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Abstract The main purpose of this paper is to discuss struc-
ture scalars in the context of f (G, T ) gravity, where G is the
Gauss–Bonnet invariant and T is the trace of stress energy
tensor. For this aim, we have considered the spherically sym-
metric spacetime and dissipative anisotropic fluid coupled
with radiation and heat ejecting shearing matter distribu-
tions. We have found these scalar variables by orthogonally
decomposing the Riemann curvature tensor in f (G, T ) grav-
ity. Moreover, the evolution equations of shear and expansion
are also developed with the help of these scalar functions. We
have also analysed these scalars by taking G and T as con-
stants for dust cloud. The physical behaviour of structure
scalars for radiating matter distributions has been examined
in the presence of modified gravity. It is shown that the evolu-
tionary stages of relativistic stellar structures can be explored
via modified scalar functions.

1 Introduction

According to recent observations, the accelerating expan-
sion of the universe is one of the most astounding discovery
in this new generation of astrophysics. Relativistic conse-
quences need to be taken into consideration in the investi-
gation of the gravitational stellar system. Vivid examples of
celestial gravitational system are black holes, neutron stars,
quark stars, white dwarfs in which these impacts have vital
results. So it becomes important to take feasible gravitational
theories into account to study these systems. The results
originating from type Ia Supernova and cosmic microwave
background radiations [1–3] have made a remarkable rev-
olution in the recent decades, therefore opening a platform
for research. These observations show that there is an accel-
erating expansion in our universe. According to the recent
investigations, the outcomes developing from the Planck
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satellite [4–6], the BICEP2 experiment [7–9], the wilkin-
son microwave anisotropy probe [10,11] and sloan digital
sky surveys [12], it turns out that 68% of universe is com-
posed of dark energy, 27% is the dark matter and the rest is
ordinary matter which is around 5%. This has inspired many
researchers to discover the mysterious nature of dark energy
that is assumed to pass through the entire space with due
course of expansion. Dark energy holds a huge amount of
negative stress with repulsiveness but its essential capabili-
ties are still not recognised.

Modified gravitational theories are introduced after gen-
eralizing the Einstein–Hilbert action to contemplate the idea
of dark energy. These modified gravitational theories act as
a replacement to solve the unsolved mystery of the universe
which is believed to be the actual reason of the expansion
in our cosmos. Nojiri and Odintsov [13] explained that how
these modified gravitational theories are important in inves-
tigating the evolutionary phases of the universe. Modified
gravity theories like f (R), f (R, T ), f (G) and f (G, T ) etc.,
have been constructed [14–26] after being motivated by the
usual Einstein’s theory.

Modified Gauss–Bonnet gravity has picked up promi-
nence over the recent years and it is hoped that cosmic expan-
sion may be observed in f (G) gravity due to the presence of
de-Sitter point [27–32]. The outstanding quality of this theory
is that the presence of Gauss–Bonnet term may avert vague
involvements and uniforms the gravitational action [33]. Fur-
ther, f (R,G) theory was introduced [34] by presenting Ricci
scalar alongside Gauss–Bonnet invariant. In a similar way,
f (G, T ) theory [26] was developed that contains the Gauss–
Bonnet invariant and the trace of energy momentum tensor.
Some fascinating work has been done recently. Shamir and
Ahmad [35] developed some cosmological feasible f (G, T )

gravity models using Noether symmetry approach and deter-
mined some exact solutions for flat Friedmann-Robertson-
Walker (FRW) universe with f (G, T ) corrections. Sharif and
Ikram [36] discussed some important cosmological solutions
in f (G, T ) gravity and studied the stability of specific models

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5763-7&domain=pdf
mailto:farasat.shamir@nu.edu.pk
mailto:awaismalhi007@gmail.com


279 Page 2 of 9 Eur. Phys. J. C (2018) 78 :279

with linear perturbations in FRW universe. The same authors
[37] investigated the stability of Einstein universe through
linear perturbations in f (G, T ) gravity for conserved and non
conserved stress energy tensor and deduced that if the model
parameters are picked appropriately, then Einstein universe
exists for all possibilities of the equation of state parameter.
Shamir and Ahmad [38] examined Noether symmetries of
locally rotationally symmetric (LRS) Bianchi type I universe
and used anisotropic effect to discuss cosmological models in
f (G, T ) gravity. Shamir [39] investigated the exact solutions
of field equations in f (G, T ) gravity for LRS Bianchi type I
spacetime with anisotropic background. Recently, Bhatti and
his collaborator [40] studied the evolution of compact stars in
f (G, T ) theory of gravity with some specific f (G, T ) mod-
els and concluded that the compactness of the star increases
for different models of modified gravity.

Some interesting work has been done in exploring the
effects of anisotropic pressure in the investigation of structure
formalism of the stellar frameworks. Bower and Liang [41]
investigated the stability of locally anisotropic fluid configu-
rations to study the impacts of radial and tangential pressure
variables. Chan et al. [42] explored the impacts of anisotropy
for the development of dynamic instabilities of relativis-
tic matter configurations and derived that the presence of
anisotropy in the stellar framework has significantly changed
the structures of celestial system. Chakraborty et al. [43]
examined pressure anisotropy distributions on quasi spheri-
cal model and concluded that such configurations of pressure
could deter the occurrence of naked singularity. Hillebrandt
and Steinmetz [44] used the numerical method to explore
the stable schemes of anisotropic compact stars and discov-
ered some stability regions in resemblance with isotropic
models. Herrera and Santos [45] analyzed the exposure of
locally anisotropic pressure and its effects on self gravitat-
ing systems. Bamba et al. [46] investigated the dynamics of
collapsing stellar system and found that Rα corrections pro-
vide a singularity free cosmological model. Herrera et al.
[47] studied the stability of shear free condition for spher-
ically symmetric anisotropic fluid distributions and found
that locally anisotropic pressure and density inhomogeneity
have an effect on the stability of shear free condition. Sharif
and Yousaf [48] found some exact systematic models for the
spherically symmetric anisotropic structure with the effect
of shear free condition. Tewari et al. [49] studied anisotropic
fluid distributions for a spherically symmetric model and
presented some relativistic models that could be useful
to comprehend different characteristics of compact star
models.

Structural variables, such as energy density, locally
anisotropic pressure and Weyl tensor can be used to explore
the evolutionary development of stellar models. A frame-
work starts collapsing once it encounters an inhomogeneous
stellar state. The anisotropy and irregularities in the energy

density possess significant role in the collapsing systems and
consequently in creating theory of relativistic stellar structure
development. Penrose and Hawking [50] investigated energy
density irregularities of spherical relativistic stars through
Weyl scalar. Herrera et al. [51] discussed energy density
inhomogeneity and local anisotropy for spherical compact
stellar object. Herrera et al. [52] studied the gravitational
arrow of time by relating Weyl scalar with energy density
inhomogeneity and anisotropic pressure. In another context,
Herrera and his collaborators [53] examined the structure and
evolution of compact stars with the help of some structure
scalars obtained from the orthogonal splitting of curvature
tensor. Sharif and Yousaf [54] explored the role of struc-
ture scalars for cylindrical self gravitating systems by taking
f (R) model into account. The same authors [55] described
the stability of the energy density in matter fluid configu-
rations by considering three parametric models in Palatini
f (R) gravity. Yousaf et al. [56] explored the evolutionary
phases of stellar systems in f (R, T ) theory of gravity through
structure scalars. Thus it seems interesting to investigate
structure scalars in modified gravity, in particular, f (G, T )

gravity.
The main focus of this work is to investigate the influence

of f (G, T ) gravity in the construction of structure scalars.
Furthermore, we examine the role of these scalar variables in
the expansion and evolution equations for dissipative spher-
ical distributions of anisotropic stellar systems. The format
of this paper is as follows: in Sect. 2, we discuss the field
equations of modified gravity with anisotropic fluid distri-
butions and then link the Weyl scalar with structural vari-
ables. Modified scalar functions are constructed and their
role in the study of self gravitating systems is discussed in
Sect. 3. Section 4 demonstrates the role of these scalar func-
tions for relativistic dust cloud with constant G and T . The
main outcomes of the present work are discussed in the last
section.

2 Modified field equations

Modified Gauss–Bonnet theories of gravity have a wide space
to investigate new outcomes creating new ways to deal with
different research issues. It has been shown that modified
Gauss–Bonnet gravity has many advantages as compared to
other gravitational theories [32]. Moreover, the gravity the-
ory is quite interesting to explain the cosmic acceleration
of universe with more freedom and instabilities do not exist
in this theory. In particular, the recently introduced f (G, T )

gravity has gained popularity due to the addition of matter
content along with Gauss–Bonnet invariant in the shape of
a bivariate function. The general action of f (G, T ) gravity
can be obtained by modifying usual Einstein Hilbert action
as [26]
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S f (G,T ) = 1

2κ2

∫
d4x

√−g[R + f (G, T )]

+
∫

d4x
√−gLm, (1)

where T is the trace of energy momentum tensor, g is the
determinant of metric tensor, R indicates the Ricci Scalar,
LM represents the Lagrangian coupled with matter and κ

symbolizes the coupling constant. The energy momentum
tensor can be determined as [57]

Tαβ = − 2√−g

δ(
√−gLm)

δgαβ
. (2)

If we suppose that LM only depends on the components of
gαβ but does not rely on its derivatives, then Eq. (2) simplifies
to

Tαβ = gαβLm − 2
∂Lm

∂gαβ

. (3)

Varying the action (1) with respect to gαβ , we get the follow-
ing field equations of f (G, T ) gravity

Rαβ − 1

2
Rgαβ = Tαβ − (Tαβ + �αβ) fT (G, T )

+ 1

2
gαβ f (G, T ) − (2RRαβ

− 4Rξ
αRξβ − 4RαξβηR

ξη

+ 2Rξηδ
α Rβξηδ) fG(G, T ) − (2Rgαβ∇2

− 2R∇α∇β − 4gαβ R
ξη∇ξ∇η

− 4Rαβ∇2 + 4Rξ
α∇β∇ξ + 4Rξ

β∇α∇ξ

+ 4Rαξβη∇ξ∇η) fG(G, T ), (4)

where fG(G, T ) = ∂ f (G,T )
∂G , fT (G, T ) = ∂ f (G,T )

∂T , and ∇2 =
� = ∇α∇α represents the d’Alembert operator. Einstein
field equations are retrieved by putting f (G, T ) = 0 in Eq.
(4). Moreover, field equations for f (G, T ) gravity lessens
to field equations for f (G) gravity by superseding f (G, T )

with f (G). The trace of Eq. (4) is given as

R + T − (T + �) fT (G, T ) + 2 f (G, T )

+2G fG(G, T ) − 2R∇2 fG(G, T )

+4Rαβ∇α∇β fG(G, T ) = 0.

The divergence of Eq. (4) is found as

∇αTαβ = fT (G, T )

1 − fT (G, T )

[
(Tαβ + �αβ)∇α(ln fT (G, T ))

+∇α�αβ − 1

2
gαβ∇αT

]
,

where �αβ can be obtained as follows

�αβ = gξη δTξη

δgαβ

. (5)

There is a probability that this gravitational theory might be
suppressed by the impacts of divergences. These divergences
arise due to the existence of higher order energy momen-
tum tensor derivatives which are normally associated with
the field equations. This has risen as an issue to all such
modified gravitational theories which involve these energy
momentum tensor higher order derivatives. The divergence
equation shows that conservation equation of energy momen-
tum tensor is not obeyed as in the usual Einstein’s theory.
However, one may characterize some new restrictions to this
condition to achieve the standard conservation equation for
energy momentum tensor. Varying Eq. (3) to get a functional
expression for �αβ , it follows

δTαβ

δgξη
= δgαβ

δgξη
Lm + gαβ

∂Lm

∂gξη
− 2

∂2Lm

∂gξη∂gαβ
. (6)

Substituting Eq. (6) in Eq. (5), we get

�αβ = −2Tαβ + gαβLm − 2gξη ∂2Lm

∂gαβ∂gξη
. (7)

We consider a non-static spherically distribution of the fluid
combined with locally anisotropic fluid and shear viscosity
dispersing in the form of heat flow and null radiation. Thus,
we consider the energy momentum tensor of the form [58].

Tαβ = P⊥hαβ + μVαVβ + 
χαχβ + εαβ

+ q(χβVα + χαVβ) − 2ησαβ, (8)

where P⊥ and Pr are the tangential and radial pressure, μ

represents the energy density, hαβ expresses the projection
tensor, qα indicates the thermal flow, χα is the unit four vec-
tor in the radial direction, η signifies the coefficient of shear
tensor, σαβ is the shearing viscous tensor, and 
 is the differ-
ence of Pr and P⊥. The matter Lagrangian can be assumed
as Lm = −μ and in this case Eq. (7) takes the form [56]

�αβ = −2Tαβ − μgαβ. (9)

The field equations can be rewritten in an alternative form as

Gαβ = T ef f
αβ , (10)

where

T ef f
αβ = (1 + fT )Tαβ + μgαβ fT

+ 1

2
gαβ f (G, T ) − (2RRαβ − 4Rξ

αRξβ

− 4RαξβηR
ξη + 2Rξηδ

α Rβξηδ) fG(G, T )

− (2Rgαβ∇2 − 2R∇α∇β − 4gαβ R
ξη∇ξ∇η

− 4Rαβ∇2 + 4Rξ
α∇β∇ξ + 4Rξ

β∇α∇ξ

+ 4Rαξβη∇ξ∇η) fG(G, T ), (11)

which is the effective stress energy tensor comprising of mat-
ter and dark energy components.
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We consider a non-static spherically symmetric space-
time

ds2 = −A2(t, r)dt2 + H2(t, r)dr2

+ C2(t, r)dθ2 + C2(t, r) sin2 θdφ2. (12)

The quantities α and V α in Eq. (8) indicate null four vector
and four velocity of the fluid. The four vectors α = 1

A δα
0 +

1
H δα

1 , χα , and V α = 1
A δα

0 satisfy

χαχα = 1, V αVα = −1, αα = 0

χαVα = 0, V αqα = 0, αVα = −1. (13)

The shear σαβ and expansion � of the fluid are given by [47]

� = V α ;α, (14)

σαβ = V(α;β) + a(αVβ) − 1

3
�hαβ, (15)

where aα is the 4-acceleration and hαβ = gαβ + VαVβ . The
non zero components of the shear tensor are

σ11 = 2

3
H2σ, σ22 = σ33

sin2θ
= −1

3
C2σ, (16)

and the scalars indicating shearing motion and expansion of
the fluid are given as follows

σ = 1

A

(
Ḣ

H
− Ċ

C

)
, � = 1

A

(
2Ċ

C
+ Ḣ

H

)
, (17)

where dot represents the partial derivative with respect to t .
The field equations for the line element (12) take the form

G00 = A2
[
μ + ε + ε fT − G

2

(
f

G − fG
)

− ψ00

A2

]
, (18)

G01 = AH

[
− (1 + fT )(q + ε) − ψ01

AH

]
, (19)

G11 = H2
[
μ fT + (1 + fT )

(
Pr + ε − 4

3
ησ

)

+G
2

(
f

G − fG
)

− ψ11

H2

]
, (20)

G22 = C2
[
(1 + fT )

(
P⊥ + 2

3
ησ

)
+ μ fT

+G
2

(
f

G − fG
)

− ψ22

C2

]
, (21)

where ψ00, ψ01, ψ11 and ψ22 are given in the appendix. The
Misner–Sharp mass function is given by [59]

m(t, r) = C

2

(
1 + Ċ2

A2 − C ′2

H2

)
, (22)

where prime indicates differentiation with respect to r . The
four-velocity U of the collapsing fluid can be obtained by
taking variations of areal radius with respect to proper time.

U = DTC = Ċ

A
. (23)

Using Eqs. (18)–(23), the change in mass function with
respect to time and radius is given as

DTm = −1

2

[
U

(
(1 + fT )

(
P̄r − 4

3
ησ

)
+ μ fT

+G
2

(
f

G − fG
)

− ψ11

H2

)

+E

(
(1 + fT )q̄ + ψ01

AH

)]
C2, (24)

DCm = C2

2

[
μ̄ + ε fT − G

2

(
f

G − fG
)

− ψ00

A2

+U

E

(
(1 + fT )q̄ + ψ01

AH

)]
, (25)

where μ̄ = μ+ ε, P̄r = Pr + ε, q̄ = q + ε and DC = 1
C ′ ∂

∂r .
Now taking integral on both sides of Eq. (25), we obtain

m =
∫ C

0

C2

2

[
μ̄ + ε fT − G

2

(
f

G − fG
)

− ψ00

A2

+U

E

(
(1 + fT )q̄ + ψ01

AH

)]
dC, (26)

where E ≡ C ′
H . Then Eq. (22) can be revised as

E ≡ C ′

H
=

[
U 2 − 2m

C
+ 1

]
. (27)

The particular combinations of f (G, T ) corrections, struc-
tural variables and energy density through Misner–Sharp
mass formulation can be obtained from Eq. (26)

3m

C3 = 3

2C3

∫ r

0

[
μ̄ + ε fT − G

2

(
f

G − fG
)

− ψ00

A2

+U

E

(
(1 + fT )q̄ + ψ01

AH

)]
C2C ′dr, (28)

The usual components of Weyl tensor can be split in elec-
tric and magnetic parts but the magnetic part of Weyl tensor
becomes zero due to spherical symmetry [47]. So the Weyl
tensor can be represented in terms of its electric part. The
electric part of Weyl tensor is defined as

Eαβ = CαφβφV
φV ϕ.

The electric part of Weyl tensor can be rewritten as

Eαβ = ε

[
χαχβ − 1

3
(gαβ + VαVβ)

]
,

where ε is the Weyl scalar and is given as

ε = 1

2A2

[
C̈

C
− Ḧ

H
−

(
Ċ

C
− Ḣ

H

)(
Ȧ

A
+ Ċ

C

)]
− 1

2C2

+ 1

2H2

[
A′′

A
− C ′′

C
+

(
H ′

H
+ C ′

C

)(
C ′

C
− A′

A

)]
.

(29)
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Using Eqs. (18)–(22) and (28), we can rewrite (29) as

ε = 1

2

[
μ̄ + ε fT − (1 + fT )(
̄ − 2ησ)

−G
2

(
f

G − fG
)

− ψ00

A2 + ψ11

H2 − ψ22

C2

]

− 3

2C3

∫ r

0

[
μ̄ + ε fT − G

2

(
f

G − fG
)

−ψ00

A2 + U

E

(
(1 + fT )q̄ + ψ01

AH

)]
C2C ′dr, (30)

where 
̄ = P̄r − P⊥. The above expression gives a relation-
ship between Weyl scalar, f (G, T ) extra curvature variables
and structural properties of matter configurations. Equation
(30) has been determined by taking regular matter configu-
rations at the centre, i.e., m(t, 0) = C(t, 0) = 0.

3 Modified scalar variables and f (G, T ) gravity

One can choose different f (G, T ) gravity models for further
analysis. However, for the sake of simplicity, we consider the
following f (G, T ) configuration [35]

f (G, T ) = f1(G) + f2(T ), (31)

where f1(G) = αGn , where α is an arbitrary real constant.
This power law model was given by Cognola et al. [27] and
it is intriguing since the odds of seeming finite time future
singularities vanish. Moreover, the value of f2(T ) = λT with
λ as real number. Now we present some important tensors
defined by [60]

Yαβ = RαγβδV
γ V δ,

Xαβ =∗ R∗
αγβδV

γ V δ = 1

2
ηερ

αγ R
∗
ερβδV

γ V δ,

where R∗
αβγ δ = 1

2ηεργ δR
ερ
αβ . To develop the formalism for

structure scalars in f (G, T ) gravity, we orthogonally split
the Riemann curvature tensor.

Xαβ = X (m)
αβ + X (D)

αβ = 1

3

[
μ̄ + ε fT − G

2

(
f

G − fG
)

− ψ00

A2

]
hαβ

−1

2

[
(1 + fT )(
̄ − 2ησ) − ψ11

H2 + ψ22

C2

]

×
(

χαχβ − 1

3
hαβ

)
− Eαβ, (32)

Yαβ = Y (m)
αβ + Y (D)

αβ = 1

6

[
μ̄ + ε fT + 3μλ

+(1 + fT )(3Pr − 2
̄) − ψ00

A2 − ψ11

H2

−2ψ22

C2 + G
2

(
f

G − fG
)]

hαβ

−1

2

[
(1 + fT )(
̄ − 2ησ) − ψ11

H2 + ψ22

C2

]

×
(

χαχβ − 1

3
hαβ

)
+ Eαβ . (33)

These tensors are composed of their trace and trace-less parts
given as

Xαβ = 1

3
Tr Xhαβ + X〈αβ〉, Yαβ = 1

3
TrYhαβ + Y〈αβ〉,

(34)

where

X〈αβ〉 = hρ
αh

γ
β

(
Xργ − 1

3
Tr Xhργ

)
,

Y〈αβ〉 = hρ
αh

γ
β

(
Yργ − 1

3
TrYhργ

)
. (35)

We can rewrite X〈αβ〉 and Y〈αβ〉 in another way

X〈αβ〉 = XT F

(
χαχβ − 1

3
hαβ

)
,

Y〈αβ〉 = YT F

(
χαχβ − 1

3
hαβ

)
. (36)

Equations (32) and (33) can be written separately as trace
and trace-free components

Tr X ≡ XT = μ̄ + ελ − α(1 − n)

2
Gn − λ

2
T − ψ̂00

A2 , (37)

TrY ≡ YT = 1

2

[
μ̄ + ελ + 3μλ + 3(1 + λ)P̄r

− 2(1 + λ)
̄ − ψ̂00

A2 − ψ̂11

H2

− 2ψ̂22

C2 + α(1 − n)G + λT

]
, (38)

XT F = −ε − 1

2

[
(1 + λ)(
̄ − 2ησ) − ψ̂11

H2 + ψ̂22

C2

]
, (39)

YT F = ε − 1

2

[
(1 + λ)(
̄ − 2ησ) − ψ̂11

H2 + ψ̂22

C2

]
, (40)

where the hat represents the dark source variables computed
after using f (G, T ) model. Using Eqs. (28), (30) and (31)
XT F and YT F become

XT F = −1

2

[
μ̄ + ελ − α(1 − n)

2
Gn − λ

2
T − ψ̂00

A2

]

+ 3

2C3

∫ r

0

[
μ̄ + ελ − α(1 − n)

2
Gn − λ

2
T

− ψ̂00

A2 + U

E

(
(1 + λ)q̄ + ψ̂01

AH

)]
C2C ′dr, (41)
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YT F = 1

2

[
μ̄ + ελ − 2(1 + λ)(
̄ − 2ησ) − α(1 − n)

2
Gn

−λ

2
T − ψ̂00

A2 + 2ψ̂11

H2 − 2ψ̂22

C2

]

− 3

2C3

∫ r

0

[
μ̄ + ελ − α(1 − n)

2
Gn − λ

2
T − ψ̂00

A2

+ U

E

(
(1 + λ)q̄ + ψ̂01

AH

)]
C2C ′dr. (42)

After using some effective fluid variables Eqs. (37)–(40)
can be written as

XT F = −1

2

[
μe f f + ελ − α(1 − n)

2
Gn − λ

2
T

]

+ 3

2C3

∫ r

0

[
μe f f + ελ − α(1 − n)

2
Gn

−λ

2
T + U

E

(
(1 + λ)q̄ + ψ̂01

AH

)]
C2C ′dr, (43)

YT F = 1

2

[
μe f f + ελ − α(1 − n)

2
Gn − λ

2
T

−2(1 + λ)
e f f + 2λ

(
ψ̂22

C2 − ψ̂11

H2

)]

− 3

2C3

∫ r

0

[
μe f f + ελ − α(1 − n)

2
Gn − λ

2
T

+ U

E

(
(1 + λ)q̄ + ψ̂01

AH

)]
C2C ′dr, (44)

XT = μe f f + ελ − α(1 − n)

2
Gn − λ

2
T, (45)

YT = 1

2

[
μe f f (1 + 3λ) − 2ελ + 3(1 + λ)Pef f

r

− 2(1 + λ)
e f f + λ ×
(

3
ψ̂00

A2 + ψ̂11

H2 + 2ψ̂22

C2

)

+ α(1 − n)G + λT

]
, (46)

where μe f f ≡ μ̄ − ψ̂00
A2 , Pef f

r ≡ P̄r − ψ̂11
H2 − 4

3ησ , Pef f
⊥ ≡

P⊥ − ψ̂22
C2 + 2

3ησ , 
e f f ≡ Pef f
r − Pef f

⊥ = 
−2ησ + ψ̂22
C2 −

ψ̂11
H2 are effective fluid variables.

The dynamical development of relativistic compact frame-
works have a resemblance with these structure scalars. XT

has important significance in the definition of stellar power
density coupled with terms of dark energy source. The evolu-
tion equation [53] involving tidal forces and fluid parameter
variables is

[
XT F + 1

2

(
μe f f + ελ − α(1 − n)

2
Gn − λ

2
T

)]′

= −XT F
3C ′

C
+ � − σ

2

[
ψ̂01

AH
+ q̄ H(1 + λ)

]
. (47)

The above expression shows that without dark source terms
and radiating variables, we can have the following result

μ̄′
e f f = 0 ⇔ XT F = 0,

which shows that XT F is an inhomogeneity factor. Other
structure scalars describe expansion rate and shear evolution.
The Raychaudhuri equation in our case is

− YT = V α�;α + 2

3
σ 2 + �2

3
− aα

;α, (48)

and

YT F = a2 + χαa;α − aC ′

HC
− 2

3
�σ − V ασ;α

−1

3
σ 2. (49)

4 Evolution equations with constant G and T

Now we will discuss the modified structure scalars for the
dust cloud with Gauss–Bonnet invariant and T ≡ T α

α . The
quantity of mass in this case is

m = 1

2

∫ r

0
(μ)C2C ′dr − α(1 − n)G̃ + λT̃

4

∫ r

0
C2C ′dr,

(50)

where tilde indicates that these terms are considered with
reference to the constant background. After doing some cal-
culations, the mass function and ε for dust cloud become

3m

C3 = 1

2

[
μ − 1

C3

∫ r

0
μ′C3dr

]
− α(1 − n)G̃ + λT̃

2
, (51)

ε = 1

2C3

∫ r

0
μ′C3dr − α(1 − n)G̃ + λT̃

4
. (52)

Equations (51) and (52) are equivalent to Eqs. (28) and (30).
The structure scalars for dust cloud are

X̃T = μ − α(1 − n)G̃
2

− λT̃

2
, (53)

ỸT = 1

2

[
μ + α(1 − n)G̃ + λT̃

]
, (54)

−X̃T F = ỸT F = ε. (55)
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The equations describing evolution and shear expansion
become

−ỸT = V α�;α + 2

3
σ 2 + �2

3
− aα

;α, (56)

ỸT F = ε = −2

3
�σ − V ασ;α − 1

3
σ 2. (57)

The differential equation showing the inhomogeneity fac-
tor is[
X̃T F + 1

2
μ − α(1 − n)G̃ + λT̃

4

]′
= −X̃T F

3C ′

C
(58)

from which it follows μ̄′
e f f = 0 ⇔ XT F = 0 describing

XT F as the inhomogeneity factor.

5 Discussion

In this paper, the dynamical system of compact objects has
been discussed by considering f (G, T ) gravity. We take non-
static spherically symmetric system coupled with anisotropic
stresses radiating through heat flux and streaming approx-
imations. After doing some fundamental calculations, we
have affiliated Weyl scalar with structural variables. Fur-
ther, we investigate the factors affecting the tidal forces in
the development of collapsing spherical matter distribution
in f (G, T ) gravity. For this, we split the particular model of
f (G, T ) gravity which is given as f (G, T ) = f1(G)+ f2(T ).
We have searched the role of f (G, T ) terms given by dark
energy source in the explanation of scalar functions. These
scalars are calculated by orthogonally decomposing the Rie-
mann curvature tensor. We have discovered that these scalar
functions control the evolutionary systems in our celestial
body.

• Equation (37) which is itself a structure scalar expresses
the energy density together with the dark source variables
in spherically symmetric dissipative anisotropic fluid dis-
tributions.

• YT comes out to be the mass density for dynami-
cal system and this quantity is being controlled by
means of anisotropic pressure together with dark source
terms. The mass density is clearly linked with pres-
sure anisotropy, radiating and non-radiating distributions
along side f (G, T ) gravity corrections. In Eq. (38)YT has
a connection with non-dissipative energy density due to
the existence of 3μλ term.

• For pressure anisotropy expansion free constraint is
required. Equations (48) and (56) show that YT controls
the evolution of expansion scalar. As a result,YT is signif-
icant to recognize the exposure of vacuum cavity inside
the stellar object. It can be seen from Eq. (46) that YT has
a direct link with pressure anisotropy as well as f (G, T )

corrections.

• The impact of shear, local pressure anisotropy and tidal
forces together with dark energy can be seen in Eq. (40).
The shear evolution has been fully controlled by this
scalar function YT F . One needs to analyse the action of
YT F in order to interpret the role of shear on dynamical
stages of radiating compact object.

• XT F controls the energy density inhomogeneity for the
anisotropic fluid as well as for dust perfect fluid [52] but in
Eq. (47) dissipative fluid parameters along with f (G, T )

corrections cause an interruption in the contribution of
XT F . Although, if expansion scalar becomes equivalent
to shear scalar, then due to presence of f (G, T ) correc-
tions some interruptions will appear in the development
of inhomogeneity in relativistic systems. Hence, XT F

controls the energy density irregularities with dark source
variables.

• In dust cloud with constant G and T , it is found that in
XT F there are tidal forces that produced irregularities in
the homogeneous stellar structures.

The above discussion proves that in modified gravity these
structure scalars play an important essential role in the
dynamics of self gravitating systems.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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Appendix

ψ00 = − 4A2

C2H2 fG,11 − 8 ȦC ′2

H2C2A
fG,0 + 8 ȦĊ2

A3C2 fG,0

+ 12Ċ2 Ḣ

A2HC2 fG,0 − 16H ′2A2C ′

H6C
fG,1

−4C ′2A2H ′

H5C2
fG,1 + 16 ȦH ′C ′

CAH3 fG,0 + 8Ċ H ′C ′

C2H3 fG,0

−16H ′Ċ Ḣ

H4C
fG,1 − 8C ′Ċ Ḣ

C2H3 fG,1

+16 ȦĊ Ḣ

A3CH
fG,0 − 4Ċ2

C2H2 fG,11 + 4A2C ′2

C2H4 fG,11

+ 8 Ȧ

C2A
fG,0 − 4ḢC ′2

C2H3 fG,0

−4H ′Ċ2

C2H3 fG,1 − 4H ′A2

C2H3 fG,1 + 4Ḣ

HC2 fG,0

− 8ĊC ′′

H2C2 fG,0 + 16H ′A2C ′′

H5C
fG,1

−16 ȦC ′′

CH2A
fG,0 + 8C ′A2C ′′

H4C2 fG,1
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ψ01 = − 8Ċ ′Ċ
C2A2 fG,0 + 8Ċ ′C ′

C2H2 fG,1 + 16Ċ ′H ′

H3C
fG,1

−16Ċ ′ Ȧ
A3C

fG,0 − 4C ′2A′

C2AH2 fG,0

−12C ′2 Ḣ
C2H3 fG,1 + 12Ċ2A′

C2A3 fG,0 + 4Ċ2 Ḣ

C2A2H
fG,1

− 4

C2 fG,01 − 4Ċ2

C2A2 fG,01

+ 4A′

AC2 fG,0 + 4Ḣ

C2H
fG,1 + 4C ′2

C2H2 fG,01

+16 ȦĊ A′

CA4 fG,0 − 16H ′C ′ Ḣ
CH4 fG,1

−16Ċ A′H ′

H3AC
fG,1 + 16ḢC ′ Ȧ

A3CH
fG,0

−8Ċ A′C ′

C2AH
fG,1 + 8ḢC ′Ċ

C2A2H
fG,0

ψ11 = −8C ′2H ′

H3C2 fG,1 − 12C ′2A′

H2AC2 fG,0 + 8H ′Ċ2

A2C2H
fG,1

+ ȦH2Ċ2

A5C2
fG,0 + 16 Ȧ2H2Ċ

A6C
fG,0

+16H ′C̈
C A2H

fG,1 − 16 ȦH2C̈

A5C
fG,0 − 8Ċ H2C̈

A4C2 fG,0

− 4H2

C2A2 fG,00 + 8C ′C̈
A2C2 fG,1

−4H2Ċ2

C2A4 fG,00 + 4C ′2

C2A2 fG,00 + 8H ′

C2H
fG,11

+4 ȦC ′2

C2A3 fG,0 + 4A′Ċ2

C2A3 fG,1

+ 4A′

AC2 fG,1 − 4 ȦH2

C2A3 fG,0 − 16H ′ ȦĊ
C A3H

fG,1

−8C ′ ȦĊ
C2A3 fG,1 − 16A′H ′C ′

CH3A
fG,1

+16 ȦA′C ′

A4C
fG,0 + 8Ċ A′C ′

C2A3 fG,0

ψ22 = −8Ḣ2CĊ

H2A4 fG,0 + 4C2A′H ′

AH5
fG,11 − 4C2 ȦḢ

A3H3 fG,11

−4C ȦĊ

A3H2 fG,11 − 4CH ′C ′

A2H3 fG,00

−4CA′C ′

AH4 fG,11 − 4CĊH

A4H
fG,00 + 8CĊ Ḣ

A2H3 fG,11

+8CH ′C ′

H5
fG,11 + 8 Ȧ2C2 Ḣ

A6H
fG,0

+8 Ȧ2CĊ

A6 fG,0 − 8CĊ A′2

A4H2 fG,0 + 8ĊC A′

A3H
fG,01

−8CĊ2C ′

A2H4 fG,1 + 8C ḢC ′

A2H3 fG,01

+4CC ′ Ḧ
A2H3 fG,1 − 8 ȦC2 Ḧ

A5H
fG,0 − 4ĊC Ḧ

A4H
fG,0

−4C ′CA′′

H4A
fG,1 + 8 ȦC2A′′

A4H2 fG,0

+8ḢCC ′′

A2H3 fG,0 + 4ĊC A′′

H2A3 fG,0 + 8CĊ ′ Ḣ
A2H3 fG,1

+8CĊ ′A′

A3H2 fG,0 − 8CC ′′

H4 fG,11

−8ḢCH ′C ′

H4A2 fG,0 + 4C ′CA′H
H5A

fG,1 + 8 ȦC A′C ′

A4H2 fG,0

−4ḢC A′C ′

A3H3 fG,0 − 4A′CĊ Ḣ

A3H3 fG,1

−8 ȦCC̈

A5
fG,0 + 4CC̈

A2H2 fG,11 + 4C2 Ḧ

A2H3 fG,11

+4CC ′′

A2H2 fG,00 − 4C2A′′

AH4 fG,11

− 8CĊ ′

A2H2 fG,01 − 4C ′C ȦḢ

A3H3 fG,1 − 8 ȦC2A′H ′

A4H3 fG,0

−4ĊC A′H ′

A3H3 fG,0 + 4 ȦCĊ Ḣ

A5H
fG,0

+4H ′2C2A′

H6A
fG,1 + 4Ḣ2C2 Ȧ2

H2A5
fG,0 − 4ḢCC̈

H A4 fG,0

+4H ′C2 Ḧ

H4A2 fG,1 − 4ḢC2 Ḧ

H2A4 fG,0

−4H ′C2A′′

H5A
fG,1 − 4A′CC ′′

AH4 fG,1 + 4 ȦCC ′′

H2A3 fG,0

+4ḢC2A′′

A3H3 fG,0 + 4H ′CC̈
A2H3 fG,1

−4ḢC2A′H ′

H4A3 fG,0 − 4H ′C ȦĊ

A3H3 fG,1

−4 ȦCH ′C ′

A3H3 fG,0 − 4H ′C2 ȦḢ

H4A3 fG,1
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