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Abstract We study a general class of spinning pulsating
strings in (AdS5 × S5)� background. For these family of
solitons, we examine the scaling relation between the energy,
spin or angular momentum. We verify that in � → 0 limit
these relations reduce to the undeformed AdS5 × S5 case.
We further study an example of a string which is spinning
in the �-deformed AdS5 and S5 simultaneously and find out
the scaling relation among various conserved charges.

1 Introduction

The AdS/CFT correspondence relates string states on AdS
and gauge invariant operators in the gauge theory side. The
most studied example of the AdS/CFT duality is the one
between spectrum of closed superstrings (supergravity) in
AdS5 × S5 background and gauge invariant operators in four
dimensional N = 4 Supersymmetric Yang–Mills (SYM)
theory based on the gauge group SU (N ) [1–3]. A remarkable
feature of AdS/CFT duality is an underlying integrability
[4] structure on both side, which provides an important tool
for finding the spectrum on both sides and many significant
properties have been revealed based on exact computations.
To understand the structure of full string spectrum, one need
to identify the classical solitonic solutions of AdS5 × S5

sigma model carrying global charges. The Yang–Mills theory
itself can be mapped to a integrable spin-chain system [5].
The basic idea of relating all string states to precise dual
gauge theory operators is a tough job due to presence of
infinite tower of string solutions on string theory side. One
probable way out of this problem is that in the large angular
momentum or large R-charge limit both sides of the duality
become more tractable. One of the advantages of this limit is
that the anomalous dimension of operators in the SYM theory
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can be related to the dispersion relation between conserved
charges of spinnings and pulsating strings in the large charge
limit.

In this context, a large variety of rotating and spinning
strings has been studied in AdS5×S5 precisely and also have
been mapped to dual spin-chain excitations. These include
the already well studied giant magnon, folded strings and
spiky strings solutions and the gauge theory duals have been
analyzed in great detail. In spinning string case the highly
excited string states corresponds to the gauge theory opera-
tors with small anomalous dimension. This type of strings is
the generalization of the folded [6,7] and spiky [8] strings
with single spin in AdS3 part of AdS5. The semiclassical
multi spinning string states (strings spinning in AdS5) have
also been found to be dual to certain trace operators [9]. It
has been shown that for these solutions, the string states are
unstable for large charges [10]. On the other hand, the circular
pulsating string solutions have been less explored. Pulsating
strings were first introduced in [11] where they were expected
to correspond to certain highly excited sigma model opera-
tors and later on were generalized to [12–14]. In [11] and
[15], pulsating string solutions in AdS5 and S5 respectively
have been worked out separately where as in [16], a string
rotating and at the same time oscillating in AdS5 have been
derived. It has been shown that the addition of oscillation
to spinning strings improve the stability of the string states
[17]. An interesting class of solutions were proposed in [18]
which generalized some of the earlier pulsating and spin-
ning string solutions by looking at strings which are straight
and spinning in one direction but circular and pulsating in
another, and with a non-trivial coupling between the two in
AdS5 × S5 background. Even though the exact gauge the-
ory operators corresponding to these class of string states are
still unknown, they are interesting in their own right. In this
paper, we wish to generalize such spinning pulsating strings
in (AdS5 × S5)� background, the sigma model associated to
which retains integrability of the original model.
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To explore the integrability beyond the usual AdS5 × S5,
it is natural to consider the integrable deformation of the
background to study the string motion as well as the under-
lying gauge theory, if any. Following the earlier proposals
about Yang–Baxter deformation made in [19–21], a one-
parameter deformed AdS5 × S5 supercoset model was con-
structed in [22–24]. The background string metric and the
NS–NS 2-form corresponding to deformed structure has been
worked out [25]. The symmetry group SO(2, 4)× SO(6) of
AdS5×S5 reduced to its Cartan subgroup [U (1)]6 and it pro-
duced a nice laboratory to study string motion. Given the inte-
grable nature of the deformed background, various rigidly
rotating and pulsating strings have been investigated in detail
[26–31]. Since the background suffers from the presence of a
singularity surface in the AdS space, a new coordinate system
to handle this has been developed [32]. The folded GKP like
string solutions of [32] generalized to N-spike string solu-
tions in [33]. In these cases, however, it was found out that in
the long string limit, where the strings touch the singularity
surface, the expression for cusp anomalous dimension does
not reduce to the undeformed one in the � → 0 limit and
a possible explanation was provided in [32]. Not only clas-
sical string solutions, various minimal surfaces and Wilson
loops in this background have been found in [34]. In some
recent works [35,36], conformal twist and non-commutative
gauge theory have been studied in Yang–Baxter deformed
AdS5 × S5 background.

In the present paper, we are interested in a non-trivial string
solitons in deformed AdS5 × S5 background with � being
the deformed parameter. The strings, we consider here are
straight and spinning in one sub-space while it is circular
and pulsating in another. In each case, we obtain the exact
form of string solutions in terms of elliptic functions and
discuss their properties. We construct the scaling relations
between energy and charges in various limits and compare
the result with the undeformed results. We would like to men-
tion in passing that the dual gauge theory of the �-deformed
background is not yet known and hence the operator dual
to these class of solutions is not apriori clear. One of the
main reasons is the lack of our understanding of incorporat-
ing the deformed parameter into the operators which would
be present in the unknown gauge theory. Nevertheless study-
ing the string states will surely enhance our understanding of
the string theory in integrable deformed background. The rest
of the paper is organized as follows. In Sect. 2, we outline the
background that we are interested in for studying the string
solutions. In Sect. 3, we study the strings which are pulsating
in AdS5 subspace and is spinning in S5 simultaneously. We
find out the scaling relation among the energy and the angu-
lar momentum. We study the behavior of the long and short
strings in this case and have checked that they indeed reduce
to the similar relations in the undeformed AdS5 × S5 case.
Section 4 is devoted to the study of strings which pulsate

in S5 and at the same time spins along the deformed AdS5.
We have looked at some interesting spinning string solution
which spins along both deformed AdS5 and S5 subspace and
write down the energy spin relationship in Sect. 5. In Sect. 6
we conclude with some discussions.

2 The � deformed
(
AdS5 × S5

)
�
geometry

The so called � deformed
(
AdS5 × S5

)
�

background is

ds2
AdS5

= −h(ρ)dt2 + f (ρ)dρ2

+ρ2 (u(ρ, ψ)(dψ2 + cos2 ψdψ2
1 ) + sin2 ψdψ2

2

)
,

(2.1)

ds2
S5 = h̃(r)dϕ2 + f̃ (r)dr2

+r2 (ũ(r, φ)(dφ2 + cos2 φdφ2
1) + sin2 φdφ2

2

)
,

(2.2)

where

h(ρ) = 1 + ρ2

1 − �2ρ2 , f (ρ) = 1

(1 + ρ2)(1 − �2ρ2)
,

u(ρ, ψ) = 1

1 + �2ρ4 sin2 ψ
,

and

h̃(r) = 1 − r2

1 + �2r2 , f̃ (r) = 1

(1 − r2)(1 + �2r2)
,

ũ(r, φ) = 1

1 + �2r4 sin2 φ
,

supported by the following NS–NS B field

Bψ1ψ = 1

2
�2ρ4 sin 2ψ u(ρ, ψ),

Bφ1φ = −1

2
�2r4 sin 2φ ũ(r, φ), (2.3)

where � ∈ [0,∞) is the deforming parameter. It can be seen
that for � = 0, the above geometry reduces to the original
AdS5 × S5. It is convenient to write the above metric and the
NS–NS B-field components in global coordinates which is
obtained by the following co-ordinate transformations: ρ →
sinh ρ and r → cos θ . The metric in the global coordinates
looks like

ds2
AdS5 = − cosh2 ρ

1 − �2 sinh2 ρ
dt2 + dρ2

1 − �2 sinh2 ρ

+ sinh2 ρdψ2

1 + �2 sinh4 ρ sin2 ψ
+ sinh2 ρ cos2 ψdψ2

1

1 + �2 sinh4 ρ sin2 ψ

+ sinh2 ρ sin2 ψdψ2
2 , (2.4)

ds2
S5 = sin2 θdϕ2

1 + �2 cos2 θ
+ dθ2

1 + �2 cos2 θ
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+ cos2 θdφ2

1 + �2 cos4 θ sin2 φ
+ cos2 θ cos2 φdφ2

1

1 + �2 cos4 θ sin2 φ

+ cos2 θ sin2 φdφ2
2 . (2.5)

We would like to study a general class of spinning pulsating
string in this background. The deformed bosonic string action
in conformal gauge can be written as

S = T̂
∫

d2σ
(√−hhαβGμν∂αX

μ∂β X
ν + εαβ Bμν∂αX

μ∂β X
ν
)

,

(2.6)

where T̂ = 1
4πα′

√
1 + �2 is the effective string tension.

3 Pulsating in (AdS5)� and spinning in
(
S5

)
�

In this section, we consider a string which is spinning in S5

and pulsating in AdS5 of the deformed background. We use
the following ansatz

t = t (τ ), ρ = ρ(τ), ψ = π

2
, ψ2 = σ,

ϕ = ϕ(τ), θ = θ(σ ), φ = π

2
, φ2 = const. (3.1)

Taking the above ansatz the Polyakov action in conformal
gauge takes the form,

S = T̂
∫

d2σ

(
− cosh2 ρ ṫ2

1 − �2 sinh2 ρ
+ ρ̇2

1 − �2 sinh2 ρ

− sinh2 ρ + sin2 θ

1 + �2 cos2 θ
ϕ̇2 − θ ′2

1 + �2 cos2 θ

)
.

(3.2)

We notice that for such ansatz the B-fields do not contribute
to the action. The equation of motion for t and ϕ can be found
as

ṫ = c0(1 − �2 sinh2 ρ)

cosh2 ρ
, ϕ̇ = ν, (3.3)

where c0 and ν are the integration constants. From the equa-
tion motion of the ϕ, we find that the string rotates in ϕ direc-
tion with angular velocity ν. Now, the equations of motion
for ρ and θ can be written as

2ρ̈(1 − �2 sinh2 ρ) + �2 sinh2 ρρ̇2

+ sinh2 2ρ
(
(1 + �2)ṫ2 + (1 − �2 sinh2 ρ)2

)
= 0,

(3.4)

and

2θ ′′ (1 + �2 cos2 θ
)
+�2θ ′2 sin 2θ +ν2 sin 2θ(1+�2) = 0.

(3.5)

These equations of motion are to be supported by the con-
formal gauge constraints

Gmn
(
∂τ X

m∂τ X
n + ∂σ X

m∂σ X
n) = 0 (3.6)

Gmn∂τ X
m∂σ X

n = 0. (3.7)

From (3.6), we get

−c2
0(1 − �2 sinh2 ρ)

cosh2 ρ
+ ρ̇2

1 − �2 sinh2 ρ
+ sinh2 ρ

+ ν2 sin2 θ

1 + �2 cos2 θ
+ θ ′2

1 + �2 cos2 θ
= 0. (3.8)

The above equation is a coupled equation of ρ(τ) and θ(σ ).
However without loss of generality we can separate the above
equation as

−c2
0(1 − �2 sinh2 ρ)

cosh2 ρ
+ ρ̇2

1 − �2 sinh2 ρ

+ sinh2 ρ + c2
1 = 0, (3.9)

ν2 sin2 θ

1 + �2 cos2 θ
+ θ ′2

1 + �2 cos2 θ
− c2

1 = 0, (3.10)

where c1 is a constant. One can check that the above equations
are consistent with the equations of motion ρ and θ . Now
solving these equations we find the following solution of ρ

and θ

sinh ρ =

√√
√√√√√

R−sn2

(
(1 + �2c2

1)
√
R+τ

∣∣
∣∣
R−
R+

)

1+�2

[
1+R−sn2

(
(1 + �2c2

1)
√
R+τ

∣
∣∣∣
R−
R+

)] ,

(3.11)

sin θ =
√
c2

1(1 + �2)

ν2 + �2c2
1

sn

(√
ν2 + �2c2

1σ

∣∣
∣∣
c2

1(1 + �2)

ν2 + �2c2
1

)

,

(3.12)

with

R± =
−1 + �2c2

0 − c2
1(1 + 2�2)±

√
(c2

1 − 1)2 + �4c4
0 + 2c2

0(2 + (1 + c2
1)�2)

2 + 2�2c2
1

.

(3.13)

Now we take periodicity condition of θ which gives, the range
0 ≤ σ ≤ 2π is divided into four equal segments: in the first
segment i.e. for 0 ≤ σ ≤ π

2 , the solution of θ(σ ) increases

from zero to its maximal value θmax = sin−1

√
c2

1(1+�2)

ν2+�2c2
1

, then

it decreases to zero in the π
2 ≤ σ ≤ π segment and continues

the similar pattern for π ≤ σ ≤ 2π region.

2π =
∫ 2π

0
dσ = 4

∫ θmax

0

dθ

θ ′
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= 4
∫ θmax

0

dθ
√
c2

1(1 + �2) − sin2 θ(ν2 + c2
1�

2)

. (3.14)

Using the definition of complete elliptic integral of first kind
(K), we get

2π

√
ν2 + �2c2

1 = 4K

[
c2

1(1 + �2)

ν2 + �2c2
1

]

. (3.15)

The conserved charges can be evaluated as

E =
∫ 2π

0

√
1 + �2c0

2πα′ dσ = c0

α′
√

1 + �2, (3.16)

J = ν
√

1 + �2

2πα′

∫ 2π

0

sin2 θ

1 + �2 cos2 θ
dσ. (3.17)

Let us define two parameters A = sinh ρmax = √
R− and

B = sin θmax =
√

c2
1(1+�2)

ν2+�2c2
1

. Now we want to express the

conserved charges in terms of these two parameters so that
we can analyze both “short string” and “long string” limits.
Let us first find out the other parameters in terms A and B.
Using the periodicity condition (3.15), we get

c1 = 2BK(B2)

π
√

1 + �2
and ν = 2

π

√
1 + �2(1 − B2)

1 + �2 K(B2).

(3.18)

Solving (3.13) for c0 and then substituting the value of c1

from the above equation, we get the conserved energy in the
following form

E =
√

(1 + A2)
[
(1 + �2 + �2A2)4B2K2(B2) + π2A2(1 + �2)

]

α′2π2
(
1 + �2(1 + A2)

) .

(3.19)

Similarly substituting the value of sin θ in (3.17) and then
using (3.18), we find the expression of angular momentum
in terms B as

J = 2
√

1 + �2 − �2B2

α′π�2

[
�

(
�2B2

1 + �2 , B2
)

− K(B2)

]
.

(3.20)

Now we reach in a position where we can apply short string
limit or long string limit to establish the relation between
conserved charges. Let us discuss these two situations one
by one.

Short string limit

Consider the short-string solution in S5 which correspond to
sin θmax � 1 or B � 1. For which the leading order term in

energy and angular momentum turn out to be

E ≈
√

(1 + A2)
[
(1 + �2 + �2A2)B2 + A2(1 + �2)

]

α′2 (1 + �2(1 + A2)
) ,

(3.21)

J ≈ B2

2α′√1 + �2
. (3.22)

Therefore the scaling relation between E and J becomes,

E ≈

√√√
√ (1 + A2)

[
2α′(1 + �2 + �2A2)

√
1 + �2J + A2(1 + �2)

]

α′2 (1 + �2(1 + A2)
) .

(3.23)

Now let us consider two sub cases depending upon the nature
of the oscillation of string in AdS5 part. For A � 1 which
corresponds to small oscillation at center AdS, the relation
between E and J becomes,

α′E2 ≈ 2J
√

1 + �2. (3.24)

For � → 0, we get α′E2 ≈ 2J , which is a well known result
for undeformed AdS5 × S5 as found in [18,37]. Similarly,
for A 
 1, we write the scaling relation by expanding it for
small �,

E =
(
A2

α′ + 1

2α′ + J
)

+
(

− A4

2α′ +
(
J − 1

2α′

)
A2

2
+
(

3J
4

+ 1

16α′

))
�2

+O(�4). (3.25)

We can notice, as expected, the zeroth order � term matches
with its corresponding undeformed case as found in [18].

Long string limit

For long string in S5, the string extends to the equator so
B ≈ 1 for which E and J become

E ≈

√√
√√ (1 + A2)

(
(1 + �2 + �2A2) log2 16

1−B2 + π2(1 + �2)A2
)

α′2π2
(
1 + �2(1 + A2)

) ,

(3.26)

J ≈ 1

α′π
log

16

1 − B2 − 6 + 2�2

3πα′ . (3.27)

Therefore the relation between E and J turns out to be

E≈

√√
√√ (1 + A2)

[(
1 + �2 + �2A2

) (
α′πJ + 2 + 2

3 �2
)2 + π2(1 + �2)A2

]

α′2π2
[
1 + �2(1 + A2)

] .

(3.28)
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For small oscillation in AdS i.e A � 1, we get

E − J ≈ 2

πα′

(
1 + �2

3

)
+ J A2

2
. (3.29)

On the other hand, for A 
 1 we have to distinguish two
different scenarios,

(i) for α′ J � A, we get the scaling relation as

E =
(
A2

α′ + α′J 2

2

)

+
(

− A4

2α′ +
(
J
α′ + α′J 2

4

)
A2

2

)

�2

+O(�4). (3.30)

(ii) for α′ J 
 A, we get

E = AJ + A3

2α′2J

+
(

2A2

3πα′ − A3

3πα′3J 2 +
(

− 1

2α′2J + 1

α′3πJ 2

)
A5

)

�2

+O(�4). (3.31)

We can notice that for � → 0 the above results agree with
their undeformed case as found in [6,18,37].

4 Spinning in (AdS5)� and pulsating in
(
S5

)
�

In this section, we consider a string which is spinning in
AdS5 and pulsating in S5 of the deformed geometry. The
corresponding string ansatz:

t = kτ, ρ = ρ(σ), ψ = π

2
, ψ2 = ωτ, θ = θ(τ ), ϕ = σ. (4.1)

The Polyakov action for the above string ansatz can be written
as

Sp = T̂
∫

d2σ

(
− k2 cosh2 ρ

1 − �2 sinh2 ρ
− ρ′2

1 − �2 sinh2 ρ

+ω2 sinh2 ρ + θ̇2

1 + �2 cos2 θ
− sin2 θ

1 + �2 cos2 θ

)
.

(4.2)

The equations of motion for ρ and θ can be found as

2ρ′′(1 − �2 sinh2 ρ) + �2ρ′2 sinh 2ρ

+ sinh 2ρ
(
ω2(1 − �2 sinh2 ρ)2 − k2(1 + �2)

)
= 0,

(4.3)

2θ̈ (1 + �2 cos2 θ) + θ̇2�2 sin 2θ + (1 + �2) sin 2θ = 0.

(4.4)

The above equations of motion are supplemented with the
following conformal gauge constraints:

− cosh2 ρk2

1 − �2 sinh2 ρ
+ ρ′2

1 − �2 sinh2 ρ
+ ω2 sinh2 ρ

+ θ̇2

1 + �2 cos2 θ
+ sin2 θ

1 + �2 cos2 θ
= 0. (4.5)

We can decouple the equations of ρ and θ as done in the
previous section.

− cosh2 ρk2

1 − �2 sinh2 ρ
+ ρ′2

1 − �2 sinh2 ρ
+ ω2 sinh2 ρ + c2

1 = 0,

(4.6)

θ̇2

1 + �2 cos2 θ
+ sin2 θ

1 + �2 cos2 θ
− c2

1 = 0, (4.7)

where c1 is a constant. We can also check that the above
equations are consistent with equations of motion of ρ (4.3)
and θ (4.4). Now it is easy to obtain the solution of ρ and θ

from these equations. From (4.6) we get

ρ′2 = �2ω2(sinh2 ρ − sinh2 ρ−)(sinh2 ρ − sinh2 ρ+), (4.8)

where

z± = sinh2 ρ±

=
ω2 − k2 − c2

1�
2 ±

√
(ω2 − k2 − c2

1�
2)2 − 4�2ω2(k2 − c2

1)

2�2ω2 .

(4.9)

Now integrating (4.8), we get the following solution of ρ in
terms of elliptic function

coth2 ρ = z+ + 1

z+

dc2
(
�ω
√
z+(1 + z−)σ,k2

)

k2 , (4.10)

where dc is Jacobi elliptic dc function and k2 = z−(1+z+)
z+(1+z−)

.
Similarly the solution of θ can be found from (4.7) as

sin θ =

⎧
⎪⎨

⎪⎩

sn
(
c1

√
1 + �2τ, 1

B2

)
for B > 1

B sn
(√

1 + c2
1�

2τ, B2
)

for B < 1,
(4.11)

where B = c1
√

1+�2
√

1+c2
1�2

. The above solution of θ implies the

pulsating nature of string along θ direction.
The positiveness of the left hand side of (4.8) put constraint

on the values of ρ, which gives the allowed regions of ρ are

(i) 0 ≤ ρ ≤ ρ− with ρ− ≤ ρ∗ < ρs (4.12)

(ii) ρ+ ≤ ρ < ∞ with ρ∗ ≤ ρ+ < ρs (4.13)

where ρ∗ is the value of ρ where ρ− = ρ+ and ρs =
sinh−1

( 1
�

)
is the singularity in (AdS5)� In our case i.e for
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spinning string solution we study the string motion in the
first region because it contains the center of AdS. Again since
sinh2 ρ± ∈ R+ it gives the following inequality,

ω ≥

⎛

⎜⎜
⎝

√
1 + �2 + �

√

1 − c2
1

ω2

1 + c2
1

ω2 �2

⎞

⎟⎟
⎠ k. (4.14)

The periodicity condition can be written as,

2π =
∫ 2π

0
dσ = 4

∫ ρ−

0

dρ

ρ′ ,

which gives the following relation between the parameters,

π�ω
√
z+(z− + 1) = 2K

(
z−(z+ + 1)

z+(z− + 1)

)
. (4.15)

The conserved energy and spin can be evaluated as,

E = k
√

1 + �2

2πα′

∫ 2π

0

cosh2 ρ

1 − �2 sinh2 ρ
dσ

= k
√

1 + �2

2πα′

∫ 2π

0

cosh2 ρ

1 − �2 sinh2 ρ

dρ

ρ′ ,

S = ω
√

1 + �2

2πα′

∫ 2π

0
sinh2 ρdσ

= ω
√

1 + �2

2πα′

∫ 2π

0
sinh2 ρ

dρ

ρ′ . (4.16)

Substituting the value of ρ′ from (4.8), we get,

E = 2k
√

1 + �2

πα′�ω
√
z+(z− + 1)

�

(
z−(1 + �2)

z− + 1
,
z−(z+ + 1)

z+(z− + 1)

)
,

(4.17)

S = 2
√

1 + �2

πα′�
√
z+(z− + 1)

×
(

�

(
z−

z− + 1
,
z−(z+ + 1)

z+(z− + 1)

)
− K

(
z−(z+ + 1)

z+(z− + 1)

))
,

(4.18)

Short string limit

As the maximum value of ρ is ρ−, for short string limit
ρ− → 0 or z− → 0. For which

z− ≈ k2 − c2
1

ω2 and z+ ≈ 1

�2 with ω 
 k. (4.19)

Using this approximation and the periodicity condition
(4.15), we get

k

ω
=
√√√√z− + B2π2(1 + z−)

4(1 + �2 − B2�2)K2
(
z−(1+�2)
z−+1

) . (4.20)

Substituting these above result in (4.17) and (4.18) and then
expanding for small z−, the leading order terms in energy
and spin expressions for sort string turn out to be

E ≈ A
(

1 + (1 + �2 + B2)z−
2B2 − 2

(
1 + �2

)2 − 12B2�2
(
1 + �2

)+ B4
(
1 − 6�2 + 3�4

)

16B4 z2−

)

,

S ≈
√

1 + �2

2α′

[
z− + 3(−1 + �2)

8
z2−
]

, (4.21)

with A = B
√

1+�2

α′√1+�2−B2�2 . Therefore the expression for
energy in terms of spin can be written as

E2 ≈ (1 + �2)

α′2(1 + �2 − B2�2)

(
B2 + 2α′(1 + B2 + �2)√

1 + �2
S

)
.

(4.22)

For small oscillation i.e. B → 0

E2 ≈ 2

√
1 + �2

α′ S. (4.23)

For � → 0 the above results reduces to result obtained in
undeformed case [18,38].

Long string limit

Now let us consider the long string solution, for which the
length of string becomes maximum i.e. ρ− ≈ ρ∗. Now using
(4.8), (4.12) and (4.14), we get

z− = sinh2 ρ− =
√√√√
(

1 + 1

�2

)(

1 − c2
1

ω2

)

− 1, (4.24)

k

ω
=
√

1 + �2 − �

√

1 − c2
1

ω2 . (4.25)

We can also notice that for long string solution ρ− becomes
very nearer to ρ+. Therefore taking z−

z+ = 1 − ε where ε �
1, the expressions for energy and spin for long string limit
become

E = 2k
√

1 + �2

πα′�ω
√
z−(z− + 1)

√
1 − ε �

×
(
z−(1 + �2)

z− + 1
, 1 − ε

1 + z−
,

)
(4.26)

S = 2
√

1 + �2

πα′�
√
z−(z− + 1)

√
1 − ε

123
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×
(

�

(
z−

z− + 1
, 1 − ε

1 + z−

)
− K

(
1 − ε

1 + z−

)
.

)

(4.27)

Now using the expansions of elliptic integrals for ε � 1

√
1 − ε �

(
m, 1 − ε

1 + z−

)

=
4 log 2 − √

m log
[

1+√
m

1−√
m

]
− log ε

1+z−
2(1 − m)

+ O(ε),

√
1 − ε

[
�

(
n, 1 − ε

1 + z−

)
− K

(
1 − ε

1 + z−

)]

=
n
(

4 log 2 − 1√
n

log
[

1+√
n

1−√
n

]
− log ε

1+z−

)

2(1 − n)
+ O(ε)

and identifying m = z−(1+�2)
z−+1 and n = z−

z−+1 , we get

E =
√

1 + �2

πα′�
√
m

(
4 log 2 − √

m log

[
1 + √

m

1 − √
m

]

− log
ε

1 + z−

)
, (4.28)

S =
√

1 + �2

πα′�
√
n

(
4 log 2 − 1√

n
log

[
1 + √

n

1 − √
n

]

− log
ε

1 + z−

)
, (4.29)

where we have used the relations

k

ω
√
z−(z− + 1)(1 − m)

= 1√
m

and

n
√
z−(z− + 1)(1 − n)

= √
n. (4.30)

Now the relation between energy and spin turns out to be

E − 1√
mn

S =
√

1 + �2

πα′�

(
log

[
1 − √

m

1 + √
m

]

× + 1√
mn

log

[
1 + √

n

1 − √
n

])
. (4.31)

finally substituting 1√
m

= ω0 and
√
n = k0, we get

E − ω0

k0
S =

√
1 + �2

πα′�

×
(

log

[
ω0 − 1

ω0 + 1

]
+ ω0

k0
log

[
1 + k0

1 − k0

])
.

(4.32)

The above relation agrees with result found in [32].

5 Spinning both in (AdS5)� and
(
S5

)
�

In this section we consider a string which spins both in
( AdS5)� and

(
S5
)
�

. The ansatz for such string can be written
as

t = t (τ ), ρ = ρ(σ), ψ = π

2
, ψ2 = ωτ,

θ = θ(σ ), ϕ = ντ. (5.1)

Since the embeddings of AdS5 part remains unchanged from
the previous section, the equation of motion of ρ and so as
its solution and periodicity condition are remain same. While
the equation of motion θ and Virasoro constraint equation are
given by

2θ ′′ (1 + �2 cos2 θ
)

+ �2θ ′2 sin 2θ

+ν2 sin 2θ(1 + �2) = 0, (5.2)

− cosh2 ρk2

1 − �2 sinh2 ρ
+ ρ′2

1 − �2 sinh2 ρ
+ ω2 sinh2 ρ

+ θ ′2

1 + �2 cos2 θ
+ ν2 sin2 θ

1 + �2 cos2 θ
= 0. (5.3)

The solution to the equation motion of θ can be obtained in
terms of elliptic function,

sin θ =

⎧
⎪⎨

⎪⎩

sn
(
c1

√
1 + �2σ, 1

B2

)
for B > 1

B sn
(√

ν2 + c2
1�

2σ, B2
)

for B < 1,
(5.4)

where B =
√

c2
1(1+�2)

ν2+c2
1�2 and c1 is an integration constant.

There is another periodicity condition comes from the string
configuration along θ angle, which gives,

2π

√
ν2 + �2c2

1 = 4K

[
c2

1(1 + �2)

ν2 + �2c2
1

]

.

The general expressions of conserved charges E and S will be
same as (4.17) and (4.18), while the extra angular momentum
can be evaluated as,

J = ν
√

1 + �2

2πα′

∫ 2π

0
dσ

sin2 θ

1 + �2 cos2 θ

= 2ν
√

1 + �2

α′π

∫ θmax

0

dθ

θ ′
sin2 θ

1 + �2 cos2 θ
.

So J = 2ν
√

1 + �2

α′π�2
√

ν2 + c2
1�

2

×
[
�

(
�2B2

1 + �2 , B2
)

− K(B2)

]
. (5.5)
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Now using the periodcity condition of θ and ρ we express
all the parameters in terms of B and z−

c1 = 2BK[B2]
π

√
1 + �2

, ν = 2

π

√
1 + �2(1 − B2)

1 + �2 K[B2],
(5.6)

ω = 2

π
√

1 + z−
K
(

(1 + �2)z−
1 + z−

)
,

k2 = 4

π2

[
z−

(1 + z−)
K2
(

(1 + �2)z−
1 + z−

)
+ B2

(1 + �2)
K2(B2)

]
.

(5.7)

Now substituting these relation in conserves charges we get

E = 2
√

(1 + �2)(1 + z−)

α′π(1 − z−�2)

√
1 + z−

K
(
z−(1+�2)
z−+1

)

×

√√√√ B2K2(B2)

1 + �2 +
z−K2

(
z−(1+�2)
z−+1

)

1 + z−
E
(
z−(1 + �2)

z− + 1

)
,

S = 2
√

1 + �2

πα′√(z− + 1)

×
[
�

(
z−

z− + 1
,
z−(1 + �2)

z− + 1

)
− K

(
z−(1 + �2)

z− + 1

)]
,

J = 2
√

1 + �2 − �2B2

α′π�2

[
�

(
�2B2

1 + �2 , B2
)

− K(B2)

]
.

(5.8)

Using the short string limit z− → 0 and B � 1, the leading
terms in E, S and J turn out to be

E2 ≈ 1

α′2
(
B2 +

(
1 + �2

)
z−
)

,

S ≈
√

1 + �2

2α′ z−, and J ≈ B2

2α′√1 + �2
. (5.9)

Finally the relation between E, S and J becomes

E2 ≈ 2

√
1 + �2

α′ (J + S) . (5.10)

For � → 0, the above result reduces to result found in [37].
This scaling relation is of the form of usual Regge-type spec-
trum. In the case of � → 0 the dual gauge theory operator
has been identified in [37]. In the present case of nonzero �,
the proper identification is still missing even for the simplest
class of folded and spinning string solutions.

6 Summary and conclusion

In this paper, we have studied a generic class of semiclas-
sical string solitons in � deformed AdS5 × S5 background.
We have restricted ourselves to the bosonic part of the string

action in conformal gauge. We have found the exact solutions
for the string configuration which are pulsating in (AdS5)�
and at the same time spinning in the S5

� and vice versa and
computed the general expressions of conserved charges in
terms Jacobi elliptic functions and elliptic integrals. We have
obtained the scaling relation between the energy and angular
momentum for such configurations in short and long string
limits. As expected these relations reduce to their correspond-
ing undeformed results when � → 0. We have further studied
an example of string solition which spins along both sub-
spaces of (AdS5 × S5)� and write down the scaling relation
among the charges in the leading orders.

There are some open questions which could be addressed
later. First, it would be interesting to study the corresponding
gauge theory operator, if any, dual to these string solitons.
Recall that the novelty of the solutions presented in [18]
was to find out a scaling relation between various charges
through an additional constant, whose gauge theory inter-
pretation was highly nontrivial. It was argued that suitably
adjusting this nontrivial constant one was able to see some
direct relationship with the underlying gauge theory. Ours
is a generalization of those results and we have been able
to successfully incorporate all nontrivial factors which have
been introduced by the deformation parameter �. These are
a generic class of solutions for the string trajectories in the
gravity side. We hope this will give further insight in the study
of string solutions in �-deformed AdS5×S5. The recent stud-
ies suggest that the underlying gauge theory might be some
nonlocal theory which at best remains obscure. Therefore,
studying classical rotating and pulsating string solutions are
expected to give us hints along these directions. Secondly, as
the deformed geometry is question is not well understood as
a generic string background it would be interesting to see if
we can take clue from the deformed supergravity equations
proposed in [39] and look for possible “modified” intersect-
ing D-branes whose near horizon geometry gives rise to these
deformed geometries. Thirdly, finding the multi spin string
solution in this deformed background is worth attempting,
though in this case the string rotating with equal spins along
the two subspace will not be possible because of loss of sym-
metry due to the deformation. Finally, one can do a one loop
calculation to find out the leading order corrections to the
conserved charges along the lines of [15]. We will report on
some of these issues in near future.
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