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Abstract An alternative left–right model of quarks and lep-
tons, where the SU (2)R lepton doublet (ν, l)R is replaced
with (n, l)R so that nR is not the Dirac mass partner of νL ,
has been known since 1987. Previous versions assumed a
global U (1)S symmetry to allow n to be identified as a dark-
matter fermion. We propose here a gauge extension by the
addition of extra fermions to render the model free of gauge
anomalies, and just one singlet scalar to break U (1)S . This
results in two layers of dark matter, one hidden behind the
other.

1 Introduction

The alternative left–right model [1] of 1987 was inspired by
the E6 decomposition to the standard SU (3)C × SU (2)L ×
U (1)Y gauge symmetry through an SU (2)R , which does not
have the conventional assignments of quarks and leptons.
Instead of (u, d)R and (ν, l)R as doublets under SU (2)R , a
new quark h and a new lepton n per family are added so that
(u, h)R and (n, e)R are the SU (2)R doublets, and hL , dR ,
nL , νR are singlets.

This structure allows for the absence of tree-level flavor-
changing neutral currents (unavoidable in the conventional
model), as well as the existence of dark matter. The key new
ingredient is a U (1)S symmetry, which breaks together with
SU (2)R , such that a residual global S′ symmetry remains for
the stabilization of dark matter. Previously [2–4], this U (1)S
was assumed to be global. We show in this paper how it
may be promoted to a gauge symmetry. To accomplish this,
new fermions are added to render the model free of gauge
anomalies. The resulting theory has an automatic discrete Z2

symmetry which is unbroken as well as the global S′, which
is now broken to Z3. Hence dark matter has two components
[5]. They are identified as one Dirac fermion (nontrivial under
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both Z2 and Z3) and one complex scalar (nontrivial under
Z3).

In Sect. 2 we make a digression to the historical per-
spective which motivated this study. In Sect. 3 our model
is described, with a complete list of its particle content.
In Sect. 4 the gauge sector is shown in detail. In Sect. 5
the fermions are discussed with details of how they obtain
masses. In Sect. 6 we deal with the scalars and show how
the desirable pattern of symetry breaking is obtained. In
Sect. 7 we discuss the present phenomenological constraints
on the new Z ′ bosons and would-be dark-matter candidates.
In Sect. 8 we show an example of two viable dark-matter can-
didates, both in terms of relic abundance and direct detection.
In Sect. 9 we conclude.

2 Motivation and historical perspective

This section is for those who are unfamiliar with, but inter-
ested in the historical perspective which motivated our study.
In the beginning, the idea of an SU (2)L × SU (2)R elec-
troweak extension of the standard model (SM), which is
based only on SU (2)L , was very attractive, because it restores
left–right symmetry to the interactions of the quarks and lep-
tons. In the conventional approach, (u, d)i L are SU (2)L dou-
blets and (u, d) j R are SU (2)R doublets. To allow them to
have masses, a scalar bidoublet

� =
(

δ0
1 δ+

2
δ−

1 δ0
2

)

is needed, so that ūi Lu j R couple to δ0
1 and d̄i Ld j R couple to

δ0
2, thereby obtaining masses from the vacuum expectation

values of the two neutral scalars. However, because of the
peculiarity of SU (2) doublets, the bidoublet

�̃ = σ2�
∗σ2 =

(
δ̄0

2 −δ+
1

−δ−
2 δ̄0

1

)
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transforms identically as �. Hence δ2 contributes to the u
mass matrix, and δ1 contributes to the d mass matrix. In other
words, each quark sector gets its masses from two differ-
ent Higgs particles. This means that flavor changing neutral
currents (FCNC) are unavoidable at tree level through neu-
tral Higgs exchange. This is a very strong constraint on the
masses of these particles, of order 10–100 TeV. As such they
are not likely to be observable at the Large Hadron Collider
(LHC). On the general issue of FCNC, they are, of course,
present in the SM, but only at the loop level, and they are
known to be small and consistent with experimental data. In
any extension of the SM, they may occur at tree level, and
if so the scalar particles in question are required to be very
heavy and out of reach of the LHC. It is thus a valid question
to ask whether a model beyond the SM may be constructed
with the absence of tree-level FCNC, so that it may have new
scalars which are light enough to be discovered in addition
to the SM Higgs boson of 125 GeV.

To distinguish �̃ from �, an extra symmetry is needed.
This is what happens in supersymmetry, but then the u quark
mass matrix must be proportional to the d quark mass matrix,
which disagrees with data. The solution to this conundrum
was pointed out 30 years ago [1]. It was discovered in the
context of superstring-inspired E6 models, but applicable to
the SU (2)L × SU (2)R case [2,3]. The idea is to add another
quark h to each family which has the same charge as d, i.e.
−1/3. Both hL and hR are singlets in the SM, but they are
distinguished from dL and dR in their SU (2)R assignments,
i.e.

(u, d)L ∼ (2, 1), (u, h)R ∼ (1, 2),

dR ∼ (1, 1), hL ∼ (1, 1).

To forbid the term h̄LdR , a global U (1)S symmetry is added
which also distinguishes � from �̃. In this way, the d mass
comes from an SU (2)L Higgs doublet, the h mass comes
from an SU (2)R Higgs doublet, and the u mass comes from
only δ0

1 whereas δ0
2 has no vacuum expectation value. Thus

the model is guaranteed the absence of tree-level FCNC. It
was realized a few years ago [2,3] that this extra U (1)S also
serves the purpose of a dark symmetry, because even though
it is broken, the combination T3R + S or T3R − S may remain
unbroken and protects the condition 〈δ0

2〉 = 0. In other words,
the symmetry which allows us to solve the FCNC conundrum
has now been connected to that of dark matter. Contrast this
with most models of dark matter, where the existence of the
dark symmetry is completely ad hoc, and unrelated to any
other symmetry of the original model. This we believe is
a good motivation for studying alternative left–right mod-
els. The logical next step is to ask the question whether it
is possible for this U (1)S to be gauged. What follows is a
simple example of how it can be done and the resulting con-
sequences.

Table 1 Particle content of proposed model of dark gauge U (1) sym-
metry

Particles SU (3)C SU (2)L SU (2)R U (1)X U (1)S

(u, d)L 3 2 1 1/6 0

(u, h)R 3 1 2 1/6 −1/2

dR 3 1 1 −1/3 0

hL 3 1 1 −1/3 −1

(ν, l)L 1 2 1 −1/2 0

(n, l)R 1 1 2 −1/2 1/2

νR 1 1 1 0 0

nL 1 1 1 0 1(
φ+
L , φ0

L

)
1 2 1 1/2 0(

φ+
R , φ0

R

)
1 1 2 1/2 1/2

η 1 2 2 0 −1/2

ζ 1 1 1 0 1(
ψ0

1 , ψ−
1

)
R 1 1 2 −1/2 2(

ψ+
2 , ψ0

2

)
R 1 1 2 1/2 1

χ+
R 1 1 1 1 −3/2

χ−
R 1 1 1 −1 −3/2

χ0
1R 1 1 1 0 −1/2

χ0
2R 1 1 1 0 −5/2

σ 1 1 1 0 3

3 Model

The particle content of our model is given in Table 1.
Without U (1)S as a gauge symmetry, the model is free of

anomalies without the addition of the ψ and χ fermions.
In the presence of gauge U (1)S , the additional anomaly-
free conditions are all satisfied by the addition of the ψ

and χ fermions. The [SU (3)C ]2U (1)S anomaly is canceled
between (u, h)R and hL ; the [SU (2)L ]2U (1)S anomaly is
zero because (u, d)L and (ν, l)L do not transform under
U (1)S ; the [SU (2)R]2U (1)S and [SU (2)R]2U (1)X anoma-
lies are both canceled by summing over (u, h)R , (n, l)R ,
(ψ0

1 , ψ−
1 )R , and (ψ+

2 , ψ0
2 )R ; the addition of χ±

R renders
the [U (1)X ]2U (1)S , U (1)X [U (1)S]2, [U (1)X ]3, and U (1)X
anomalies zero; and the further addition of χ0

1R and χ0
2R kills

both the [U (1)S]3 and the U (1)S anomalies, i.e.

0 = 3
[
6(−1/2)3 − 3(−1)3 + 2(1/2)3 − (1)3

]

+ 2(2)3 + 2(1)3 + 2(−3/2)3 + (−1/2)3 + (−5/2)3,

(1)

0 = 3 [6(−1/2) − 3(−1) + 2(1/2) − (1)]

+ 2(2) + 2(1) + 2(−3/2) + (−1/2) + (−5/2). (2)

The scalar SU (2)L × SU (2)R bidoublet is given by

η =
(

η0
1 η+

2
η−

1 η0
2

)
, (3)
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with SU (2)L transforming vertically and SU (2)R horizon-
tally. Under T3R+S, the neutral scalars φ0

R and η0
2 are zero, so

that their vacuum expectation values do not break T3R + S,
which remains as a global symmetry. However, 〈σ 〉 �= 0
does break T3R + S and gives masses to ψ0

1Rψ0
2R −ψ−

1Rψ+
2R ,

χ+
R χ−

R , and χ0
1Rχ0

2R . These exotic fermions all have half-
integral charges [6] under T3R + S and only communi-
cate with the others with integral charges through W±

R ,√
2Re(φ0

R), ζ , and the two extra neutral gauge bosons beyond
the Z . Some explicit Yukawa terms are

(ψ0
1Rφ−

R + ψ−
1R φ̄0

R)χ+
R , (ψ+

2Rφ0
R − ψ0

2Rφ+
R )χ−

R , (4)

(ψ0
1Rφ0

R − ψ−
1Rφ+

R )χ0
2R, (ψ+

2Rφ−
R + ψ0

2R φ̄0
R)χ0

1R . (5)

This dichotomy of particle content results in an additional
unbroken symmetry of the Lagrangian, i.e. discrete Z2 under
which the exotic fermions are odd. Hence dark matter has
two layers: those with nonzero T3R + S and even Z2,
i.e. n, h,W±

R , φ±
R , η±

1 , η0
1, η̄

0
1, ζ , and the underlying exotic

fermions with odd Z2. Without ζ , a global S′ symmetry
remains. With ζ , because of the ζ 3σ ∗ and χ0

1Rχ0
1Rζ terms,

the S′ symmetry breaks to Z3.
Let

〈φ0
L〉 = v1, 〈η0

2〉 = v2, 〈φ0
R〉 = vR, 〈σ 〉 = vS, (6)

then the SU (3)C × SU (2)L × SU (2)R × U (1)X × U (1)S
gauge symmetry is broken to SU (3)C×U (1)Q with S′, which
becomes Z3, as shown in Table 2 with ω3 = 1. The discrete
Z2 symmetry is unbroken. Note that the global S′ assign-
ments for the exotic fermions are not T3R + S because of vS ,
which breaks the gauge U (1)S by 3 units.

4 Gauge sector

Consider now the masses of the gauge bosons. The charged
ones, W±

L and W±
R , do not mix because of S′(Z3), as in the

original alternative left–right models. Their masses are given
by

M2
WL

= 1

2
g2
L

(
v2

1 + v2
2

)
, M2

WR
= 1

2
g2
R

(
v2
R + v2

2

)
. (7)

Since Q = I3L + I3R + X , the photon is given by

A = e

gL
W3L + e

gR
W3R + e

gX
X, (8)

where e−2 = g−2
L + g−2

R + g−2
X . Let

Z = (g2
L + g2

Y )−1/2

(
gLW3L − g2

Y

gR
W3R − g2

Y

gX
X

)
, (9)

Z ′ = (g2
R + g2

X )−1/2(gRW3R − gX X), (10)

where g−2
Y = g−2

R +g−2
X , then the 3×3 mass-squared matrix

spanning (Z , Z ′, S) has the entries:

M2
Z Z = 1

2

(
g2
L + g2

Y

) (
v2

1 + v2
2

)
, (11)

M2
Z ′Z ′ = 1

2

(
g2
R + g2

X

)
v2
R + g4

Xv2
1 + g4

Rv2
2

2
(
g2
R + g2

X

) , (12)

M2
SS = 18g2

Sv
2
S + 1

2
g2
S

(
v2
R + v2

2

)
, (13)

M2
Z Z ′ =

√
g2
L + g2

Y

2
√
g2
R + g2

X

(
g2
Xv2

1 − g2
Rv2

2

)
, (14)

M2
ZS = 1

2
gS

√
g2
L + g2

Y v2
2, (15)

M2
Z ′S = −1

2
gS

√
g2
R − g2

Xv2
R − gSgRv2

2

2
√
g2
R + g2

X

. (16)

Their neutral-current interactions are given by

LNC = eAμ jμQ + gZ Zμ

(
jμ3L − sin2 θW jμQ

)

+
(
g2
R + g2

X

)−1/2
Z ′

μ

(
g2
R j

μ
3R − g2

X jμX

)
+gSSμ jμS ,

(17)

where g2
Z = g2

L + g2
Y and sin2 θW = g2

Y /g2
Z .

In the limit v2
1,2 << v2

R, v2
S , the mass-squared matrix

spanning (Z ′, S) may be simplified if we assume

v2
S

v2
R

=
(
g2
R + g2

X + g2
S

)2

36g2
S

(
g2
R + g2

X − g2
S

) , (18)

and let

tan θD =
√
g2
R + g2

X − gS√
g2
R + g2

X + gS
; (19)

then

(
D1

D2

)
=

(
cos θD sin θD

− sin θD cos θD

) (
Z ′
S

)
, (20)

with mass eigenvalues given by

M2
D1

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 cos θD
, (21)

M2
D2

=
√
g2
R + g2

X

√
g2
R + g2

X + g2
S

v2
R

2
√

2 sin θD
. (22)

In addition to the assumption of Eq. (18), let us take for
example

2gS =
√
g2
R + g2

X , (23)
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Table 2 Particle content of
proposed model under
(T3R + S) × Z2

Particles Gauge T3R + S Global S′ Z3 Z2

u, d, ν, l 0 0 1 +

(φ+
L , φ0

L ), (η+
2 , η0

2), φ
0
R 0 0 1 +

n, φ+
R , ζ 1 1 ω +

h,
(
η0

1, η
−
1

) −1 −1 ω2 +

ψ+
2R, χ+

R 3/2,−3/2 0 1 −
ψ−

1R, χ−
R 3/2,−3/2 0 1 −

ψ0
1R, ψ0

2R 5/2, 1/2 1,−1 ω,ω2 −
χ0

1R, χ0
2R −1/2,−5/2 1,−1 ω,ω2 −

σ 3 0 1 +

then sin θD = 1/
√

10 and cos θD = 3/
√

10. Assuming also
that gR = gL , we obtain

g2
X

g2
Z

= sin2 θW cos2 θW

cos 2θW
,

gS
gZ

= cos2 θW

2
√

cos 2θW
, (24)

v2
S

v2
R

= 25

108
, M2

D2
= 3M2

D1
= 5 cos4 θW

4 cos 2θW
g2
Zv2

R . (25)

The resulting gauge interactions of D1,2 are given by

LD = gZ√
10

√
cos 2θW

{[
3 cos 2θW jμ3R − 3 sin2 θW jμX

+(1/2) cos2 θW jμS

]
D1μ

+
[
− cos 2θW jμ3R + sin2 θW jμX

+(3/2) cos2 θW jμS

]
D2μ

}
. (26)

Since D2 is
√

3 times heavier than D1 in this example, the
latter would be produced first in pp collisions at the Large
Hadron Collider (LHC).

5 Fermion sector

All fermions obtain masses through the four vacuum expec-
tation values of Eq. (6) except νR , which is allowed to have
an invariant Majorana mass. This means that neutrino masses
may be small from the usual canonical seesaw mechanism.
The various Yukawa terms for the quark and lepton masses
are

− LY = mu

v2

[
ū R(uLη0

2 − dLη+
2 ) + h̄ R(−uLη−

2 + dLη0
1)

]

+ md

v1

(
ūLφ+

L + d̄Lφ0
L

)
dR + mh

vR

(
ū Rφ+

R + h̄ Rφ0
R

)
hL

+ ml

v2

[(
ν̄Lη0

1 + l̄Lη−
1

)
nR +

(
ν̄Lη+

2 + l̄Lη0
2

)
lR

]

+ mD

v1
ν̄R

(
νLφ0

L − lLφ+
L

)

+ mn

vR
n̄L

(
nRφ0

R − lRφ−
R

)
+ H.c. (27)

These terms show explicitly that the assignments of Tables 1
and 2 are satisfied.

As for the exotic ψ and χ fermions, they have masses
from the Yukawa terms of Eqs. (4) and (5), as well as from

(φ0
1Rψ0

2R − ψ−
1Rψ+

2R)σ ∗, χ−
R χ+

R σ, χ0
1Rχ0

2Rσ. (28)

As a result, two neutral Dirac fermions are formed from the
matrix linking χ0

1R and ψ0
1R to χ0

2R and ψ0
2R . Let us call

the lighter of these two Dirac fermions χ0, then it is one
component of dark matter of our model. The other will be
the scalar ζ , to be discussed later. Note that χ0 communicates
with ζ through the allowed χ0

1Rχ0
1Rζ interaction. Note also

that the allowed Yukawa terms

d̄RhLζ, n̄LνRζ (29)

enable the dark fermions h and n to decay into ζ .

6 Scalar sector

Consider the most general scalar potential consisting of
L ,R , η, and σ . Let

η =
(

η0
1 η+

2
η−

1 η0
2

)
, η̃ = σ2η

∗σ2 =
(

η̄0
2 −η+

1
−η−

2 η̄0
1

)
; (30)

then

V = −μ2
L

†
LL − μ2

R
†
RR − μ2

σ σ ∗σ − μ2
ηTr(η

†η)

+[μ3
†
LηR + H.c.]

+ 1

2
λL(

†
LL)2 + 1

2
λR(

†
RR)2 + 1

2
λσ (σ ∗σ)2

+ 1

2
λη[Tr(η†η)]2 + 1

2
λ′

ηTr(η
†ηη†η)

+ λLR(
†
LL)(

†
RR) + λLσ (

†
LL)(σ ∗σ)

+ λRσ (
†
RR)(σ ∗σ)

+ λση(σ
∗σ)Tr(η†η)

123
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+ λLη
†
Lηη†L + λ′

Lη
†
L η̃η̃†L + λRη

†
Rη†ηR

+ λ′
Rη

†
R η̃†η̃R . (31)

Note that

2|det (η)|2 = [Tr(η†η)]2 − Tr(η†ηη†η), (32)

(
†
LL)Tr(η†η) = 

†
Lηη†L + 

†
L η̃η̃†L , (33)

(
†
RR)Tr(η†η) = 

†
Rη†ηR + 

†
R η̃†η̃R . (34)

The minimum of V satisfies the conditions

μ2
L = λLv2

1 + λLηv
2
2 + λLRv2

R

+ λLσ v2
S + μ3v2vR/v1, (35)

μ2
η = (λη + λ′

η)v
2
2 + λLηv

2
1 + λRηv

2
R

+ λσηv
2
S + μ3v1vR/v2, (36)

μ2
R = λRv2

R + λLRv2
1 + λRηv

2
2

+ λRσ v2
S + μ3v1v2/vR, (37)

μ2
σ = λσ v2

S + λLσ v2
1

+ λσηv
2
2 + λRσ v2

R . (38)

The 4 × 4 mass-squared matrix spanning
√

2Im(φ0
L , η0

2,

φ0
R, σ ) is then given by

M2
I = μ3

⎛
⎜⎜⎝

−v2vR/v1 vR v2 0
vR −v1vR/v2 −v1 0
v2 −v1 −v1v2/vR 0
0 0 0 0

⎞
⎟⎟⎠ (39)

and that spanning
√

2Re(φ0
L , η0

2, φ
0
R, σ ) is

M2
R = μ3

⎛
⎜⎜⎝

−v2vR/v1 vR v2 0
vR −v1vR/v2 v1 0
v2 v1 −v1v2/vR 0
0 0 0 0

⎞
⎟⎟⎠

+ 2

⎛
⎜⎜⎝

λLv2
1 λLηv1v2 λLRv1vR λLσ v1vS

λLηv1v2 (λη + λ′
η)v2

2 λRηv2vR λσηv2vS

λLRv1vR λRηv2vR λRv2
R λRσ vRvS

λLσ v1vS λσηv2vS λRσ vRvS λσ v2
S

⎞
⎟⎟⎠ .

(40)

Hence there are three zero eigenvalues in M2
I with one

nonzero eigenvalue −μ3[v1v2/vR +vR(v2
1 +v2

2)/v1v2] cor-
responding to the eigenstate (−v−1

1 , v−1
2 , v−1

R , 0)/√
v−2

1 + v−2
2 + v−2

R . In M2
R , the linear combination H =

(v1, v2, 0, 0)/

√
v2

1 + v2
2, is the standard-model Higgs boson,

with

m2
H = 2[λLv4

1 + (λη + λ′
η)v

4
2 + 2λLηv

2
1v2

2]/(v2
1 + v2

2).

(41)

The other three scalar bosons are much heavier, with sup-
pressed mixing to H , which may all be assumed to be small
enough to avoid the constraints from dark-matter direct-
search experiments. The addition of the scalar ζ introduces

two important new terms:

ζ 3σ ∗, (η0
1η

0
2 − η−

1 η+
2 )ζ. (42)

The first term breaks global S′ to Z3, and the second term
mixes ζ with η0

1 through v2. We assume the latter to be neg-
ligible, so that the physical dark scalar is mostly ζ .

7 Present phenomenological constraints

Many of the new particles of this model interact with those
of the standard model. The most important ones are the neu-
tral D1,2 gauge bosons, which may be produced at the LHC
through their couplings to u and d quarks, and decay to
charged leptons (e−e+ and μ−μ+). As noted previously, in
our chosen example, D1 is the lighter of the two. Hence cur-
rent search limits for a Z ′ boson are applicable [7,8]. The
cu,d coefficients used in the data analysis are

cu =
(
g2
uL + g2

uR

)
B = 0.0273 B,

cd =
(
g2
dL + g2

dR

)
B = 0.0068 B, (43)

where B is the branching fraction of Z ′ to e−e+ and μ−μ+.
Assuming that D1 decays to all the particles listed in Table 2,
except for the scalars which become the longitudinal compo-
nents of the various gauge bosons, we find B = 1.2 × 10−2.
Based on the 2016 LHC 13 TeV data set from ATLAS [9],
this translates to a bound of about 4 TeV on the D1 mass.

The would-be dark-matter candidate n is a Dirac fermion
which couples to D1,2, which also couples to quarks. Hence
severe limits exist on the masses of D1,2 from underground
direct-search experiments as well. The annihilation cross sec-
tion of n through D1,2 would then be too small, so that its
relic abundance would be too big for it to be a dark-matter
candidate. Its annihilation at rest through s-channel scalar
exchange is p-wave suppressed and does not help, barring
of course any accidental resonance enhancement. As for the
t-channel diagrams, they also turn out to be too small. Sug-
gestions of previous studies [2,3] where n is chosen as dark
matter are now ruled out.

8 Dark sector

Dark matter is envisioned to have two components. One is
a Dirac fermion χ0, which is a mixture of the four neutral
fermions of odd Z2, and the other is a complex scalar boson
which is mostly ζ , with the added assumption that mχ0 is
significantly greater than mζ . The annihilation χ0χ̄0 → ζ ζ ∗
determines the relic abundance of χ0, and the annihilation
ζ ζ ∗ → HH , where H is the standard-model Higgs boson,
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determines that of ζ . The direct ζ ζ ∗H coupling is assumed
small to avoid the severe constraint in direct-search experi-
ments.

Let the interaction of ζ with χ0 be f0ζχ0Rχ0R+H.c., then
the annihilation cross section of χ0χ̄0 to ζ ζ ∗ times relative
velocity is given by

〈σ × vrel〉χ = f 4
0

4πmχ0

(
m2

χ0
− m2

ζ

)3/2

(
2m2

χo
− m2

ζ

)2 . (44)

This determines the relic abundance of χ0.
As the Universe cools below mχ0 , χ0 decouples from the

thermal bath. We assume that mζ is much below mχ0 so
that χ0 is essentialy frozen out at mζ . The relic abundance
of ζ is then mostly determined by ζ ζ ∗ → HH . Let the
effective interaction strength of ζ ζ ∗ with HH be λ0, then
the annihilation cross section of ζ ζ ∗ to HH times relative
velocity is given by

〈σζ × vrel〉ζ = λ2
0

16π

(
m2

ζ − m2
H

)1/2

m3
ζ

. (45)

Note that λ0 is the sum over several interactions. The quartic
coupling λζH is assumed negligible, to suppress the trilin-
ear ζ ζ ∗H coupling which contributes to the elastic ζ scat-
tering cross section off nuclei. However, the trilinear cou-
plings ζ ζ ∗Re(φ0

R) and Re(φ0
R)HH are proportional to vR ,

and the trilinear couplings ζ ζ ∗Re(σ ) and Re(σ )HH are pro-
portional to vS . Hence their effective contributions to λ0 are
proportional to v2

R/m2[√2Re(φ0
R)] and v2

S/m
2[√2Re(σ )],

which are not suppressed. Whereas there are other possible
contributions to Eqs. (44) and (45), we assume that the f0
and λ0 interactions are in fact dominant.

As a rough estimate, we will assume that

〈σ × vrel〉−1
χ + 〈σζ × vrel〉−1

ζ = (4.4 × 10−26 cm3/s)−1

(46)

to satisfy the condition of dark-matter relic abundance [10] of
the Universe. For given values ofmζ andmχ0 , the parameters
λ0 and f0 are thus constrained. We show in Fig. 1 the plots of
λ0 versus f0 for mζ = 150 GeV and various values of mχ0 .
Since mζ is fixed at 150 GeV, λ0 is also fixed for a given
fraction of �ζ /�DM . To adjust for the rest of dark matter,
f0 must then vary as a function of mχ0 according to Eq. (44).

As for direct detection, both χ0 and ζ have possible inter-
actions with quarks through the gauge bosons D1,2 and the
standard-model Higgs boson H . They are suppressed by
making the D1,2 masses heavy, and the H couplings to χ0

and ζ small. In our example with mζ = 150 GeV, let us
choose mχ0 = 500 Gev and the relic abundances of both to

Fig. 1 Relic-abundance constraints on λ0 and f0 for mζ = 150 GeV
and various values of mχ0

be equal. From Fig. 1, these choices translate to λ0 = 0.12
and f0 = 0.56.

Consider first the D1,2 interactions. Using Eq. (26), we
obtain

gVu (D1) = 0.0621, gVd (D1) = 0.0184, gζ (D1) = 0.1234,

(47)

gVu (D2) = −0.1235, gVd (D2) = −0.0062, gζ (D2) = 0.3701.

(48)

The effective ζ elastic scattering cross section through D1,2

is then completely determined as a function of the D1 mass
(because MD2 = √

3MD1 in our example), i.e.

LV
ζq = (ζ ∗∂μ − ζ∂μζ ∗)

M2
D1

[
(−7.57 × 10−3)ūγ μ

u + (1.51 × 10−3)d̄γ μd
]
. (49)

Using the most recent XENON result [11] at mζ = 150 GeV
for which σ < 2 × 10−46 cm2 and Eq. (25), we obtain vR >

35 TeV which translates to MD1 > 18 TeV, and MWR > 16
TeV. These are a few percent more restrictive than the most
recent LUX result [12].

The χ̄0γμχ0 couplings to D1,2 depend on the 2 × 2 mass
matrix linking (χ1, ψ1) to (χ2, ψ2), which has two mixing
angles and two mass eigenvalues, the smaller one being mχ0 .
By adjusting these parameters, it is possible to make the effec-
tive χ0 interaction to any particular nucleus through D1,2

negligibly small. Hence there is no useful limit on the D1

mass in this case. Note that the amplitude cancellation here
is through D1,2 and not necessarily through u and d quarks
(which are not adjustable in this model), as would be neces-
sary in models with only one vector mediator.

Direct search also constrains the coupling of the Higgs
boson to ζ (through a possible trilinear λζH

√
2vH ζ ∗ζ inter-

action) or χ0 (through an effective Yukawa coupling ε from
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H mixing with σR and φ0
R). Let their effective interactions

with quarks through H exchange be given by

LS
ζq = λζHmq

m2
H

ζ ∗ζ q̄q + ε fq
m2

H

χ̄0χ0q̄q, (50)

where fq = mq/
√

2vH = mq/(246 GeV). The spin-
independent direct-detection cross section per nucleon in the
former is given by

σ SI = μ2
ζ

π A2 [λp Z + (A − Z)λn]2, (51)

where μζ = mζ MA/(mζ + MA) is the reduced mass of the
dark matter, and [13]

λN =
⎡
∑
u,d,s

f Nq + 2

27

⎛
⎝1 −

∑
u,d,s

f Nq

⎞
⎠

⎤
⎦ λζHmN

2mζm2
H

, (52)

with [14]

f pu = 0.0139, f pd = 0.0253, f ps = 0.113, (53)

f nu = 0.0116, f nd = 0.0302, f ns = 0.113. (54)

For mζ = 150 GeV, we have

λp = 4.30 × 10−8λζH GeV−2,

λn = 4.35 × 10−8λζH GeV−2. (55)

Using A = 131, Z = 54, and MA = 130.9 atomic mass
units for the XENON experiment [11], and twice the most
recent bound of 2 × 10−46 cm2 (at mζ = 150 GeV) because
ζ is assumed to account for only half of the dark matter) at
this mass, we find

λζH < 6.2 × 10−4. (56)

As noted earlier, this is negligible for considering the anni-
hilation cross section of ζ to H .

For the H contribution to the χ0 elastic cross section off
nuclei, we replace mζ with mχ0 = 500 GeV in Eq. (51) and
λζH/2mζ with ε/

√
2vH in Eq. (52). Using the experimental

data at 500 GeV, we obtain the bound.

ε < 6.4 × 10−4. (57)

From the above discussion, it is clear that it is possible for
future improvements in direct-search experiments to yield
positive results within the framework of our model.

9 Conclusion and outlook

In the context of the alternative left–right model, a new gauge
U (1)S symmetry has been proposed to stabilize dark matter.

This is accomplished by the addition of a few new fermions
to cancel all the gauge anomalies, as shown in Table 1. As a
result of this particle content, an automatic unbroken Z2 sym-
metry exists on top of U (1)S , which is broken to a conserved
residual Z3 symmetry. Thus dark matter has two components.
One is the Dirac fermion χ0 ∼ (ω,−) and the other the com-
plex scalar ζ ∼ (ω,+) under Z3 × Z2. We have shown how
they may account for the relic abundance of dark matter in the
Universe, and satisfy present experimental search bounds.

Whereas we have no specific prediction for discovery in
direct-search experiments, our model will be able to accom-
modate any positive result in the future, just like many other
existing proposals. To single out our model, many additional
details must also be confirmed. Foremost are the new gauge
bosons D1,2. Whereas the LHC bound is about 4 TeV, the
direct-search bound is much higher, provided that ζ is a sig-
nificant fraction of dark matter. If χ0 dominates instead, the
adjustment of free parameters of our model can lower this
bound to below 4 TeV. In that case, future D1,2 observations
are still possible at the LHC as more data become available.

Another is the exotic h quark which is easily produced if
kinematically allowed. It would decay to d and ζ through
the direct d̄RhLζ coupling of Eq. (29). Assuming that this
branching fraction is 100%, the search at the LHC for 2 jets
plus missing energy puts a limit on mh of about 1.0 TeV, as
reported by the CMS Collaboration [15] based on the

√
s =

13 TeV data at the LHC with an integrated luminosity of 35.9
fb−1 for a single scalar quark.

If the d̄RhLζ coupling is very small, then h may also decay
significantly to u and a virtual W−

R , with W−
R becoming n̄l−,

and n̄ becoming ν̄ζ ∗. This has no analog in the usual searches
for supersymmetry or the fourth family because WR is heavy
(> 16 TeV). To be specific, the final states of 2 jets plus
l−1 l

+
2 plus missing energy should be searched for. As more

data are accumulated at the LHC, such events may become
observable.
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