysis indicates that if γ1,1 satisfies

− 1/100 ≤ γ1,1 ≤ 1/50, (A22)

m2
g > 0 (see the right plot in Fig. 29).
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