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Abstract We give good approximate analytic solutions for
spherical charged boson stars in the large scalar-self-coupling
limit in general relativity. We show that if the charge e and
mass m of the scalar field nearly satisfy the critical relation
e2 ≈ Gm2 (where G is the Newton constant), our analytic
expressions for stable solutions agree well with the numerical
solutions.

1 Introduction

One of the great problems in astroparticle physics is the dark
matter problem [1,2]. Many non-baryonic dark matter can-
didates have been supposed in the last several decades; for
instance, weakly interacting massive particles (WIMPs) have
been studied along with development of phenomenological
supersymmetric particle theory.

There is a novel idea that condensation of unknown scalar
bosons as a compact object may play a role in dark matter.
Such a gravitating configuration is called a boson star [3–
6] and serves as a simple model to solve some problems
arising in astrophysics, such as galactic dynamics and stellar
structure, avoiding restrictions on WIMPs and other models.

Many authors have studied various models for boson stars
so far, and the studies on boson stars can yield not only a clue
to astrophysical problems but also new insights into compact
configurations in general relativity and in modified gravity
theories on theoretical grounds.

As a specific example, stable boson stars in scalar the-
ory with a large quartic self-coupling, first studied by Colpi
et al. [7], typically have a large length scale, and thus the
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idea of boson stars with a galactic size naturally arises as an
explanation of the flat rotation curves of galaxies [8–14].1

Another interesting object is a charged boson star [3,17–
20]. The typical size of charged boson stars is larger than that
of neutral boson stars, because of partial subtraction of the
magnitude of the attractive force by the “electric” force.

Consider a system of particles with mass m and charge e.
In the limit of e2 → Gm2, where G is the Newton constant,
the long-range forces are mutually canceled. This fact raises
a question: near the critical point e2 = Gm2, can one find
some simple (or peculiar) behavior in the system?

A few decades ago, Jetzer et al. found the critical behavior
in the mass of a time-independent, spherical charged boson
star [3,17]. Pugliese et al. recently investigated such behav-
ior for gravitating charged scalar theory without scalar self-
interactions [20]. Both analyses relied on numerical meth-
ods. In the present paper, we will study critical behaviors in
stationary spherical charged boson stars with a large scalar
self-coupling, using analytical approximations.

If the charge is near critical, i.e., e2 ≈ Gm2, the equilib-
rium density distribution is expected to be dilute as well as
large scale. The value of the central density goes to zero as
the total mass becomes infinite. Because the pressure in the
center of the almost critical charged boson star is small com-
pared to the energy density, the configuration approaches a
Newtonian boson star in the critical limit. Therefore, we first
arrive at the idea of obtaining solutions for boson stars with
a small ε, which represents the (appropriately normalized)
central value of a square of the scalar field.

It should be noted that it is necessary to find solutions
of the next order in ε, because the post-Newtonian effect
determines the stability of a definite mass and radius. The

1 The large values of couplings among unknown fields may be com-
patible to the recently proposed scheme of strongly interacting massive
particles (SIMPs) [15,16], though we need a hierarchical mass spec-
trum.
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boundary between a stable and an unstable star is given by
the maximum mass. It is reported [3,17] that the maximum
mass increases with increasing gauge coupling constant. An
important aim of the present paper is to reproduce this behav-
ior semi-quantitatively in our approximation.

The present paper is organized as follows. In Sect. 2, we
give the field equations for a boson star in general relativity
and their large coupling limit. In Sect. 3, in order to gener-
ate simple approximate solutions, we construct an approxi-
mate differential equation for the square of the scalar field.
Linearizing the equation, we obtain analytical approximate
solutions expressed by trigonometric functions. The critical
behavior in the mass of the boson star is qualitatively con-
firmed by using the approximate solutions. In Sect. 4, we
reconsider the energy density of the electric field, which is
ignored in Sect. 3. After including the electromagnetic con-
tribution to the total mass, we again compare our approximate
analysis with numerical results. Finally, we summarize and
discuss our results in Sect. 5.

In Appendix A, a naive perturbative treatment of the equa-
tion as a power expansion of ε is given. In Appendix B, we
present the method which relies on the Taylor expansion in
radius coordinates and estimates the mass of the stable boson
star in the critical limit.

2 Charged boson stars in large coupling limit

We consider an Einstein–Maxwell system with a self-
interacting complex scalar field φ of mass m and charge e,
governed by the following action (where h̄ = c = 1):

S =
∫

d4x

√−g

16π

[
1

G
R − F2 − |Dμφ|2 − m2|φ|2 − λ

2
|φ|4

]
,

(2.1)

where d4x = dt d3r , G is the Newton constant, R is
the scalar curvature, and F2 = gμρgνσ FμνFρσ . The field
strength is defined as Fμν = ∂μAν − ∂ν Aμ, where Aμ

is a U (1) gauge field. The gauge field also appears in
|Dμφ|2 ≡ gμν(Dμφi )

∗(Dνφi ), where the covariant deriva-
tive is Dμ = ∂μ + ieAμ. The scalar self-coupling constant
λ is assumed to be positive.

Varying the action with respect to the metric, we obtain
the Einstein equation

Rμ
ν − 1

2
δμ
ν R = 8πGTμ

ν , (2.2)

where the energy-momentum tensor Tμν in the system is
given by

16πTμν = (Dμφ)∗(Dνφ) + (Dνφ)∗(Dμφ) − gμν |Dρφi |2

−gμν

(
m2|φ|2 + λ

2
|φ|4

)

+4gρσ FρμFσν − gμνF
2. (2.3)

On the other hand, the equation of motion for the scalar field
φ is given by

DμDμφ − m2φ − λ|φ|2φ = 0, (2.4)

and the Maxwell equation is given by

DμF
μν + i

e

4
[φ∗Dνφ − φ(Dνφ)∗] = 0. (2.5)

In the present paper, we consider stationary spherical
boson stars. Thus, we assume the metric with spherical sym-
metry

ds2 = −
(

1 − 2GM(r)

r

)
e−2δ(r)dt2

+
(

1 − 2GM(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2).

(2.6)

The ansatze for the scalar field and the gauge field are given
by

φ = 1√
G

φ(r)e−iωt , eAμ = m(A(r) + ω)δμ0, (2.7)

where ω is a constant.
Furthermore, we adopt the following new definitions of

couplings:

q2 ≡ e2

Gm2 , � ≡ λ

Gm2 . (2.8)

Substituting the foregoing ansatze and definitions in field
Eqs. (2.2), (2.4), and (2.5) with the following replacement to
dimensionless variables

mr → r, GmM(r) → M(r), (2.9)

we obtain the simultaneous differential equations

φ′′ +
(

2

r
− δ′ + 2

r

M − rM ′

r − 2M

)
φ′

+
[

e2δ

1 − 2M
r

A2 − 1 − �φ2

]
1

1 − 2M
r

φ = 0, (2.10)

A′′ +
(

2

r
+ δ′

)
A′ − q2

2

1

1 − 2M
r

φ2A = 0, (2.11)

2

r2 M
′ = e2δ A

′2

q2 + 1

2

[
e2δ

1 − 2M
r

A2φ2

+
(

1 − 2M

r

)
φ′2

]
+ 1

2
φ2 + �

4
φ4, (2.12)
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−1

r
δ′ = 1

2

[
e2δ

(
1 − 2M

r

)2 A
2φ2 + φ′2

]
, (2.13)

where the prime (′) indicates the derivative with respect to r .
To realize the configuration of a spherical boson star, we

impose the following boundary conditions:

φ′(0) = 0, A′(0) = 0, M(0) = 0, δ(0) = 0,

φ(∞) = 0, A(∞) = const. (2.14)

Note that an arbitrary value for δ(0) is allowed because it can
be absorbed by the redefinition of the time coordinate t .

Here, we consider the large coupling limit [3,7]. To take
the limit, we introduce the following quantities:

x ≡ g√
�
r, �(x) ≡ √

�φ(r), μ(x) ≡ gM(r)√
�

, (2.15)

where

g =
√

1 − q2. (2.16)

Owing to new variables, we can take the limit of � → ∞;
the field equations then become [3]

σ ≡ �2 = e2δ

1 − 2μ
x

A2 − 1, (2.17)

A′′ +
(

2

x
+ δ′

)
A′ − q2

2g2

1

1 − 2μ
x

σ A = 0, (2.18)

2

x2 μ′ = e2δ A
′2

q2 + 1

2

e2δ

1 − 2μ
x

A2 σ

g2 + 1

2

σ

g2 + 1

4

σ 2

g2 ,

(2.19)

− 1

x
δ′ = 1

2

e2δ

(
1 − 2μ

x

)2 A
2 σ

g2 , (2.20)

where, and hereafter, the prime (′) stands for d
dx . Note that

the first equation shows an algebraic relation valid for σ =
�2 > 0. Therefore, the field equations are now reduced to
three differential equations on A(x), μ(x), and δ(x). The
surface of the spherical boson star is defined by the radius
x = x∗ at which σ(x∗) = �2(x∗) = 0. Outside the boson
star, it is thought that �(x) vanishes for x > x∗.

The numerical solutions for the system in the large cou-
pling limit have been investigated, for example, in Refs. [3,
17]. We will consider an approximation that leads to analytic
solutions for the system in the next section.

3 Approximate equation for square of the scalar field

When solving the field equations mathematically, we initially
regard the region of definition for A(x), μ(x), and δ(x) as
[0,∞), though physical meanings of the solutions hold only
in the region of positive σ(x) = �2(x); i.e., [0, x∗].

Here, we again give the field equations for α(x) ≡
A(x)/A(0) ≡ A(x)/A0, μ(x), and δ(x) [(2.18), (2.19), and
(2.20)]:

α′′(x) +
(

2

x
+ δ′(x)

)
α′(x) − q2

2g2

1

1 − 2μ
x

σ(x)α(x) = 0,

(3.1)

2

x2 μ′(x) = e2δ(x)A2
0
α′(x)2

q2 + 1

g2 σ(x)

(
1 + 3

4
σ(x)

)
,

(3.2)

− 1

x
δ′(x) = 1

2g2

1

1 − 2μ
x

σ(x)(1 + σ(x)), (3.3)

where

σ(x) = e2δ(x)

1 − 2μ(x)
x

A2
0α

2(x) − 1. (3.4)

Ifq2 ≈ 1, an attractive force (gravity) and a repulsive force
(Coulomb repulsion) almost cancel each other out. Under the
restriction that the particle number is constant, the density
becomes low (because of the repulsive force which originates
from the self-interaction of scalars2) for a stable boson star.

Therefore, we can examine the expansion in terms of a
“small” parameter ε defined by ε ≡ A2

0 − 1 = σ(0) for
solving the differential equations. Although the equations
at the lowest order of ε become very simple, those at the
next order are very complicated to analyze. This approach is
described in Appendix A. Thus, in the present section, we
consider the other approach.

Now, we investigate the relationship in terms of derivatives
of σ(x) by using the following approximation. Because we
wish to consider a stable dilute boson star, we first assume
2μ(x)
x 	 1 and δ(x) 	 1, which are near-vacuum values of

the variables. We will, however, take care of their derivative,
which is expressed by σ(x) and its derivative.

We next assume (α′(x))2 	 σ(x)/g2. This assumption
implies that the energy density of the electric field is neg-
ligible compared with the energy density of the scalar field
and can therefore be omitted, because the right-hand side
of Eq. (3.2) is proportional to the total energy density. For
finite values of σ(x) and small g2, this approximation is rea-
sonable. Because we are now going to study the behavior
of σ(x) in the nearly flat background, we take only the first
order in the electric field in the present approximation. It is
noteworthy that we do not assume σ(x) 	 1 at the first time,
whose value should be small for a stable dilute boson star in
the critical limit g ≈ 0.

2 Even if the self-interaction is absent, the density is expected to become
low due to the uncertainty principle (“quantum force”).
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Then, by using Eq. (3.4), we can approximate the first
derivative of ln(1 + σ(x)) as

σ ′(x)
1 + σ(x)

≈ 2
α′(x)
α(x)

+ 2μ′(x)
x

− 2μ(x)

x2 + 2δ′(x). (3.5)

Under the same assumptions, the field Eqs. (3.2) and (3.3)
can be interpreted as

2

x
μ′(x) ≈ x

g2 σ(x)

(
1 + 3

4
σ(x)

)
, (3.6)

2δ′(x) ≈ − x

g2 σ(x)(1 + σ(x)), (3.7)

where we find that μ′(x) and δ′(x) are supposed to be deter-
mined by σ(x). Equation (3.5) then becomes

σ ′(x)
1 + σ(x)

≈ 2
α′(x)
α(x)

− x

4g2 σ 2(x) − 2μ(x)

x2 . (3.8)

One more differentiation of the above equation yields

σ ′′(x)
1 + σ(x)

≈ 2
α′′(x)
α(x)

− 2

(
α′(x)
α(x)

)2

− 1

4g2 σ 2(x)

− x

2g2 σ(x)σ ′(x) − 2μ′(x)
x2 + 4μ(x)

x3

+
(

σ ′(x)
1 + σ(x)

)2

≈ 2
α′′(x)
α(x)

− 1

g2 σ(x)(1 + σ(x))

− x

2g2 σ(x)σ ′(x) + 4μ(x)

x3

+
(

σ ′(x)
1 + σ(x)

)2

− 2

(
α′(x)
α(x)

)2

, (3.9)

where we used Eq. (3.6). Combining Eqs. (3.8) and (3.9), we
obtain

1

1 + σ(x)

(
σ ′′(x) + 2

x
σ ′(x)

)

≈ 2

(
α′′(x)
α(x)

+ 2

x

α′(x)
α(x)

)
− 1

g2 σ(x)

(
1 + 3

2
σ(x)

)

− x

2g2 σ(x)σ ′(x) +
(

σ ′(x)
1 + σ(x)

)2

− 2

(
α′(x)
α(x)

)2

≈ −2δ′(x)α′(x)
α(x)

+ q2

g2 σ(x) − 1

g2 σ(x)

(
1 + 3

2
σ(x)

)

− x

2g2 σ(x)σ ′(x) +
(

σ ′(x)
1 + σ(x)

)2

− 2

(
α′(x)
α(x)

)2

≈ −σ(x)

(
1 + 3

2g2 σ(x)

)
− 2δ′(x)α′(x)

α(x)
− x

2g2 σ(x)σ ′(x)

+
(

σ ′(x)
1 + σ(x)

)2

− 2

(
α′(x)
α(x)

)2

, (3.10)

where we used an approximate equation that comes from
Eq. (3.1),

α′′(x) +
(

2

x
+ δ′(x)

)
α′(x) − q2

2g2 σ(x)α(x) = 0. (3.11)

Note also that q2−1
g2 = −1.

The second and third terms in Eq. (3.10) are reduced, if we
can further approximate σ ′(x)

1+σ(x) by 2α′(x)
α(x) and use Eq. (3.7),

to

−2δ′(x)α
′(x)

α(x)
− x

2g2 σ(x)σ ′(x)

≈ −2δ′(x)α
′(x)

α(x)
− x

2g2 σ(x)(1 + σ(x))
σ ′(x)

1 + σ(x)

≈ −2δ′(x)α
′(x)

α(x)
+ 2δ′(x)α

′(x)
α(x)

≈ 0. (3.12)

Now, if we assume (α′(x))2 	 σ(x)/g2, 2μ(x)
x 	 1,

δ(x) 	 1, and adopt the additional assumption | x
4g2 σ 2(x) +

2μ(x)
x2 | 	 2α′(x)

α(x) , the following differential equation on σ(x)
holds:

σ ′′(x) + 2

x
σ ′(x) + (1 + σ(x))

×
[
σ(x) + 3

2g2 σ 2(x) − 1

2

(
σ ′(x)

1 + σ(x)

)2
]

= 0.

(3.13)

Unfortunately, exact solutions for this nonlinear equation are
not known. Although it is interesting to solve this nonlinear
equation, we here consider a further approximation to solve
the equation analytically.3

In order to solve the equation approximately, we first set
σ(x) ≡ εσ̃ (0). We then find

σ̃ ′′(x) + 2

x
σ̃ ′(x) + (1 + εσ̃ (x))

×
[
σ̃ (x) + 3ε

2g2 σ̃ 2(x) − ε2(σ̃ ′(x))2

2 (1 + εσ̃ (x))2

]
= 0. (3.14)

The boundary condition at x = 0 then should be σ̃ (0) = 1
and σ̃ ′(0) = 0.

As an approximation scheme, we further assume that the
value of ε, which indicates the central value of the scalar
density, is small for a stable dilute boson star. We then find
the following approximate linear equation:

σ̃ ′′(x) + 2

x
σ̃ ′(x) + (1 + ε)

(
1 + 3ε

2g2

)
σ̃ (x) = 0. (3.15)

This approximation is considered to be good, especially for
x ≈ 0, where σ̃ ≈ 1 and σ̃ ′ ≈ 0. For a stable dilute boson

3 A comment is given in Sect. 5.
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Fig. 1 Numerical solutions in the large coupling limit (dotted lines) and the present approximation (light solid lines) for σ(x) and μ(x) on the
interval [0, π/k], where g2 = 0.1 and ε = 0.01
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Fig. 2 Numerical solutions in the large coupling limit (dotted lines) and the present approximation (light solid lines) for σ(x) and μ(x) on the
interval [0, π/k], where g2 = 0.1 and ε = 0.001

star, it is expected that the behavior of the solution near the
origin determines its overall shape and size. Furthermore,
we have left the “next-leading” terms in ε because the limit
of ε → 0 in Eq. (3.14) or Eq. (3.15) yields the result cor-
responding to the Newtonian limit and, as previously stated,
we wish to study the relativistic mass of the critically charged
boson star.

The solution for the above linearized equation satisfying
σ̃ (0) = 1 is

σ̃ (x) = sin kx

kx
, (3.16)

where

k = k(ε) ≡
√

(1 + ε)

(
1 + 3ε

2g2

)
. (3.17)

The approximate equation for μ(x) (3.6) then yields

μ(x) ≈ ε

2g2k3

[
sin kx − kx cos kx + 3ε

8

(
kx − sin 2kx

2

)]
.

(3.18)

In Fig. 1 (for g2 = 0.1 and ε = 0.01) and Fig. 2 (for
g2 = 0.1 and ε = 0.001), dotted lines are the numerical
results in the large coupling limit, and light solid lines are
our approximations. One can see that they almost coincide.

The surface of the boson star is located at x = x∗ where
σ(x∗) = 0. By using our approximate solution (3.16), we

easily find that x∗(ε) = π/k and

μ(x∗(ε)) ≈ επ

2g2k3(ε)

(
1 + 3ε

8

)
. (3.19)

Our definition of mass in the present section is the inte-
gration of the energy density inside a boson star, where
σ(x) > 0.4 That is

M∗ ≡ μ(x∗(ε))
g

= GmM(x∗(ε))√
�

, (3.20)

and we show M∗ as a function of �(0) = √
ε in Fig. 3.

In this figure, dots indicate the numerical dependence of
the mass with respect to �(0) for g = 0.1, 0.2, and 0.3,
whereas light solid curves represent our approximation for
g = 0.1, 0.2, and 0.3.

M∗ reaches its maximum value as �(0) increases. The
behaviors of the approximate values look alike as in figure
(Fig. 9) in Ref. [3] for small �(0), whereas, unfortunately,
they look different for large �(0) (as expected, because the
present approximation relies only on small �(0) = √

ε).
In the general relativistic system, it is known that the mass

of the star increases monotonically up to a maximum as the
central density increases. The maximum mass defines the
border between the stable and unstable configurations.

4 The discussion on the definition of mass corresponding to that in
Refs. [3,17] is given in Sect. 4.
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M

Fig. 3 Approximate charged boson star mass M∗ in units of
√

�/(Gm)

as a function of �(0) = √
�φ(0) for g = 0.1, 0.2, and 0.3 (from the

upper line to the lower line) for the case � → ∞. The dots indicate the
numerical results in the large coupling limit

To obtain solutions for the maximum boson star mass, the
value of ε = σ(0) = �2(0) is the root of the equation

∂μ(x∗(ε))
∂ε

= 0. (3.21)

Unfortunately, this equation reduces to a third-order equation
in ε. We do not have to solve the equation so precisely beyond
the present approximation scheme. Thus, dropping the third-
order term in the equation for sufficiently small ε, we obtain
the approximate solution

ε = εm ≈ 4

3
g2 6

3 − g2 + √
9 + 168g2 − 11g4

. (3.22)

Further, if we consider the limit of g → 0, we find εm →
4
3g

2, k(εm) → √
3, and

lim
g→0

μ(x∗(εm)) ≈ 2
√

3π

27
= 0.403. (3.23)

Thus, the mass of the stable charged boson star is found to
be

M∗max ≈ 0.403
1√

1 − q2
, (3.24)

for a small g = √
1 − q2. For a small g,

�(0)∗max ≈
√

4

3
g = 1.15

√
1 − q2, (3.25)

and

r∗max ≡ x∗(εm)

g
≈ π

gk(εm)
≈ π

g
√

3
= 1.81

1√
1 − q2

.

(3.26)

Jetzer and Bij [3,17] gave (in our notation) �(0)∗max ≈
(2.43/23/4)

√
1 − q2 = 1.44

√
1 − q2, M∗max ≈ 0.226 ×

23/4 × √
2 1√

1−q2
= 0.537 1√

1−q2
.5 Therefore, the devia-

tion from the precise value is ∼33% for M∗max and ∼20%
for �(0)∗max . The definition of the radius of the boson star
in Ref. [3] is the average of r∗ over the particle density. In
the present approximation, the function σ(x) represents both
the particle and the energy density. Thus, their definition
of the radius should be recognized as R∗ ≈ 0.344 r∗max ,
because the solution for σ(x) is proportional to sin kx/kx ,
and {∫ π

0 x(sin x/x)dx}/{π ∫ π

0 (sin x/x)dx} ≈ 0.344. Our
approximate value is R∗ = 0.415 × 23/4 × √

2 1√
1−q2

=
0.985 1√

1−q2
= 0.344 × 2.86 1√

1−q2
. The deviation of r∗max

is considered to be ∼58%.
Finally, in this section, we mention that it is also possible

to show the qualitative M∗-
√

ε relation in the other approx-
imation. The approximation, which utilizes the approximate
functions of the order O(x2), is shown in Appendix B.

In the next section, we reconsider the definition of mass
and inclusion of the energy density of the electric field.

4 The energy of the electric field

In the approximation scheme in the last section, we assumed
(α′)2 	 σ/g2. This corresponds to the omission of the
energy density of the electric field as it is negligible com-
pared with the energy density of the scalar field.

In the present section, we estimate the contribution of
the electric energy density to the boson star mass. Although
accounting for the electric energy in addition to the scalar
energy sounds inconsistent judging from the ansatz, it can be
considered that the configuration is the main source field of
all the fields because the approximation for the scalar field
configuration σ(x) fits numerical computations very well.
Thus, we insist that the addition of the electric energy den-
sity has a physical meaning.

The definition of mass in Refs. [3,17] includes the con-
tribution of the electric field. It is pointed out [20] that M∗
(in our notation) differs from the “actual” mass (which is
proportional to the coefficient of the inverse of the distance
from the origin in the asymptotic region). The difference is
due to the electric contribution and has been ignored in the
approximation scheme in Sect. 3.

We adopt Eq. (3.11), but we omit the term α′δ′ in the
equation, where the term is smaller than the source term ∝ σ .
We then get

α(x) ≈ 1 + q2ε

2g2k2

(
1 − sin kx

kx

)
for x < x∗ = π/k.

(4.1)

5 The factor 23/4 comes from the different definition of critical charge
and its power, and the factor

√
2 comes from the different definition of

λ/G.
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Note that in this section we consider the solutions for α(x)
inside the boson star (x < x∗) and outside the boson star
(x > x∗) separately. Therefore, the electric contribution to
the mass inside the boson star can be estimated as

�M∗(ε) = 1 + ε

2g

∫ x∗

0

(α′(x))2

q2 dx = πq2ε2(1 + ε)

16g5k5
, (4.2)

where we approximated δ ∼ 0. The ratio of the correction

�M∗(ε)
M∗(ε)

= q2ε(1 + ε)

8g2k2
(
1 + 3ε

8

) (4.3)

is at most 8% in the parameter region of Fig. 3, and the
approximate value of M∗ + �M∗ cannot be larger than that
of the numerical result.

Next, we consider the contribution of the electric field
outside the boson star. At the surface of the boson star, x =
x∗ = π/k, and from Eq. (4.1), we have

α(x∗) ≈ q2ε

2g2k2 , α′(x∗) ≈ q2ε

2g2kπ
. (4.4)

Outside the boson star, α behaves in accordance with
α(x) = C0 + C1

x , which is the solution of the field equation
α′′(x) + 2

x α′(x) = 0. Thus, we find the following solution
for α(x) outside the boson star, which is smoothly connected
to the solution for α inside the boson star:

α(x) ≈ q2ε

2g2k2 − πq2ε

2g2k3x
for x > x∗. (4.5)

Using this solution, we find the electric energy outside the
charged boson star as

�Moutside = 1 + ε

2g

∫ ∞

x∗
e2δ(x∗) (α

′(x))2

q2 . (4.6)

In the present approximation scheme, δ(x∗) = − ε
g2k2 +

O(ε2). Therefore, we again ignore δ(xm) and obtain

�Moutside(ε) = πq2ε2(1 + ε)

8g5k5
, (4.7)

which is the same order as �M∗.
We then estimate the total mass as

M(ε) ≡ M∗(ε) + �M∗(ε) + �Moutside(ε)

= επ

2g3k3

(
1 + 3ε

8

)
+ 3πq2ε2(1 + ε)

16g5k5
, (4.8)

which is illustrated in Fig. 4 for g = 0.1, 0.2, and 0.3. For
small values of �(0) = √

ε, approximate values fit the
numerical results better than the previous approximation.

The maximum mass M is attained if ∂M(ε)
∂ε

= 0, which
reduces to

ε

g2 → 4

15
(2 + √

14) = 1.53 for ε, g2 → 0. (4.9)

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

0.5
1

5
M

Fig. 4 Approximate charged boson star mass M (including the electric
energy) in units of

√
�/(Gm) as a function of �(0) = √

�φ(0) for
g = 0.1, 0.2, and 0.3 (from the upper line to the lower line) for the case
� → ∞. The dots indicate the numerical results in the large coupling
limit

The maximum mass is then

Mmax ≈ 10
√

5(11 + 3
√

14)π

3(
√

7 + √
2)5g

= 0.472
1√

1 − q2
. (4.10)

The deviation of M from the values in Refs. [3,17] is
now approximately 12%, while �(0)max ≈ √

1.53g =
1.24

√
1 − q2, and the deviation is 14%. We have now

obtained good approximate values by including the electric
energy contribution.

5 Summary and discussion

In this paper, we presented approximate solutions for dilute
charged boson stars with spherical symmetry in the large
scalar self-coupling limit. An approximation scheme is pre-
sented in Sect. 3, where we first consider the approximate
differential equation for the square of the scalar field σ(x).
In this approximation, we assumed that the contribution of the
energy density of the electric field is relatively small. A fur-
ther linearized approximation yields a fully analytic approx-
imation for a charged boson star. In Sect. 4, we improved the
approximation by reconsidering the electric energy. Because
it has been recognized that solutions with an ε value that is
smaller than the maximum εm value are stable and the oth-
ers are unstable, our approximation has a certain physical
meaning for stable configurations of charged boson stars.

We confirmed that the maximum mass of the boson star
increases with the gauge coupling constant as (

√
1 − q2)−1

for a charge close to the critical charge e2 ≈ Gm2 in our
approximation, whose deviation from the numerical result is
on the order of a few ten percent.

It was pointed out that there is a localized configuration
even if the charge of the scalar field is larger than the critical
coupling for scalar theory without self-coupling [20]. The
analysis of the critical behavior of the maximum mass in the
large self-coupling limit under consideration is nevertheless

123



257 Page 8 of 11 Eur. Phys. J. C (2018) 78 :257

valid, because the large coupling limit does not yield higher
node solutions [3], whereas only solutions with nodes exist
for over-critical cases as reported in Ref. [20] for scalar theory
with no self-interaction.

Our analytically approximate solutions can be used to
check the validity of numerical solutions generally. Analytic
solutions can also be used as a background configuration
in an investigation of the quantum vacuum around charged
boson stars [18], as well as the seeds of an exact solution (for
instance, nonspherical) in numerical computations.

We would like to improve the approximation for not so
small ε. To this end, we have to try a basic approach such as
the Padé approximation. In Sect. 3, a nonlinear equation for
σ(x) has been derived. We wish to use some type of renor-
malization group methods [21–24] to evaluate the solution,
though it is difficult to directly apply the known methods to
the present form of the equation.

Finally, we should consider the analysis of charged boson
stars in scalar theory with an arbitrary self-coupling. We hope
to return to these and other subjects in future work.
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Appendix A: Perturbative expansion in terms of ε

Here, we solve the field equations obtained in Sect. 2 as a
perturbative expansion in ε. First, we define

A(x) = A0α(x) = A0(1 + εα1(x) + ε2α2(x) + · · · ), (A1)

μ(x) = εμ1(x) + ε2μ2(x) + · · · , (A2)

δ(x) = εδ1(x) + ε2δ2(x) + · · · , (A3)

where ε is a parameter defined as

ε ≡ A2
0 − 1 or A0 ≡ √

1 + ε, (A4)

which means

σ(0) = �2(0) = ε, (A5)

if we identify boundary conditions αi (0) = μi (0) = δi (0) =
0 (i = 1, 2, . . . ). The value of ε is expected to be small in
the critical limit q2 ≈ 1 or equivalent to g2 ≈ 0.

Substituting the above series expansions (A1), (A2), and
(A3) into the field Eqs. (2.17), (2.18), (2.19), and (2.20), we
find the equations in the first order in powers of ε,

α′′
1 + 2

x
α′

1 = q2

g2

(
1

2
+ α1 + μ1

x
+ δ1

)
, (A6)

1

x2 μ′
1 = 1

g2

(
1

2
+ α1 + μ1

x
+ δ1

)
, (A7)

1

x
δ′

1 = − 1

g2

(
1

2
+ α1 + μ1

x
+ δ1

)
, (A8)

which are just the linearized field equations.
In this order, using α′′

1 + 2
x α′

1 = 1
x2 (x2α′

1)
′ = 1

x (xα1)
′′ and

paying attention to the similarity of the right-hand sides of
the equations, we can easily obtain analytic solutions under
the boundary conditions at x = 0 as

α1(x) = q2

2g2

(
1 − sin x

x

)
, (A9)

μ1(x) = 1

2g2 (sin x − x cos x) , (A10)

δ1(x) = − 1

2g2 (1 − cos x) . (A11)

Up to this order, the profile of the scalar field is found to
be

�2(x) ≈ (1 + ε)(1 + 2εδ1(x))

(
1 + ε

2μ1(x)

x

)
(1 + εα1(x))2−1

= ε

(
1 + 2α1(x) + 2μ1(x)

x
+ 2δ1(x)

)
+ O(ε2)

= ε
sin x

x
+ O(ε2). (A12)

This profile has been obtained in the same system by
the Newtonian approximation. Because we now treat dilute
boson stars, the result is just a verification of the present
lowest-order analysis.

The field equations in the second order of ε can be read as

α′′
2 + 2

x
α′

2 = q2

g2

(
α2 + μ2

x
+ δ2

)
+ fα, (A13)

1

x2 μ′
2 = 1

g2

(
α2 + μ2

x
+ δ2

)
+ fμ, (A14)

1

x
δ′

2 = − 1

g2

(
α2 + μ2

x
+ δ2

)
+ fδ, (A15)

where

fα = −α′
1δ

′
1 + q2

g2

[(
α1 + 2μ1

x

)

×
(

1

2
+ α1 + μ1

x
+ δ1

)
+ X

]
, (A16)

fμ = 1

2q2 α′2
1 + 1

g2

[
3

2

(
1

2
+ α1 + μ1

x
+ δ1

)2

+ X

]
,

(A17)

fδ = − 1

g2

[(
1 + 2α1 + 4μ1

x
+ 2δ1

)
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×
(

1

2
+ α1 + μ1

x
+ δ1

)
+ X

]
, (A18)

X = α1 + μ1

x
+ δ1 + α2

1

2
+ 2

μ2
1

x2 + δ2
1 + 2μ1

x
α1

+2μ1

x
δ1 + 2α1δ1. (A19)

These inhomogeneous differential equations can be solved
easily. For this purpose, we have only to know that the inho-
mogeneous equation

u′′(x) + u(x) = f (x) (A20)

has a general solution (where A and B are integration con-
stants)

u(x) = A sin x + B cos x + sin x
∫ x

0
f (t) cos t dt

− cos x
∫ x

0
f (t) sin t dt. (A21)

The solutions are given by

α2 = q2

8g4

{
− [γE + ln 2x − Ci(2x)] − (1 − cos x)

sin x

x

−3g2
(

1 − sin x

x

)

+3

4
(3 + g2)

[
(ln 3 + Ci(x) − Ci(3x))

sin x

x

−3Si(x) − Si(3x)

x
cos x

] }
, (A22)

μ2 = − 1

8g4

{
x sin2 x + 1

2
(3 − g2)(2x − sin 2x)

+(1 − g2)

(
sin2 x

x
− x

)

+(1 + g2)(sin x − x cos x)

+3

4
(3 + g2)[(ln 3 + Ci(x) − Ci(3x))(sin x − x cos x)

−(3Si(x) − Si(3x))(cos x + x sin x)]
}
, (A23)

δ2 = 1

8g4

{
3 sin2 x + (1 + g2)(1 − cos x) + (1 − g2)

×[γE + ln 2x − Ci(2x)]
−3

4
(3 + g2) [(ln 3 + Ci(x) − Ci(3x)) cos x

+(3Si(x) − Si(3x)) sin x]
}
, (A24)

where γE is the Euler–Mascheroni constant, the sine integral
is defined as Si(z) ≡ ∫ z

0
sin t
t dt , and the cosine integral is

defined as Ci(z) ≡ − ∫ ∞
z

cos t
t dt . Note that the mathematical

relations γE + ln 2x − Ci(2x) = ∫ 2x
0

1−cos t
t dt and ln 3 +

Ci(x) − Ci(3x) = ∫ 3x
0

1−cos t
t dt − ∫ x

0
1−cos t

t dt have been
used.

The perturbative solutions in comparison with numerical
calculations in the large coupling limit [Eqs. (2.17), (2.18),
(2.19) and (2.20)] are exhibited in Fig. 5 (for g2 = 0.1 and
ε = 0.01) and Fig. 6 (for g2 = 0.1 and ε = 0.001). The
approximation is good for small values of ε, as expected. We
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0.15
0.5 1 1.5 2 2.5 3
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-0.04

-0.02

Fig. 5 Numerical solutions in the large coupling limit (dotted lines) and perturbative approximations (light dashed lines for the first-order approx-
imations in ε and light solid lines for the second-order approximation in ε) for α(x), μ(x), and δ(x) on the interval [0, π ], where g2 = 0.1 and
ε = 0.01

0.5 1 1.5 2 2.5 3
x

1.001

1.002

1.003

1.004

0.5 1 1.5 2 2.5 3
x

0.0025

0.005

0.0075

0.01

0.0125

0.015
0.5 1 1.5 2 2.5 3

x

-0.01

-0.008

-0.006

-0.004

-0.002

Fig. 6 Numerical solutions in the large coupling limit (dotted lines) and perturbative approximations (light dashed lines for the first-order approx-
imations in ε and light solid lines for the second-order approximation in ε) for α(x), μ(x), and δ(x) on the interval [0, π ], where g2 = 0.1 and
ε = 0.001
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Fig. 7 Charged boson star mass (approximated using the second-order
functions) in units of

√
�/(Gm) as a function of �(0) = √

�φ(0) for
g = 0.1, 0.2, and 0.3 (from the upper line to the lower line) for the
case � → ∞. The dots indicate the numerical results

also find that near the critical charge g ∼ 0 (q ∼ 1), the i-th
order functions seems ∼O((ε/g2)i ). Thus, if ε/g2 	 1, the
perturbative approximation works well and the solutions up
to the second order agree with the numerical results.

The solutions are parameterized by ε = σ(0). The stabil-
ity of the objects described by the solutions is discussed by
variations of this parameter.6 It is demonstrated that the con-
figuration is stable if the boson star mass takes the maximum
value with respect to variations of this parameters.

To obtain the maximum mass of boson stars, we first eval-
uate the value of μ(x)/g at the surface of the boson star
x = x∗ and next consider the variation with respect to the
parameter ε. The perturbed solution we obtained is not suit-
able for such calculations in the analytic method, because of
the complexity seen in the second-order solutions.

Appendix B: Approximation by the Taylor expansion in
x

We consider the solution for the field Eqs. (3.1)–(3.3) at the
lowest order in the Taylor expansion in x around x = 0 with
the boundary condition σ(0) = ε. We then find

α(x) ≈ 1 + q2ε

12g2 x
2, (B1)

μ(x)

x
≈ ε(3ε + 4)

24g2 x2, (B2)

δ(x) ≈ −ε(1 + ε)

4g2 x2. (B3)

Accordingly, using Eq. (3.4), we find σ(x) at the lowest order
as

σ(x) ≈ (1 + ε)(1 + 2δ(x))

(
1 + 2μ(x)

x

)
(α(x))2 − 1

6 In some cases, however, quasi-stable configurations with a very long
lifetime may be admitted as astrophysical objects.

≈ ε

(
1 − 3ε + 2g2

12g2 x2
)

, (B4)

where we assume that ε is small, which is expected for a
stable dilute boson star. We obtain the radius of the boson
star from the present approximation as

x∗(ε) ≈
√

12g2

3ε + 2g2 , (B5)

and

μ(x∗(ε)) ≈ gε(3ε + 4)

24

(
12

3ε + 2g2

)3/2

. (B6)

We show M∗ = μ(x∗(ε))/g as a function of
√

ε = �(0)

in Fig. 7. The qualitative behavior of the graph is similar to
that in Refs. [3,17] (see also the discussion in Sect. 3).

The maximum mass for a fixed g is given with ε that
satisfies the following equation:

∂μ(x∗(ε))
∂ε

≈ g(3ε + 2)

12

(
12

3ε + 2g2

)3/2

− 3gε(3ε + 4)

16(3ε + 2g2)

(
12

3ε + 2g2

)3/2

= 0, (B7)

and then

εm = 4

3
g2 2

1 − 2g2 + √
(1 − 2g2)2 − 4g2

. (B8)

For a small g,

�(0)∗max ≈
√

4

3
g = 1.15

√
1 − q2, (B9)

M∗max = μ(x∗(εm))

g
≈ 4

√
2

9g
= 0.629

1√
1 − q2

, (B10)

and

r∗max ≡ x∗(εm)

g
≈

√
2

g
= 1.41

1√
1 − q2

. (B11)

We find that the approximation is qualitatively good, and
the deviations are slightly worse7 than those in the previous
approximation discussed in Sect. 3.
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