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Abstract We perform canonical analysis of non-relativistic
particle in Newton–Cartan Background. Then we extend this
analysis to the case of non-relativistic superparticle in the
same background. We determine constraints structure of this
theory and find generator of κ-symmetry.

1 Introduction and summary

Holography is very useful for the analysis of properties of
strongly coupled quantum field theories. Recently these ideas
were extended to non-relativistic theories since today it is
well known that non-relativistic holography is very useful
tool for the study of strongly correlated systems in condensed
matter, for recent review see [1]. Non-relativistic symme-
tries also have fundamental meaning in the recent proposal
of renormalizable quantum theory of gravity known today
as Hořava–Lifshitz gravity [2], for recent review and exten-
sive list of references, see [3]. There is also an interesting
connection between Hořava–Lifshitz gravity and Newton–
Cartan gravity [4,5]. Newton–Cartan gravity is covariant and
geometric reformulation of Newton gravity that is now very
intensively studied, see for example [6–13].1

Concept of non-relativistic physics also emerged in string
theory when strings and branes were analyzed at special
backgrounds. At these special points of string moduli spaces
non-relativistic symmetries emerge in natural way [14,15]
. These actions were obtained by non-relativistic “stringy”
limit where time direction and one spatial direction along the
string are large. The stringy limit of superstring in AdS5 ×S5

was also formulated in [19] and it was argued here that it pro-
vides another soluble sector of AdS/CFT correspondence, for
related work, see [24,25]. Non-relativistic limit was further

1 See also [34–38].
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extended to the case of higher dimensional objects in string
theory, as for example p-branes [20–23].2

It is important to stress that these constructions of non-
relativistic objects are based on manifest separation of direc-
tions along which the non-relativistic limit is taken and direc-
tions that are transverse to them. The first step for the more
covariant formulation which corresponds to the particle in
Newton–Cartan background was performed in [30] and fur-
ther elaborated in [10]. The structure of this action is very
interesting and certainly deserves further study. In particular,
it would be very useful to find Hamiltonian for this particle.
Our goal in the first part of this article is to find the Hamil-
tonian formulation of the particle in Newton–Cartan and in
Newton–Cartan–Hooke background. It turns out that this is
non-trivial task even in the bosonic case due to the compli-
cated structure of the action. On the other hand when we
determine Hamiltonian constraint we find that the canonical
structure of this theory is trivial due to the fact that there
is only one scalar first class constraint. A more interesting
situation occurs when we consider supersymmetric general-
ization of the non-relativistic particle. As the first case we
study Galilean superparticle whose action was proposed in
[30]. We find its Hamiltonian form and identify primary con-
straints. We show that fermionic constraints are the second
class constraints that can be solved for the momenta conju-
gate to fermionic variables when we also obtain non-trivial
Dirac brackets between fermionic variables. Next we con-
sider more interesting case corresponding to the κ-symmetric
non-relativistic particle action [30]. We again determine all
primary constraints. Then the requirement of the preserva-
tion of the fermionic primary constraints determines corre-
sponding Lagrange multipliers. In fact we find a linear com-
bination of the fermionic constraints that is the first class
constraint and that can be interpreted as the generator of the
κ-symmetry. Since it is the first class constraint it can be

2 For recent works, see [16–18,27–29].
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fixed by imposing one of the fermionic variables to be equal
to zero and we return to the previous case.

Finally we perform Hamiltonian analysis of superparti-
cle in Newton–Cartan background. This action was found
in [10] up to terms quadratic in fermions. We again deter-
mine Hamiltonian constraint which however has much more
complicated form due to the presence of fermions . We also
determine two sets of primary fermionic constraints. As the
next step we study the requirement of the preservation of
these constraints during the time evolution of the system. It
turns out that this is rather non-trivial and complicated task
in the full generality and hence we restrict ourselves to the
simpler case of the background with the flat spatial sections.
In this case we show that the Hamiltonian constraint is the
first class constraint with vanishing Poisson brackets with
fermionic constraints. We also identify linear combination
of the fermionic constraints which is the first class constraint
and that can be interpreted as the generator of κ-symmetry.

The extension of this paper is obvious. It would be very
interesting to analyze constraint structure of superparticle in
Newton–Cartan background in the full generality. Explicitly,
we should analyze the time evolutions of all constraints and
determine conditions on the background fields with analogy
with the case of relativistic superparticle as was studied in
[33]. We hope to return to this problem in future.

The organization of this paper is as follows. In the next
Sect. 2 we perform Hamiltonian analysis of particle in
Newton–Cartan background. Then in Sect. 3 we generalize
this analysis to the case of particle in Newton–Cartan–Hooke
background. In Sect. 4 we perform Hamiltonian analysis of
Galilean superparticle. Finally in Sect. 5 we analyze non-
relativistic superparticle in Cartan–Newton background.

2 Hamiltonian of Newton–Cartan particle

By Newton–Cartan particle we mean a particle that moves in
Newton–Cartan background with an action invariant under
general coordinate transformations. In order to describe
Newton–Cartan background we need a temporal vielbein τμ

and spatial vielbein e a
μ ,μ = 0, . . . , d−1, a = 1, . . . , d−1.

We also need a central charge gauge fieldmμ. Then the action
for particle in Newton–Cartan background has the form [10]

S = m

2

∫
dλ

[
ẋμe a

μ ẋνe b
ν δab

ẋρτρ

− 2mμ ẋ
μ

]
, (1)

where λ is a parameter that labels the world-line of the par-
ticle and ẋμ = dxμ

dλ
.

From (1) we derive following conjugate momenta

pμ = m
e a
μ ẋνe b

ν δab

ẋρτρ

− mmμ − m

2

ẋρe a
ρ ẋνe b

ν δab

(ẋρτρ)2 τμ. (2)

Using (2) it is easy to see that the bare Hamiltonian is equal
to zero

HB = pμ ẋ
μ − L = 0 (3)

as we could expect since the action (1) is manifestly invariant
under world-line reparameterization

λ′ = λ′(λ), x ′μ(λ′) = xμ(λ). (4)

The fact that the theory is invariant under world-line dif-
feomorphism suggests that there should exist corresponding
Hamiltonian constraint. In order to find it we use following
relations

τμτμ = 1, τμe a
μ = 0 (5)

in (2) and we obtain

τμ(pμ + mmμ) = −m

2

ẋμe a
μ ẋνe b

ν δab

(ẋρτρ)2 ,

eμ
a(pμ + mmμ) = m

δabe b
ν ẋν

τρ ẋρ
. (6)

If we combine these results together we obtain following
primary constraint

Hλ = eμ
a(pμ + mmμ)eν

b(pν + mmν)δ
ab

+ 2mτμ(pμ + mmμ) ≈ 0 (7)

which is desired result. Then extended Hamiltonian has the
form

HT = λλHλ, (8)

where λλ is a Lagrange multiplier corresponding to the first
class constraintHλ. The equations of motion for xμ, pμ have
the form

ẋμ = {
xμ, HT

} = 2λλ
(
hμν(pν + mmν) + mτμ

)
,

ṗμ = {
pμ, HT

} = −λλ
(
∂μh

ρσ (pρ + mmρ)(pσ + mmσ )

+ 2m∂μmρh
ρσ (pσ + mmσ )

+ 2m∂μτρ(pρ + mmρ) + 2m2τρ∂μmρ

)
, (9)

where

hμν = eμ
ae

ν
bδ

ab. (10)

As the next step we would like to present an alternative
way how to derive an action for Newton–Cartan particle. We
start with an action for relativistic massive particle in general
background that couples to external gauge field Mμ

S = −M
∫

dλ
(√

−ηAB E A
μ E B

ν ẋμ ẋν − Mμ ẋ
μ
)

, (11)
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where E A
μ is vielbein where A = 0, . . . , d − 1 and where

exists inverse vielbein Eμ
A defined as

E A
μ Eμ

B = δAB , E A
μ Eν

A = δν
μ. (12)

Now we find corresponding canonical form of the action (11).
To do this we derive conjugate momenta from (11)

pμ = M
ηAB E A

μ E B
ν ẋν

√
−ηAB E A

μ E B
ν ẋμ ẋν

+ MMμ (13)

that implies following primary constraint

Hλ ≡ (pμ − MMμ)Eμ
CηCAEν

A

×(pν − MMν) + M2 ≈ 0. (14)

Now we are ready to find Hamiltonian constraint for Newton–
Cartan particle using following form of the vielbein E A

μ that
was introduced in [10]

E 0
μ = ωτμ + 1

2ω
mμ, E a

μ = e a
μ , (15)

where a = 1, . . . , d − 1 and where ω is a free parameter and
we take ω → ∞ in the end. An inverse vielbein to (15) has
the form

Eμ
a = eμ

a + O(ω−2) , Eμ
0 = 1

ω
τμ + O(ω−3), (16)

where eμ
a, τ

μ are defined as [10]

eμ
ae

b
μ = δab , τμτμ = 1 , τμe a

μ = τμe
μ
a = 0,

eρ
ae

a
μ = δρ

μ − τμτρ. (17)

Note that (16) contain term linear in 1
ω

. In principle it contains
infinite number of terms of corrections 1

ωn that will give van-
ishing contributions in the limit ω → ∞. Finally the gauge
field has the form [10]

Mμ = ωτμ − 1

ω
mμ. (18)

Inserting (16) together with (18) into (14) and rescaling M
as M = ωm we obtain

Hλ = − 1

ω2 pμτμ pντ
ν + pμe

μ
aδ

abeν
b pν + 2mpμτμ

+ 2mpμh
μνmν − 2

ω2 mpμτμτνmν

−m2ω2 + 2m2mμτμ − m2

ω2 (mμτμ)2

+m2mμe
μ
aδ

abeν
bmb + m2ω2 ≈ 0 (19)

that in the limit ω → ∞ simplifies considerably

Hλ = 2m(pμ+mmμ)τμ+(pμ+mmμ)hμν(pν+mmν) ≈ 0.

(20)

We see that the Hamiltonian constraint (20) coincides with
the constraint (7). Using (20) we find the canonical form of
the Newton–Cartan particle action

S =
∫

dλ(pμ ẋ
μ − vλHλ). (21)

It is instructive to find corresponding Lagrangian. Using (20)
we obtain

ẋμ = {
xμ, HT

} = 2vλ
(
mτμ + hμν(pν + mmν)

)
(22)

so that

L = pμ ẋ
μ−HT = vλ(pμ+mmμ)hμν(pν+mmν)−mmμ ẋ

μ.

(23)

Of course, this is not final form of the Lagrangian since it has
to be function of xμ and ẋμ instead of pμ. In order to find
this form we multiply (22) with τμ and use (17) so that we
can express vλ as

vλ = 1

2m
τμ ẋ

μ. (24)

Further, if we multiply (22) with hμν we obtain

1

2
hμν ẋ

ν = vλ(pμ + mmμ) − vλτμτρ(pρ + mmρ) (25)

Inserting this result into (23) and using again (17) together
with (24) we finally obtain

L = m

2

ẋμhμν ẋν

ẋρτρ

− mmμ ẋ
μ (26)

that coincides with the Lagrangian defined in (1).

3 The Newton–Cartan–Hooke particle

In this section we perform Hamiltonian analysis of the
Newton–Cartan–Hooke particle which is cosmological exten-
sion of the Newton–Cartan particle whose action was derived
in [30]

S =
∫

dλ
m

2

[
ẋμe a

μ ẋνe b
ν δab

ẋρτρ

− 2mμ ẋ
μ

− ẋρτρ

xμe a
μ xνe b

ν δab

R2

]
, (27)
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where the AdS radius R2 is related to the cosmological con-
stant �,� < 0 as R2 = − 1

�
. From (27) we find conjugate

momenta

pμ = m
e a
μ ẋνe b

ν δab

ẋρτρ

− m

2

ẋρe a
ρ ẋνe b

ν δab

(ẋρτρ)2 τμ

− mmμ − m

2R2 τμx
ρe a

ρ xνe b
ν δab. (28)

Following analysis performed in previous section we deter-
mine various projectors of the combination pμ + mmμ

τμ(pμ + mmμ) = −m

2

ẋρe a
ρ ẋνe b

ν δab

(ẋρτρ)2

− m

2R2 x
ρe a

ρ xνe b
ν δab,

eμ
a(pμ + mmμ) = m

ẋνe b
ν δba

ẋρτρ

. (29)

If we combine these two relations we obtain following pri-
mary Hamiltonian constraint for the Newton–Cartan–Hooke
particle

Hλ = 2mτμ(pμ + mmμ) + (pμ + mmμ)hμν(pν + mmν)

+m2

R2 hμνx
μxν ≈ 0. (30)

4 Supersymmetric generalization

In this section we proceed to the Hamiltonian analysis of
non-relativistic superparticles whose actions were derived in
[30] and in [10]. We begin with the simplest case which is
Galilean Superparticle. We restrict ourselves to the case of
three dimensions as in [30].

4.1 The Galilean superparticle

The action for Galilean Superparticle has the form3

S =
∫

dλ
m

2

[
ẋ i ẋi
ṫ

− θ̄−γ 0θ̇−
]

. (32)

3 Note that we use Majorana representation where all gamma matri-

ces are real γ μ = (iσ2, σ1, σ3), or explicitly γ 0 =
(

0 1
−1 0

)
, γ 1 =

(
0 1
1 0

)
, γ 2 =

(
1 0
0 −1

)
that obey the standard relation γ aγ b +

γ bγ a = 2ηabI, ηab = diag(−1, 1, 1), I =
(

1 0
0 1

)
. Then we presume

that θ− is real Majorana spinor so that

θ̄− = θT−γ 0. (31)

From (32) we determine corresponding conjugate momenta

pi = ∂L

∂ ẋ i
= m

ẋi
ṫ

, i = 1, 2, pt = ∂L

∂ ṫ
= −m

2

ẋ i ẋi
ṫ2 ,

p−
α = ∂L L

∂θ̇α−
= m

2
(θ̄−γ 0)α, α = 1, 2, (33)

where ∂L means left-derivative. As usually we find that the
bare Hamiltonian is zero

HB = ẋ i pi + ṫ pt + θ̇ α− p−
α − L = 0 (34)

while the theory possesses three primary constraints

G−
α ≡ p−

α − m

2
(θ̄−γ 0)α = p−

α + m

2
θ

β
−δβα ≈ 0,

Hλ ≡ pi p
i + 2mpt ≈ 0. (35)

It is important to stress that p−
α and θ

β
− are Grassmann odd

variable with the graded Poisson brackets

{
θα−, p−

β

}
=

{
p−
β , θα−

}
= δβ

α . (36)

Then it easy to find following non-zero Poisson bracket

{
G−

α ,G−
β

}
= mδαβ. (37)

In other words G−
α are second class constraints. As a result

we can eliminate all conjugate momenta p−
α with the help of

G−
α = 0. Then of course we have to replace Poisson brackets

between θα−, θ
β
− with corresponding Dirac brackets{

θα−, θ
β
−
}
D

=
{
θα−, θ

β
−
}

−
{
θα−,G−

γ

}

× 1

m
δγ δ

{
G−

δ , θ
β
−
}

= − 1

m
δαβ. (38)

4.2 κ-symmetric Galilean superparticle

It is well known that the relativistic superparticle is invari-
ant under additional fermionic symmetry called κ-symmetry
[31,32]. In case of strings and branes an existence of κ-
symmetry is necessary for the correct counting of degrees
of freedom. In the non-relativistic case it is known from the
work [20] that the κ-symmetry is just a Stückelberg symme-
try that acts as a shift on one of the fermionic coordinates, see
also [30]. Then this symmetry can be easily fixed by setting
this fermionic coordinate to be equal to zero. It is instructive
to see how it works in the canonical description so that we
now perform Hamiltonian analysis of κ-symmetric version
of the flat Galilean superparticle action that depends on an
additional fermionic coordinate θ+. The action has the form
[30]

S =
∫

dλ
m

2

[
π iπi

π0 − θ̄−γ 0θ̇−
]

, (39)
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where the line elements π0, π i are defined as

π0 = ṫ + 1

4
θ̄+γ 0θ̇+, π i = ẋ i + 1

4
θ̄−γ i θ̇+ + 1

4
θ̄+γ i θ̇−.

(40)

Now we proceed to the canonical formulation of this theory.
From (39) we obtain

pi = ∂L

∂ ẋ i
= m

πi

π0 , pt = ∂L

∂ ṫ
= −m

2

πiπ
i

(π0)2 ,

p−
α = ∂L L

∂θ̇α−
= −m

4
(θ̄+γ i )α

πi

π0 + (θ̄−γ 0)α,

p+
α = ∂L L

∂θ̇α+
= m

8
(θ̄+γ 0)α

π iπi

(π0)2 − m

4

π i

π0 (θ̄−γ i )α. (41)

Last two equations imply two sets of primary constraints

G−
α = p−

α + 1

4
(θ̄+γ i )α pi − m

2
(θ̄−γ 0)α ≈ 0,

G+
α = p+

α + 1

4
(θ̄+γ 0)α pt + 1

4
(θ̄−γ i )α pi ≈ 0 (42)

with following non-zero Poisson brackets
{
G−

α ,G−
β

}
= mδαβ,

{
G−

α ,G+
β

}
= 1

2
(γ 0γ i )αβ pi ,

{
G+

α ,G+
β

}
= −1

2
δαβ pt .

(43)

Finally the theory possesses the Hamiltonian constraint in
the form

Hλ = 2mpt + pi p
i ≈ 0 (44)

that is clearly first class constraint

{Hλ,G+
α

} = {Hλ,G−
α

} = 0. (45)

Again the bare Hamiltonian is equal to zero so that the
extended Hamiltonian with the primary constraints included
has the form

HT = λλHλ + λα+G+
α + λα−G−

α , (46)

where λλ, λα+, λα− are corresponding Lagrange multipliers.
Now we have to check consistency of all constraints.Hλ ≈

0 is clearly preserved and it is the generator of world-line
reparameterization. In case of the fermionic constraints we
obtain
d

dλ
G−

α = {G−
α , HT

} = 1

2
λ

β
+(γ 0γ i )αβ pi + λ

β
−δαβm = 0,

d

dλ
G+

α = {G+
α , HT

} = −λ
β
+

1

2
δαβ pt

+ λ
β
−

1

2
(γ 0γ i )αβ pi = 0. (47)

From the last equation we obtain

λα+ = 1

pt
δαβ(γ 0γ i )βγ λ

γ
− pi . (48)

Inserting this result to the first Eq. (47) we find that it is
obeyed since it is proportional to

(pi p
i + 2mpt ) = Hλ ≈ 0 (49)

so that λ
β
− is not specified and it is a free parameter. Then

it is natural to introduce following linear combination of the
fermionic constraints

�α = G+
γ δγβ(γ 0γ i )βα

1

pt
+ G−

α . (50)

Then it is easy to see that
{
�α,G−

β

}
= 1

2pt
(pi p

i + 2mpt )δαβ ≈ 0,

{
�α,G+

β

}
= 0 (51)

which implies that
{
�α,�β

} ≈ 0 and hence �α ≈ 0 is
the first class constraint while G−

α ≈ 0 is the second class
constraint. Let us then calculate the Poisson brackets between
all canonical variables and �α{
�α, θ

β
+
}

= (γ 0γ i )βα
pi
pt

,
{
�α, θ

β
−
}

= δβ
α

{
�α, xi

}
= − 1

4pt
(θ−γ iγ j )α p j − 1

4
(θ̄+γ i )α,

{�α, t} = 1

4
(θ̄+γ j )α

p j

pt
. (52)

With analogy with the Lagrangian description we would like
to define κ-transformation that acts on the θ+ as a shift. For
that reason we define κ-transformation in the following way

δκ X = p j

2m
(κγ jγ 0)α {�α, X} ≡ κα {�α, X} . (53)

Then using (52) we easily find

δκθα+ = κα, δκθα− = p j

2m
(κγ jγ 0)α,

δκ x
i = 1

4
κ̄γ iθ− − p j

8m
κγ jγ iθ+, δκ t = −1

4
κθ+ (54)

that are correct κ-symmetry transformations. Fixing the κ-
symmetry can be done by imposing the gauge fixing condi-
tion

�α = θα+ = 0 (55)

so that

{
�α,�β

} = δβ
α (56)
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and hence we see that they are second class constraints that
can be explicitly solved for θα+ and p+

α . Further, the con-
straints G−

α ≈ 0 are two second class constraints that can be
solved for p−

α exactly in the same way as in previous section.

5 Non-relativistic superparticle in Newton–Cartan
background

In this section we perform Hamiltonian analysis of the non-
relativistic superparticle in Cartan–Newton background. The
action for this particle was derived in [10] and it has the form

S = m

2

∫
dλ

[
π̂aπ̂bδab

π̂0 − 2ẋμ
(
mμ − θ̄−γ 0ψμ−

)

− θ̄−γ 0 D̂θ− − 1

2
ẋμω a

μ θ̄+γaθ−
]

, (57)

where we have following supersymmetric line elements

π̂0 = ẋμ

(
τμ − 1

2
θ̄+γ 0ψμ+

)
+ 1

4
θ̄+γ 0 D̂θ+,

π̂a = ẋμ

(
e a
μ − 1

2
θ̄+γ aψμ− − 1

2
θ̄−γ aψμ+

)

+1

4
θ̄+γ a D̂θ− + 1

4
θ̄−γ a D̂θ+

+1

8
θ̄+γ aγb0θ+ ẋμω b

μ , (58)

where D̂ is covariant derivative with respect to spatial rota-
tion

D̂θ− = θ̇− − 1

4
ẋμω ab

μ γabθ−. (59)

Finally it is understood that we are interested in terms up to
second order in fermions in π̂aπ̂b. It is important to stress
that spin connections ω a

μ , ω ab
μ depend on e, τ,m, ψ . The

explicit form of this dependence can be found in [10].
Now we can proceed to the Hamiltonian formalism. First

of all we rewrite the line elements π̂a and π̂0 as

π̂a = ẋμM a
μ + 1

4
θ̄+γ a θ̇− + 1

4
θ̄−γ a θ̇+,

π̂0 = ẋμVμ + 1

4
θ̄+γ 0θ̇+, (60)

where

M a
μ = e a

μ − 1

2
θ̄+γ aψμ− − 1

2
θ̄−γ aψμ+

− 1

16
θ̄+γ aω cd

μ γcdθ−

− 1

16
θ̄−γ aω cd

μ γcdθ+ + 1

8
θ̄+γ aγb0θ+ω b

μ ,

Vμ = τμ − 1

2
θ̄+γ 0ψμ+ − 1

16
θ̄+γ 0ω ab

μ γabθ+. (61)

To proceed further we now presume an existence of the
inverse matrix Mμ

b to M a
μ that obeys the relation

Mμ
bM

a
μ = δab . (62)

In fact, since we are interested in terms up to second order
in fermions we derive this matrix as follows. Let us denote
original matrix and its inverse as

M a
μ = e a

μ + V a
μ , Mμ

b = eμ
b + Wμ

b. (63)

Then the condition Mμ
bM

a
μ = δab implies

Mμ
bM

a
μ = eμ

be
a

μ + eμ
bV

a
μ + Wμ

be
a

μ + O(θ4) = δab (64)

so that we obtain the condition

Wμ
be

a
μ = −eμ

bV
a

μ . (65)

In order to determine Wμ
a we multiply the last equation with

eν
a and we obtain

Wμ
b(δ

ν
μ − τμτν) = −eμ

bV
a

μ eν
a (66)

that has solution

Wμ
a = −eν

aV
b

ν eμ
b (67)

since eμ
bτμ = 0. Using this notation we determine corre-

sponding conjugate momenta

pμ = m
M a

μ δabπ̂
b

π̂0 − m

2

π̂aπ̂bδab

(π̂0)2 Vμ

−mmμ + m

8
θ̄−γ 0ω ab

μ γabθ− − m

4
ω a

μ θ̄+γaθ−,

p−
α = ∂L L

∂θ̇α−
= −m

4
(θ̄+γ b)αδba

π̂b

π̂0 − m

2
θ

β
−δβα,

p+
α = ∂L L

∂θ̇α+
= −m

4
(θ̄−γ a)α

δabπ̂
b

π̂0 + m

8

π̂aπ̂bδab

(π̂0)2 (θ̄+γ 0)α.

(68)

To proceed further we have to introduce vector Tμ that obeys
the condition

TμM a
μ = 0. (69)

With analogy with the pure bosonic case we presume that it
has the form

Tμ = τμ + Wμ, (70)

where Wμ is quadratic in fermions. Then the condition (69)
implies

τμV a
μ = −Wμe a

μ (71)
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that can be again solved as

Wμ = −τ νV a
ν eμ

a . (72)

Finally note that generally

TμVμ �= 1. (73)

With the help of the knowledge of Tμ,Mμ
a we can proceed

to the derivation of corresponding Hamiltonian constraint.
Using Tμ and M a

μ we find

m

2

π̂aπ̂bδab

(π̂0)2 = − 1

TμVμ

Tμ�μ,

Mμ
a�μ = m

δabπ̂
b

π̂0 − m

2

π̂aπ̂bδab

(π̂0)2 Mμ
aVμ, (74)

where we defined �μ as

�μ = pμ + mmμ + m

4
ω a

μ θ̄+γaθ− − m

8
θ̄−γ 0ω ab

μ γabθ−.

(75)

Inserting the first equation in (74) into the second one we
obtain
(
Mμ

a − Tμ

TνVν

Mρ
aVρ

)
�μ = m

δabπ̂
b

π̂0

(76)

so that we obtain following Hamiltonian constraint

Hλ = (
Mμ

aT
σVσ − TμMρ

aVρ

)
�μδab

(
Mν

aT
σVσ

− TνMσ
aVσ

)
�ν + 2TρVρTμ�μ ≈ 0. (77)

Further, using (74) in the second and third equation in (68)
we also find fermionic primary constraints

G−
α = p−

α + m

2
θ

β
−δβα + 1

4
(θ̄+γ a)α

×
(
Mμ

a − Tμ

TνVν

Mρ
aVρ

)
�μ ≈ 0,

G+
α = p+

α + 1

4
( ¯θ−γ a)α

(
Mμ

a − Tμ

TνVν

Mρ
aVρ

)
�μ

+1

4
(θ̄+γ 0)αTμ�μ ≈ 0. (78)

As the next step we should analyze the requirement of the
preservation of all constraints during the time evolution of
the system. It is a difficult task in the full generality due to
the complicated form of these constraints. For that reason
we restrict ourselves to the special case when some of the
background fields vanish

ψμ− = ψμ+ = ω cd
μ = ω a

μ = 0 (79)

when we have

M a
μ = e a

μ ,Vμ = τμ . (80)

Then all constraints simplify considerably

Hλ = (pμ + mmμ)hμν(pν + mmν)

+ 2mτμ(pμ + mmμ) ≈ 0,

G−
α = p−

α + m

2
θ

β
−δβα + 1

4
(θ̄+γ a)αe

μ
a(pμ + mmμ) ≈ 0,

G+
α = p+

α + 1

4
(θ̄−γ a)αe

μ
a(pμ + mmμ)

+1

4
(θ̄+γ 0)ατμ(pμ + mmμ) ≈ 0. (81)

Now we have to calculate Poisson brackets between all con-
straints. We start with the following one

{G−
α ,Hλ

} = 1

4
(θ̄+γ a)α((∂ρe

μ
a + ∂ρe

σ
a)h

ρσ − eρ
a∂ρh

μσ )

×(pμ + mmμ)(pσ + mmσ )

+m

2
(θ̄+γ a)α(∂ρe

μ
aτ

ρ−eρ
a∂ρτμ)(pμ+mmμ).

(82)

It is important to stress that the fact that we restrict to the
case ω ab

μ = ω a
μ = 0 implies, since they depend on spatial

derivatives of e a
μ , τμ, that we should impose the condition

that e a
μ ,mμ, τμ do not depend on xμ as well. Then the equa-

tion given above implies that
{G−

α ,Hλ

} = 0. In the same
way we find that

{G+
α ,Hλ

} = 0 (83)

and also{
G−

α ,G−
β

}
= mδαβ,

{
G+

α ,G+
β

}
= −1

2
δαβτμ(pμ + mmμ),

{
G−

α ,G+
β

}
= 1

2
(γ 0γ a)αβe

μ
a(pμ + mmμ). (84)

Finally we have to determine the time evolution of these con-
straints when we take into account that the total Hamiltonian
is the sum of all primary constraints

HT = λλHλ + λα−G−
α + λα+G+

α . (85)

Hλ is preserved automatically while the time evolution of
Gα−,Gα+ is governed by following equations

Ġ−
α = {G−

α , HT
} = λ

β
+

1

2
(γ 0γ a)βαe

μ
a(pμ + mmμ)

+mλ
β
−δβα = 0,

Ġ−
α = {G−

α , HT
} = 1

2
λ

β
−(γ 0γ a)αβe

μ
a(pμ + mmμ)

−1

2
λ

β
+δαβτμ(pμ + mmμ) = 0. (86)
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From the last equation we express λ
β
+ as

λ
β
+ = δβγ (γ 0γ a)γ δλ

δ−eμ
a(pμ + mmμ)

1

τμ(pμ + mmμ)

(87)

and inserting back to the first equation we obtain

Ġ−
α = ((pμ + mmμ)hμν(pν + mmν)

+ 2mτμ(pμ + mmμ))λ
β
−δβα = Hλλ

β
−δβα ≈ 0 (88)

and we see that this equation is obeyed for all λ
β
− on the con-

straint surface Hλ ≈ 0. This fact again implies an existence
of the first class constraint in the form

�α = G−
α τμ(pμ+mmμ)+G+

β δβγ (γ 0γ a)γαe
μ
a(pμ+mmμ)

(89)

that has following Poisson brackets with canonical variables

{
�α, xμ

} = −1

4
(θ̄+γ a)αe

μ
aτ

ν(pν + mmν)

+1

4
τμ(θ̄+γ b)αe

ν
b(pν + mmν)

−1

4
(θ−γ aγ b)αe

μ
ae

ν
b(pν + mmν),{

�α, θ
β
+
}

= (γ 0γ a)αωδωβeμ
a(pμ + mmμ),{

�α, θ
β
−
}

= δβ
α τμ(pμ + mmμ). (90)

Now we define κ variation as

δκ X = − 1

2mτμ(pμ + mmμ)
(κ̄γ a)αeμ

a(pμ+mmμ) {�α, X} .

(91)

Then with the help of (90) we obtain following transforma-
tion rules

δκθα+ = κα, δκθα− = −(κ̄γ a)αeμ
a(pμ + mmμ),

δκ x
μ = 1

8m
(κγ aγ bθ+)eν

a(pν + mmν)e
μ
b − 1

4
τμκθ+

−1

4
(κ̄γ aθ−)eμ

a (92)

that are covariant form of κ-transformations (54). To see
this explicitly note that in the flat non-relativistic space-
time we can choose τ 0 = 1, τ i = 0, eaμ = δai and the κ-
transformations given in (92) have explicit form

δκθα+ = κα, δκθα− = −
(
κ̄γ i

)α

(pi + mmi ),

δκ x
i = 1

8m

(
κγ jγ i

)
(p j + mm j )

−1

4

(
κ̄γ iθ−

)
, δκ t = −1

4
κθ+ (93)

that coincide with the transformations (54) which is a nice
consistency check.

In this section we performed Hamiltonian analysis of the
non-relativistic superparticle in Newton–Cartan background.
We derived general form of the Hamiltonian and fermionic
constraints. Then we studied their properties for special con-
figurations of background fields. It would be extremely inter-
esting to analyze this theory for general background. We
expect that the requirement of the existence of three first
class constraints, where one is Hamiltonian constraint while
remaining two constraints correspond to generators of κ-
symmetry, will impose some restriction on the background
fields. We hope to return to this analysis in near future.
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