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Abstract In this work, the hydrogen’s ionization energy
was used to constrain the free parameter b of three Born–
Infeld-like electrodynamics namely Born–Infeld itself, Log-
arithmic electrodynamics and Exponential electrodynamics.
An analytical methodology capable of calculating the hydro-
gen ground state energy level correction for a generic nonlin-
ear electrodynamics was developed. Using the experimental
uncertainty in the ground state energy of the hydrogen atom,
the bound b > 5.37 × 1020K V

m , where K = 2, 4
√

2/3 and√
π for the Born–Infeld, Logarithmic and Exponential elec-

trodynamics respectively, was established. In the particular
case of Born–Infeld electrodynamics, the constraint found
for b was compared with other constraints present in the lit-
erature.

1 Introduction

Nonlinear electrodynamics (NLED) are extensions of
Maxwell’s electromagnetism which arise when self-inter-
action in field equations is allowed. From the axiomatic
point of view, they can be built from a Lagrangian of a vec-
tor field that respects three conditions: invariance under the
Lorentz group, invariance under the U (1) gauge group and
the Lagrangian depending only on combinations of the field
and its first derivative, i.e. L = L (Aμ, ∂ν Aμ

)
.

The first two NLED proposals emerged in the 1930s in
two very different contexts. In 1934, Born and Infeld pro-
posed the Born–Infeld electrodynamics (BI) in order to deal
with the divergence of the self-energy of a point charge [1,2].
The BI electrodynamics was originally conceived as a fun-

a e-mail: pniau7@gmail.com
b e-mail: leogmedeiros@ect.ufrn.br

damental theory for electromagnetism, but later it was found
that it was not renormalizable and therefore should be con-
sidered as an effective theory.1 In 1936, W. Heisenberg and
H. Euler showed that, for energies below the electron mass,
the self-coupling of the electromagnetic field induced by vir-
tual pairs of electron-positrons can be treated as an effective
field theory [4]. This theory is known as Euler–Heisenberg
electrodynamics and it provided the first description of the
vacuum polarization effect present in the QED [5].

Due to different motivations, other nonlinear electrody-
namics were proposed – e.g. Logarithmic and Exponen-
tial electrodynamics [6–9] – and the NLED became a class
of electromagnetic theories [10]. This class of theories has
applications in several branches of physics being particularly
interesting in systems where the NLED are minimally cou-
pled with gravitation as in the cases of charged black holes
[11–17] and cosmology [18–22].

Nonlinear electrodynamics have some different features
with respect to Maxwell’s electrodynamics. Among these
features, the most interesting is its non-trivial structure
for radiation propagation. Due to nonlinearity of the field
equations, the electromagnetic field self-interacts generating
deformities in the light cone [23]. Thus, in the NLED con-
text, the introduction of a background field affects the prop-
agation velocity of the electromagnetic waves and generates
the birefringence phenomenon. This phenomenon is present
in all physically acceptable NLED with the exception of BI
electrodynamics [24].

Excluding the Euler–Heisenberg electrodynamics and its
variations [5], all other NLED have at least one free parame-

1 This kind of approach was explicitly performed when Fradkin and
Tseytlin showed that BI electrodynamics appears as an effective theory
of low energies in open string theories [3].
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ter which must be experimentally constrained [25]. These
constraints can be directly obtained from measurements
of atomic transitions [26,27] and photon-photon scattering
[28,29] associated with self-interaction of NLED. Another
possibility occurs in the astrophysical context where bounds
to the NLED are imposed through photon splitting pro-
cess present in magnetars spectra [30]. Moreover, for NLED
where the birefringence effect is not negligible, bounds can
be established through measurements of vacuum magnetic
birefringence generated by the passage of a polarized laser
beam through a magnetic dipole field (PVLAS collaboration
– see [31] and references therein).

The purpose of this paper is to build a procedure capa-
ble of constraining nonlinear electrodynamics and to apply
this procedure to three Born–Infeld-like electrodynamics. In
Sect. 2, an introduction to the NLED is presented with empha-
sis on three specific nonlinear electrodynamics: Born–Infeld
NLED, Logarithmic NLED and Exponential NLED. The
procedure based on the hydrogen’s ionization energy which
constrains NLED is developed in Sect. 3. In this section,
bounds on the free parameters of each NLED are established
and the results obtained are compared with those present in
the literature. The final remarks are discussed in Sect. 4.

2 Nonlinear electrodynamics

The nonlinear electrodynamics in vacuum are described by
the Lagrangian

L = L (F,G) , (1)

where

F = −1

4
FμνFμν = 1

2

(
E2 − B2

)
,

G = −1

4
Fμν F̃μν = �E · �B,

are the contractions of the electromagnetic field strength ten-
sor Fμν with its dual F̃μν = 1

2εμναβFαβ . The variation of
(1) with respect of Aμ and Bianchi identity result in the non-
linear field equations

∂μh
μν = ∂μ

(
LF F

μν + LG F̃
μν
)

= 0, (2)

∂γ Fμν + ∂νFγμ + ∂μFνγ = 0, (3)

where LF e LG are the Lagrangian partial derivatives with
respect to the invariants. This set of equations completely
describe the system. The electric system displacement vector,
from which nonlinear effects can be interpreted as a polar-
ization of the medium, are given by Di ≡ h0i or, in terms of
the Lagrangian derivatives, by

�D = LF �E + LG �B. (4)

Usually, the system of Eqs. (2) and (3) is very difficult to
be analytically solved. An exception is the electrostatic case
where �E only depends on one variable. In this situation, Eq.
(3) is automatically satisfied and (2) reduces to

�∇ · �D = 0. (5)

Since the solution of (5) is identical to the Maxwell case, the
problem becomes an algebraic problem associated with the
inversion of the equation

�D = LF

(
E2
) �E . (6)

2.1 Born–Infeld-like electrodynamics

An important sub-class of the NLED arises when (1) is
an analytical function of the F and G. In this case, the
Lagrangian can be written as a series of the invariants

L =
∑

m,n
am,n F

mGn = F + a2,0F
2 + a0,2G

2 + a1,1FG + · · · ,

(7)

where the linear coefficient in G can be neglected because
of Bianchi identity. The main NLED (Born–Infeld, Euler–
Heisenberg, etc) have this structure. For instance, the first
coefficients for Born–Infeld electrodynamics [1] are

a2,0 = a0,2 = 1

2b2 and a1,1 = 0. (8)

Any NLED which can be expanded as (7) with the first coeffi-
cients given by (8) is said a Born–Infeld-like electrodynamics
[32,33]. Any two Born–Infeld-like NLED are fundamentally
different, but in the weak field limit, when the nonlineari-
ties are small corrections to Maxwell electrodynamics, they
exhibit the same properties. Three examples of Born–Infeld-
like NLED are the Born–Infeld itself, the Logarithmic and
the Exponential electrodynamics.

2.1.1 Born–Infeld electrodynamics

The Born–Infeld NLED was first proposed in 1934 by Born
and Infeld [1,2] and its Lagrangian is given by

LBI = b2

⎡

⎣1 −
√

1 − 2F

b2 − G2

b4

⎤

⎦ . (9)

This electrodynamic was created with the main purpose of
avoiding the divergence of a point-like particle self-energy,
but it shows other interesting features such as the absence of
birefringence in vacuum [23,24].
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The electric displacement vector associated with (9) is
given by

�D =
�E + 1

b2

( �E · �B
) �B

√

1 − E2−B2

b2 −
( �E · �B

)2

b4

. (10)

In the weak field regime, LBI can be approximated as

LBI ≈ F + 1

2b2

(
F2 + G2

)
, (11)

and (10) results in

Di ≈
∑

k

εki Ek,

where

εki = δki + 1

2b2

(
E2 − B2

)
δki + 1

b2 Bi Bk,

is the relative permittivity tensor. For the pure electrostatic
case,

�D ≈
(

1 + E2

2b2

)
�E . (12)

The χ = E2/2b2 term is identified as the electric suscep-
tibility which is associated with the medium’s polarization.
Note that, because χ > 0, the vacuum behaves as a medium
which resists to the formation of an electric field.

The displacement vector generated by the nucleus of a
hydrogen-like atom (a point particle system) is given by

�D = Ze

r2 r̂ , (13)

where e is the electron charge and Z is the atomic number.
The substitution of this expression into (10), with �B = 0,
results in the electric field given by

�EBI (x) = Z3e

a2
0

1√
x4 + ε4

r̂ , (14)

where a0 is the Bohr radius and x = Z r
a0

and ε =
√

Z3e
a2

0b
are

dimensionless parameters. The parameter ε measures how
much the electric field deviates from Maxwell’s electrody-
namics.

2.1.2 Logarithmic and Exponential electrodynamics

The Logarithmic and Exponential electrodynamics belong
to a special class, called Born–Infeld-like NLED, which was
proposed in order to study topics such as inflation [6] and
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Fig. 1 Plot of
∣
∣∣ �E
∣
∣∣ = E in units Z3e

a2
0

adopting ε = 1 versus distance

x for Maxwell, Born–Infeld, Logarithmic and Exponential electrody-
namics

exact solutions of spherically symmetric static black holes
[7,8]. These electrodynamics are characterized by having a
finite self-energy solution for a point-like charge but, unlike
Born–Infeld NLED, they predict a birefringence effect in the
presence of an electromagnetic background field.

The Lagrangians for Logarithmic and Exponential NLED
are given by [32,33]

LLg = − b2 ln

(
1 − X

b2

)
, (15)

LEx = b2
(
eX/b2 − 1

)
, (16)

where X = F+ G2

2b2 . In the weak field limit, both Lagrangians
can be approximated by (11) and the electric displacement
vectors for pure electrostatic case are given by (12).

Following the same steps used in Born–Infeld case, we
can calculate the electric fields generated by the nucleus of a
hydrogen-like atom:

�ELg (x) = Z3e

ε4a2
0

(√
x4 + 2ε4 − x2

)
r̂ , (17)

�EEx (x) = Z3e

ε2a2
0

√

W

(
ε4

x4

)
r̂ , (18)

where x and ε are defined as in (14). The function W (z)
is the Lambert function2 defined as the inverse function of
z (W ) = WeW . When ε → 0, both electric fields reduce to
the Maxwell case. Besides, �EEx diverges at the origin but
slower than Maxwell, and �ELg is bounded from above in a
similar way such as Born–Infeld field.

The behavior of the electric fields (14), (17) and (18) are
shown in Fig. 1.

2 For z ∈ R and z ≥ 0, W (z) ≥ 0 and it is monotonically increasing.
Besides, limz→0

W (z)
z = 1 and limz→∞ W (z) = ∞.
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3 Testing NLED using hydrogen’s ionization energy

The theory about the energy levels of a hydrogen-like atom is
described by the quantization of Dirac equation and subject
to several correction factors such as the relativistic-recoil of
the nucleus, electron self-energy, vacuum polarization due to
the creation of virtual electron-positron pairs, etc (for details
see [34,35] and references therein). This theoretical struc-
ture in the context of Maxwell electrodynamics establishes a
theoretical experimental agreement for the hydrogen’s ion-
ization (HI) energy of 2 parts per 1010 [36]. Thus, any correc-
tion to HI energy generated by modifications in the Maxwell
potential must be a small correction and it can be treated
perturbatively.

The Hamiltonian for a hydrogen-like atom in the context
of NLED is given by

Ĥ = K̂ + V̂M︸ ︷︷ ︸
Ĥ0

+ V̂G − V̂M︸ ︷︷ ︸
Ĥp

,

where K̂ is the kinetic term, V̂M is the Maxwell potential
and V̂G is the potential energy of the NLED. Thus, Ĥ0 is the
usual hydrogen atom Hamiltonian and Ĥp is a perturbation
of this Hamiltonian.

The first order correction for HI energy due a Hamiltonian
Ĥp is given by

EH I1 =〈�100| Ĥp |�100〉 = 4

(
Z

a0

)3 ∞∫

0

drr2e
− 2Zr

a0 Hp (r) ,

(19)

where �100 is the ground state wave function

�100 = 1√
π

(
Z

a0

)3/2

e
− Zr

a0 ,

and

Hp (r) = VG (r) − VM (r) = − e

∞∫

r

[
EG

(
r ′)− EM

(
r ′)] dr ′.

EG (r) is the electric field absolute value generated by a
NLED and EM (r) = Ze/r2.

Defining the dimensionless variables r = a0 y
Z and r ′ =

a0
Z x , expression (19) is rewritten as

EH I1 = 4a0e

Z

∞∫

0

dyy2e−2y

∞∫

y

[EM (x)−EG (x)] dx

= a0e

Z

∞∫

0

dx (EM − EG)
[
1 − e−2x

(
1+2x+2x2

)]
.

(20)

Since we are working in a perturbative regime where EG

provides small corrections to Maxwell’s case we might be
tempted to expand EG into a Laurent series and to keep only
the first correction term. This approximation, however, is not
valid at the lower limit of the integral since all terms neglected
become relevant as x ≤ 1. This is a crucial point in the deter-
mination of EH I1 because this implies that each electrody-
namic will produce a different correction even though, in the
weak field limit, they are identical.

The term EM (x) in (20) can be explicitly worked out and
the EH I1 results in

EH I1 = Z2e2

a0
− a0e

Z

∞∫

0

EG

[
1 − e−2x

(
1 + 2x + 2x2

)]
dx .

(21)

This expression will be the starting point to calculate the
correction to the hydrogen’s ionization energy.

3.1 Hydrogen’s ionization energy for Born–Infeld
electrodynamics

The substitution of Born–Infeld electric field (14) in (21)
leads to

EBI
H I1 = Z2e2

a0

(
1 − I B I1 + I B I2 + I B I3 + I B I4

)
, (22)

with

I B I1 =
∞∫

0

dx√
x4 + ε4

=
4�

(
5
4

)2

√
πε

,

I B I2 =
∞∫

0

e−2xdx√
x4 + ε4

= ε

16
√

2π2
G51

15

⎛

⎝ ε4

16

∣
∣∣∣

1
4

− 1
2 ,− 1

4 ,− 1
4 ,0, 1

4

⎞

⎠ ,

I B I3 =
∞∫

0

2xe−2xdx√
x4 + ε4

= ε2

8
√

2π2
G51

15

(
ε4

16

∣∣∣
∣

0

− 1
2 ,− 1

2 ,− 1
4 ,0, 1

4

)

,

I B I4 =
∞∫

0

2x2e−2xdx√
x4 + ε4

= ε3

8
√

2π2
G51

15

⎛

⎝ ε4

16

∣∣∣∣

− 1
4

− 3
4 ,− 1

2 ,− 1
4 ,0, 1

4

⎞

⎠ ,

where Gmn
pq

(
z|�ap�bq

)
are the MeijerG functions [37].

For small corrections to Maxwell’s potential ε � 1, the
MeijerG functions can be approximated by3

3 The γE is the Euler–Mascheroni constant.
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Table 1 Results of a0
(Ze)2 E

BI
H I1

for ε = 10−1, 10−3 and 10−5. The

second column shows the numerical result calculated from (22), the
third column shows the first order correction given by the first term
in (23) and the last column shows the relative error between the two
approaches

ε Numerical First correction Relative error (%)

10−1 5.66 × 10−3 6.67 × 10−3 17.758

10−3 6.65 × 10−7 6.67 × 10−7 0.185

10−5 6.67 × 10−11 6.67 × 10−11 0.0019

I B I2 ≈ − 2 + 2γE + ln
(

2ε2
)

+ 8π3/2

�
(− 1

4

)2
ε

− 4π3/2

�
( 1

4

)2 ε

+ 2

3
ε2 − π3/2

16�
( 7

4

)2 ε3,

I B I3 ≈ − 2γE − ln
(

2ε2
)

+ 8π3/2

�
( 1

4

)2 ε − 2ε2 + π3/2

4�
( 7

4

)2 ε3,

I B I4 ≈ 1 − π3/2

�
( 1

4

)
�
(

5
4

)ε + 2ε2 + 2π3/2

�
(− 1

4

)
�
( 7

4

)ε3.

Thus, the two first corrections for HI energy due the Born–
Infeld electrodynamics are given by

EBI
H I1 ≈

[
2

3
ε2 − 1

3

π
3
2

�
( 3

4

)2 ε3

]
(Ze)2

a0
, (23)

with ε =
√

Z3e
a2

0b
. It is noteworthy that the first term in expres-

sion (23) was first obtained in [38]. A positive EBI
H I1

indicates
a reduction in the ionization energy. This is consistent with a
susceptibility χ > 0 which reduces the value of the electric
field generated by the nucleus.

Comparison of the numerical results for a0
(Ze)2 E

BI
H I1

and

the leading order approximation for different values of ε is
shown in Table 1.

3.2 Hydrogen’s ionization energy for Logarithmic
electrodynamics

The correction for the HI energy due the Logarithmic NLED
is obtained using the electric field (17) in (21):

ELg
H I1

= Z2e2

a0ε4

(
ε4 − I Lg1 − I Lg2 − I Lg3 − I Lg4

)
, (24)

with

I Lg1 =
∞∫

0

(√
x4 + 2ε4 − x2

)
dx = 3ε3�

(− 3
4

)2

16 4
√

2
√

π
,

I Lg2 =
∞∫

0

(√
x4 + 2ε4 − x2

)
e−2xdx

= 1

4
+ 2

3
4 ε

4π2 G
51
15

⎛

⎝ ε4

8

∣
∣∣∣

5
4

− 1
4 , 1

2 , 3
4 ,1, 5

4

⎞

⎠ ,

I Lg3 =
∞∫

0

(√
x4 + 2ε4 − x2

)
e−2x2xdx

= 3

4
+ ε2

π2 G
51
15

(
ε4

8

∣∣∣∣

1

− 1
2 , 1

2 , 3
4 ,1, 5

4

)

,

I Lg4 =
∞∫

0

(√
x4 + 2ε4 − x2

)
e−2x2x2dx

= 3

2
+ 2

1
4 ε3

π2 G51
15

⎛

⎝ ε4

8

∣∣∣∣

3
4

− 3
4 , 1

2 , 3
4 ,1, 5

4

⎞

⎠ .

In the limit ε � 1, the expressions above can be approxi-
mated by

I Lg2 ≈ 2
3
4 π

3
2

�
(− 1

4

)
�
( 7

4

)ε3 +
(

5

2
− 2γE − 1

2
ln
(

8ε4
))

ε4

+
4
√

2π
3
2

�
(

5
4

)
�
( 9

4

)ε
5 − 4

√
2

9
ε6,

I Lg3 ≈
(

2γE − 1

2
+ 1

2
ln
(

8ε4
))

ε4 − π
3
2

2
3
4 �

(
5
4

)
�
( 9

4

)ε
5

+4
√

2

3
ε6,

I Lg4 ≈ −ε4 + 2
1
4 π

3
2

�
( 1

4

)
�
( 9

4

)ε5 − 4
√

2

3
ε6.

Thus, up to leading order, expression (24) results in

ELg
H I1

≈ (Ze)2

a0

4
√

2

9
ε2 = 4

√
2

9

Z5e3

a3
0b

. (25)

This result is very similar to the first order Born–Infeld cor-
rection (23) differing only by a numerical factor of O (1).

Comparison of the numerical results for a0
(Ze)2 E

Lg
H I1

and

the leading order approximation is presented in Table 2.
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Table 2 Results of a0
(Ze)2 E

Lg
H I1

for ε = 10−1, 10−3 and 10−5. The

second column shows the numerical result calculated from (24), the
third column shows the first order correction given by (25) and the last
column shows the relative error between the two approaches

ε Numerical First correction Relative error (%)

10−1 5.325 × 10−3 6.285 × 10−3 18.044

10−3 6.274 × 10−7 6.285 × 10−7 0.188

10−5 6.285 × 10−11 6.285 × 10−11 0.0019

3.3 Hydrogen’s ionization energy for Exponential
electrodynamics

The substitution of the Exponential NLED electric field (18)
in (21) leads to

EEx
H I1 = Z2e2

a0ε2

(
ε2 − I Ex1 + I Ex2 + 2I Ex3 + 2I Ex4

)
, (26)

where

I Ex1 =
∞∫

0

√

W

(
ε4

x4

)
dx =

√
2

2
�

(
1

4

)
ε, (27)

and

I Ex2 =
∞∫

0

√

W

(
ε4

x4

)
e−2xdx,

I Ex3 =
∞∫

0

√

W

(
ε4

x4

)
e−2x2xdx,

I Ex4 =
∞∫

0

√

W

(
ε4

x4

)
e−2x2x2dx .

Integral I Ex1 was calculated using the properties of the Lam-

bert function W after the change of variable ueu = ε4

x4 . The
other three integrals do not have analytical solutions. How-
ever, approximated solutions can be achieved following the
steps described in Appendix A. The leading order correc-
tion for HI energy due the Exponential electrodynamics is
obtained substituting (27), (A2), (A3) and (A4) into (26):

EEx
H I1 ≈ (Ze)2

a0

√
π

3
ε2 =

√
π

3

Z5e3

a3
0b

. (28)

Comparison of the numerical results for a0
(Ze)2 E

Ex
H I1

and

the leading order approximation is presented in Table 3.

Table 3 Results of a0
(Ze)2 E

Ex
H I1

for ε = 10−1, 10−3 and 10−5. The

second column shows the numerical result calculated from (26), the
third column shows the first order correction given by (28) and the last
column shows the relative error between the two approaches

ε Numerical First correction Relative error (%)

10−1 4.989 × 10−3 5.908 × 10−3 18.424

10−3 5.897 × 10−7 5.908 × 10−7 0.193

10−5 5.908 × 10−11 5.908 × 10−11 0.0019

3.4 Constraining parameter b

The ground state energy level correction calculated in the
previous sections is generically given by

EH I1 = K
Z5e3

3a3
0b

,

where K = 2, 4
√

2/3 and
√

π for the Born–Infeld, Loga-
rithmic and Exponential electrodynamics respectively. The
experimental value of hydrogen atom ionization energy in
frequency units is [36]

ν = 3,288,086,856.8 ± 0.7 MHz.

It is important to emphasize that this value measured by the
National Institute of Standards and Technology (NIST) is a
purely experimental result which does not assume any the-
oretical background. The same does not occur with other
measurements available in the literature – e.g. Particle Data
Group [39] – which provide the ionization energy already
assuming Maxwell’s electrostatic potential.

Imposing that the energy correction must be smaller than 3
times the experimental error σν i.e. EH I1 < 3hσν , parameter
b (with Z = 1) is constrained by the expression

b > K
e3

9a3
0hσν

. (29)

Restoring SI units and using values given by [40] we obtain

b > 5.37 × 1020K
V

m
, (30)

which in terms of the dimensionless parameter ε corresponds
to

ε <
3. 1 × 10−5

√
K

. (31)

The last result is consistent with the approximation ε � 1
used in the previous theoretical calculations.

For the particular Born–Infeld case, the expression (30)
results in
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bBI > 1.07 × 1021 V

m
. (32)

Historically, the first estimation for bBI was done by Born
and Infeld [1] relating in an oversimplified manner the mass
of the electron with its self-energy. The value found by those
authors was bBI > 1.2 × 1020 V

m . Forty years later Soft et al.
[26] obtained bBI > 1.7 × 1022 V

m through a theoretical-
experimental comparison involving muonic spectral tran-
sitions in lead atoms 82Pb. Although an order of magni-
tude more precise than (32), the theoretical modeling pre-
sented in [26] is questionable because it does not take into
account the loss of spherical symmetry due to the presence
of the remaining leptons. This kind of approach is partic-
ularly problematic in NLED where the loss of spherical
symmetry implies in �∇ × �D �= 0 [27] and consequently
invalidates the expression (6) used in [26]. More recently
in the 21st century it was suggested by Dávila et al. [30]
that bBI can be bound from the magnetars spectrum due to
the effect of photon splitting. Following this approach, the
authors of [30] estimated bBI > 2.0 × 1019 V

m . Finally, at
the end of 2016 ATLAS collaboration announced the first
direct measurement of photon-photon scattering in ultra-
peripheral heavy-ion collisions [28,41]. Based on this mea-
sure, Ellis et al. [29] constrained Born–Infeld parameter to
bBI > 4.3×1027 V

m . This last result is six orders of magnitude
larger than (32), but it was obtained from a much more com-
plex theoretical-experimental arrangement [42] and therefore
subject to greater uncertainty. In this sense, the treatment
adopted here provides a simpler laboratory, and a mathemat-
ical method adaptable without difficulty to a great variety of
NLED such as, for instance, the Logarithmic and Exponen-
tial electrodynamics.

4 Final remarks

In this work the ground state energy level correction EH I1
for the hydrogen atom generated by three Born–Infeld-like
electrodynamics was obtained. More specifically, a general
expression for the correction EH I1 was derived through a
perturbative approach, then this correction was calculated
for the Born–Infeld, Logarithmic and Exponential electro-
dynamics. Using the experimental uncertainty for HI energy,
the free parameters b’s of each of these NLED were lower
bounded, and for the particular Born–Infeld case the result
found was compared with other constraints present in the
literature. It is worth mentioning that the method developed
here based on the expression (21) and the techniques of the
Appendix A can easily be extended to constrain other non-
linear electrodynamics.

An important point in the derivation of EH I1 concerns the
need to know the electric field exactly (see discussion below

Eq. (20)). This point can be observed by the distinct values
obtained for EBI

H I1
, ELg

H I1
and EEx

H I1
. Although different, these

values are similar and we can wonder if the expression (30)
could be used to constrain a more general class of NLED.
The necessary and sufficient condition to apply the result
(30) to others NLED is related to the behavior of the elec-
tric field. Observing Fig. 1 and the values of K (KBI = 2,
KLg = 4

√
2/3 and KEx = √

π ) we see that the greater
is the difference between the Maxwell and Born–Infeld-like
NLED electric fields the higher is the K value. Thus, we
can state that any NLED whose electric field absolute value
ENLED fulfills the condition EBI < ENLED < EEx will
have bEx < bNLED < bBI . Also, since K slightly varies
from KEx to KBI we can estimate that any NLED which has
an ENLED near to EBI or EEx will have its free parameter
bounded by bNLED � 1021V/m. Thus, we can impose lim-
its on a broad class of NLED only by knowing the behavior
of its electric field.

Finally, it is important to discuss the possibility of appli-
cation involving the electrodynamics of Euler–Heisenberg
(EH) [4,5]. EH electrodynamics is an effective description
of the self-interaction process due the electron-positron vir-
tual pairs present in QED (vacuum polarization). Thus, start-
ing from EH NLED one could think of using the procedure
developed in this work to obtain, in an alternative way, the
vacuum polarization correction for the hydrogen’s ioniza-
tion energy [34,43]. The problem with this approach is that
the EH electrodynamics is built assuming a slowly varying
electromagnetic field in distances of the order of the elec-
tron Compton wavelength λe, and this requirement is not
satisfied in the calculation of EH I1 . The essential part of the
integral EH I1 is in the range [0,1[ (see Appendix A), and
within this range the EH electric field rapidly varies at dis-
tances of order λe. Therefore, the vacuum polarization effect
associated with the hydrogen atom can not be described by
the Euler–Heisenberg effective electrodynamics [43].
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Appendix A: I Ex
2 , I Ex

3 and I Ex
4 approximate solutions

The first step to calculate I Ex2 is split the integral in the ranges
[0, 1) and [1,∞).
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I Ex2 =
∫ 1

0
dx

√

W

(
ε4

x4

)
e−2x

︸ ︷︷ ︸
A

+
∞∫

1

dx

√

W

(
ε4

x4

)
e−2x .

(A1)

As ε � 1 (small corrections to Maxwell’s case), the W
function can be approximated by

W

(
ε4

x4

)
≈ ε4

x4 + O
(

ε8

x8

)
,

which for the second integral is a great approximation and
thus results in
∞∫

1

dx

√

W

(
ε4

x4

)
e−2x = ε2

(
1

e2 + 2 Ei1 (− 2)

)
,

where

Ein (x) ≡
∫ ∞

1
e−xt/tndt,

is the exponential integral function.
The next step is to work out with the first integral. Per-

forming the variable substitution ueu = ε4

x4 , the integral A
leads to:

A = −ε

4

W
(
ε4
)

∫

∞

(
u− 3

4 + u
1
4

)
e− u

4 e−2εu− 1
4 e− u

4

≈ ε

4

∞∫

ε4

(
u− 3

4 + u
1
4

)
e− u

4

∞∑

n=0

1

n!
(
−2εu− 1

4 e− u
4

)n
,

where the exponential of exponential was expanded in a Tay-
lor series. The term e− u

4 ensures the convergence of the inte-
gral at the limit u → ∞ when n = 0. It is important to
emphasize that although ε � 1 the sum can not be trun-
cated in the first terms. This occurs because the lower bound
of integration depends on ε. Thus, all terms of the sum will
contribute to ε2, ε3, etc.

The third step is to rewrite A in terms of exponential inte-
gral functions and expanding these functions up to order ε4:

A ≈ ε

4

∞∑

n=0

(−2)n

n! εn

∞∫

ε4

(
u− n+3

4 + u− n−1
4

)
e− n+1

4 u

≈
∞∑

n=0

(−2)n

4 (n!)
[
ε6 Ei n−1

4

(
n + 1

4
ε4
)

+ ε2 Ei n+3
4

(
n + 1

4
ε4
)]

≈
3∑

n=0

(−2)n

n!
[

2
−(1+n)

2 (1 + n)
n−5

4 �

(
1 − n

4

)
εn+1

]

+
∞∑

n=0

(−2)n

n! (n − 1)
ε2 + O

(
ε5
)

The first two terms in the r.h.s. of A above cancel out for
n = 1 (although they separately diverge). This can be seen
by expanding �

( 1−n
4

)
around n = 1,

�

(
1 − n

4

)
= − 4

n − 1
− γE + O (n − 1) .

Thus,

A ≈ 1√
2
�

(
1

4

)
ε − ε2

︸ ︷︷ ︸
n=0

+
(

1

2
γE − 1 + 1

2
ln

ε4

2

)
ε2

︸ ︷︷ ︸
n=1

+ ε2
(

− 1

e2 − 1 + 2γE − 2 Ei1 (−2) + ln 4

)

+
3∑

n=2

(−2)n

n!
(

2
−1−n

2 (1 + n)
n−5

4 �

(
1 − n

4

)
εn+1

)
,

where it was used the relation

∞∑

n=2

(−2)n

n! (n − 1)
= − 1

e2 − 1 + 2γE − 2 Ei1 (−2) + ln 4.

By substituting A into (A1) we obtain the final expression
for I Ex2 :

I Ex2 ≈
√

2

2
�

(
1

4

)
ε +

(
5

2
γE − 3 + 1

2
ln 8ε4

)
ε2

+ 1

3
3
4
√

2
�

(
−1

4

)
ε3 +

√
π

3
ε4. (A2)

The computation procedure for the integrals I Ex3 and I Ex4
follows the same steps described above. For I Ex3 we have:

I Ex3 =
∞∫

0

dx

√

W

(
ε4

x4

)
e−2x x

≈
1∫

0

dx

√

W

(
ε4

x4

)
e−2x x

︸ ︷︷ ︸
B

− ε2 Ei1 (−2) .

Using ε4

x4 = ueu , the integral B is rewritten as

B ≈ ε2

4

∞∑

n=0

(−2)2

n! εn

∞∫

ε4

(
u−1 + 1

)
u− n

4 e− (n+2)
4 u

≈
∞∑

n=0

(−2)n

4 (n!)
[
ε2 Ei n

4 +1

(
n + 2

4
ε4
)

+ ε6 Ei n
4

(
n + 2

4
ε4
)]
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≈
2∑

n=0

(−2)n

n!
[
2−1− n

2 (2 + n)
n
4 −1 �

(
−n

4

)
ε2+n

]

+
∞∑

n=0

(−2)n

(n!) n ε2 + O
(
ε5
)

≈
(

1

2
− 5

4
γE − 1

4
ln 8ε4 + Ei (−2)

)
ε2

− 1

3
3
4
√

2
�

(
−1

4

)
ε3 −

√
π

2
ε4.

Thus,

I Ex3 ≈
(

1

2
− 5

4
γE − 1

4
ln 8ε4

)
ε2

− 1

3
3
4
√

2
�

(
−1

4

)
ε3 −

√
π

2
ε4. (A3)

And for the integral I Ex4 we have:

I Ex4 =
∫ ∞

0
dx

√

W

(
ε4

x4

)
e−2x x2

≈
1∫

0

dx

√

W

(
ε4

x4

)
e−2x x2

︸ ︷︷ ︸
C

+ ε2

2e2 .

Once more using the substitution ε4

x4 = ueu , the integral C
is rewritten as:

C ≈ ε3

4

∞∑

n=0

(−2)n

n! εn
∫ ∞

ε4

(
u− n+5

4 + u− n+1
4

)
e
−
(
n+3

4

)
u

≈
∞∑

n=0

(−2)n

4n!
[
ε2 Ei n+5

4

(
n + 3

4
ε4
)

+ ε6 Ei n+1
4

(
n + 3

4
ε4
)]

≈
1∑

n=0

(−2)n

n!
[

2
−3−n

2 (3 + n)
n−3

4 �

(
−n + 1

4

)
ε3+n

]

+
∞∑

n=0

(−2)n

(n!) (n + 1)
ε2 + O

(
ε5
)

≈
(

− 1

2e2 + 1

2

)
ε2 + 1

3
3
4
√

8
�

(
−1

4

)
ε3 +

√
π

2
ε4

Thus,

I Ex4 � 1

2
ε2 + 1

3
3
4
√

8
�

(
−1

4

)
ε3 +

√
π

2
ε4. (A4)

Results (A2), (A3) and (A4) are necessary to obtain Eq.
(28) appearing in the main text.
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