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Abstract We investigate gluon correlation functions and
spectral functions at finite temperature in Landau gauge on
lattice QCD ensembles with Ny = 2 + 1 + 1 dynamical
twisted-mass quarks flavors, generated by the tmfT collabo-
ration. They cover a temperature range from 0.8 < 7/T¢ <
4 using the fixed-scale approach. Our study of spectral prop-
erties is based on a novel Bayesian approach for the extraction
of non-positive-definite spectral functions. For each binned
spatial momentum we take into account the gluon correla-
tion functions at all available discrete imaginary frequencies.
Clear indications for the existence of a well defined quasi-
particle peak are obtained. Due to arelatively small number of
imaginary frequencies available, we focus on the momentum
and temperature dependence of the position of this spectral
feature. The corresponding dispersion relation reveals differ-
ent in-medium masses for longitudinal and transversal glu-
ons at high temperatures, qualitatively consistent with weak
coupling expectations.

1 Introduction

Understanding the evolution of strongly interacting mat-
ter in a heavy-ion collision is one of the most demanding
tasks in current theoretical physics [1]. Not only do we need
to describe the real-time dynamics of matter in the high-
temperature phase of QCD, the quark—gluon plasma, but also
its transition to the low-temperature domain of hadrons seen
and measured in experiment. In particular around the chiral
cross-over transition, estimated on the lattice [2-5] to occur
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at T, = 155 £ 9 MeV, it is vital to uncover how the break-
ing of chiral symmetry and the onset of confinement proceed
and how they affect the relevant degrees of freedom in the
system.

Transport and thermal properties of strongly interacting
matter have been extracted from the correlation functions of
mesons, i.e. hadronic observables. For computations based
on lattice simulations see e.g. [6—13,60]. On the other hand
such real-time properties can also be accessed via the spectral
functions of the fundamental constituents of QCD, gluons
and quarks; see e.g. [14,19-25].

In the present study we focus on the gluonic sector. The
study of gluon correlation functions in gauge-fixed QCD has
garnered interest for quite some time, both with lattice simu-
lations and with functional approaches, for finite-temperature
results see e.g. [26-31] and [32-39], respectively. The extrac-
tion of the corresponding spectral functions is, however,
hampered by the fact that gauge-fixed gluon spectra con-
tain non-positive-definite contributions; see e.g. [40]. This
in turn defies standard approaches, based on Bayesian infer-
ence, such as the Maximum Entropy Method (MEM) [41].
In turn direct extensions [22,42], modifications of the prior
[20], as well as of the data part, such as the introduction
of shift functions [21], have been applied in the literature.
Over the last few years progress has been made in developing
new Bayesian approaches independent from the MEM [43],
which recently have also been generalized to non-positive-
definite spectra [14]. Some non-Bayesian approaches, such
as the Backus—Gilbert method [44] or the Sumudu trans-
formation [45] also allow for the treatment of spectra with
negative contributions.

Investigating the spectral properties of gluons serves sev-
eral complementary purposes; first and foremost it provides
a direct and intuitive handle on phenomena, such as the gen-
eration of a mass gap in the context of confinement [40,46]
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as well as the emergence of thermal masses related to Debye
screening.

Secondly gluon spectral functions play a vital role in the
self-consistent computation of transport coefficients in func-
tional approaches to QCD [19,21], such as the functional
renormalization group or Dyson—Schwinger approaches. If
the gluon spectral function is known, it may serve as input
to a closed set of real-time evolution equations for quark
and gluon degrees of freedom, from which relevant quanti-
ties, such as energy-momentum correlation functions may be
computed. Thus, in turn, transport properties become acces-
sible.

From a practical point of view, we are also interested in
using lattice gluon spectral functions to validate phenomeno-
logical models used in the description of heavy-ion col-
lisions. Some of these rely on a quasi-particle picture for
the fundamental constituents of strongly interacting matter,
which at high temperature is matched to resummed pertur-
bative predictions from hard-thermal loops. One example in
this regard is the parton—hadron string dynamics model [47—
49]. Elucidating the non-perturbative behavior of the gluon
spectral function may therefore lead to more refined approxi-
mations and a better understanding of the validity of currently
used model assumptions.

Single particle properties in QCD are conceptually more
difficult to capture than those of e.g. mesons. Quarks and
gluons represent color charged fields and thus their corre-
lation functions are not gauge invariant. Hence gauge fix-
ing becomes necessary and one has to carefully understand
which of the observed properties is truly physical and which
depends on the choice of gauge. Dismissing altogether the
study of gauge dependent correlators, however, is a too nar-
row point of view, as they may still contain gauge indepen-
dent information. One example is the extraction of the heavy-
quark potential from Wilson-line correlators in Coulomb
gauge [50-52]. In that case the gauge independent spectral
feature encoding the potential is embedded in a gauge depen-
dent background, which may be cleanly separated.

In this first study of gluon properties in thermal lattice
QCD with Ny = 2 + 1+ 1 dynamical twisted-mass flavors,
we use the conventional choice of Landau gauge 9" A}, =
0, which is manifestly Lorentz invariant and retains global
SU(N,) gauge symmetry. In the following the computations
are carried out in the Euclidean domain, where time has been
Wick-rotated to T = it. The gluon correlator is defined from
the Fourier transformed gauge fields Z/‘i (9)

Dit@) = (A @ A=) (M

In the presence of a thermal bath, Lorentz invariance and
hence Euclidean rotational invariance is broken and one may
split the correlator into a transversal D7 (“‘chromomagnetic’™)
and a longitudinal D, (“‘chromoelectric’”) component
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Db (q) =" (P, Dr(a}.a> + PLDLGE 49) . ()

For the particular choice of Landau gauge the projectors PMT ‘;L
are aligned transversally or longitudinally with the imaginary
frequency (i = 4) direction:

Pl = (1= 8,)(1 = 8,4) <a,w - qgi“) , 3)

Pk, = <5W - q;g“) ~ Pl @)

The explicit expressions for the propagators D7 ; read

3 2
Dr(q) = oW, <¥ Uq)AY(—q) — L A%(q) A4 (— q)>
)
and
1 qé% ~ ~
DL@) = 3~ H? (AS(@ A4 (—q)). ©6)
8

with Ny = NC2 — 1 and N, = 3. This fixes also the dressing
functions Zr 1(q) = q2Dr, 1(g), which are often consid-
ered in functional computations. If we wish to evaluate the

Zero four-momentum correlator, we have to consider how to
handle the ratios 2%, in particular since at 7 > 0 the limits
g4 — Oand |g| — 0 do not commute. Here we choose to let

go qa4 — 0 first, as it provides access to the screening masses

1 3
Dr(0) = > (A 0)A7 (). )
g i=1
1
DL(0) = -~ (A5 A5(0)). ®)
8

Note that the factor 1/3 instead of 1/2 is related to the differ-
ence in the trace over the projectors for finite and vanishing
q4.

We may relate the gluon correlators in imaginary frequen-
cies g4 to their spectral function via the Killen-Lehmann
representation

o
Dr,1(q4,q) = / or,L (@, Q)dw

o0 Q4 —

[ 2o s ©)
= — 5 PT.L(W, q)dw,
0 g3+ a?

with the spectral function being antisymmetric around the
real-time frequencies origin p(—w) = —p(w). From the per-
turbative study of gluon spectral functions in Landau gauge
at T = 0 it has been deduced (see [40,46] for the explicit
computations) that the following zero-area sum rule holds:

o
/ wpr,L (@, q)dw = 0. (10)
0
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Since its derivation relies only on the asymptotics of the spec-
trum at large momenta, it applies also at finite temperature
and clearly spells out that positivity violation of the spec-
trum is a manifest property. Equation (10) has been used and
checked in continuum computations in many instances in the
literature; see e.g. [19,21,23,40]. On the other hand, since
the derivation of Eq. (10) requires access to asymptotically
large momenta, it can only hold approximately on the lattice.
The sum rule emerges in the continuum limit, which can be
demonstrated formally by inserting the lattice UV cutoff as
upper limit in the superconvergence relation in e.g. Ref. [46].

Inverting Eq. (9) using the simulated lattice correlator
data, in order to obtain the spectral functions, represents a
well known ill-posed problem, which we will attack via the
use of Bayesian inference as laid out in detail in the next
section.

2 Numerical methods
2.1 Lattice simulations and gauge fixing

The present study works with lattices that feature four
dynamical quark flavors, u, d, s and c. They represent a
subset of configurations, which were generated by the tmfT
collaboration originally for the study of QCD thermodynam-
ics [53] in the presence of a heavy doublet of quarks (third
and fourth quark species). The dynamical quarks are imple-
mented using so-called twisted-mass actions, which take the
following form for the light sector:

SYLU, x X = Y X1 () [8x .y — € Dyw (x, IU]
Xy

+2ikapysdy yt3lxi(y), (11)
and the heavy sector
SHU, X Xnl = D Xn([8x.y — € Dw (x, y)[U]
X,y
+2ikapeyséx,yT1 + 2kamsdy y T3l xn (),
(12)

respectively, where the t; are the Pauli matrices in doublet
(flavor) space. The term Dw[U] denotes the standard gradi-
ent term for Wilson fermions

1
DwlU1 = 5-1u(Vu + V) = V. V]

and k; = (2amo; + 8r)~! represents the usual hopping term
withr = 1.

The gauge field degrees of freedom are governed—apart
from the fermion backreaction—by an improved Iwasaki
action

1
S,lU1 =B <c0 > [1 — gsmTr(Up)}
P

+c Z [1 — %%eTr (UR)])
R

with (¢ = 3.648 and ¢; = —0.331), where the sum (P)
contains all plaquettes and the sum (R) all planar rectangles.

The light doublet x; = (x4, xq) in the twisted basis is
related by a chiral rotation to the doublet ¥P»S = (v, ¥4)
in the physical basis

13)

l/jlphys — forsT/2y, %)hys = 35T/
with the twisting angle ;. Twisted-mass light fermions are
taken at maximal twist, if the bare untwisted mass mq is
tuned to its critical value mcic. When |mo; — meric| — 0,
the twisting angle w; — % (maximal twist). This fixes the
twisted basis.

A similar rotation

phys j 2 phys — 2
vy — ol@nYsT3/ Xn vy = Xhetwhysm/

relates the two bases in the heavy sector. k, = (2amo,, +
8r)~! (with r = 1) is the hopping parameter for heavy
quarks. Again, @, — 5 if [mo,n — merie| — 0.

An economic procedure dealing with the Ny =2 + 1 +
1 case consists in the choice amy % —4
with a common hopping parameter. Tuning to maximal twist
means tuning k = kcrit(B). The critical x corresponds to
the vanishing of the PCAC light-quark mass mpcac and is
determined as a function of 8 at zero temperature [54].

The bare light-quark (u;) twisted-mass parameter (in the
first doublet) and the two bare heavy-quark twisted-mass
parameters (. and s (in the second doublet) also need to
be tuned (as functions of g) at zero temperature to stay on a
line of constant physics, defined by the “pion mass” and by
matching masses of hadrons containing strange and charm
quarks. For light hadrons this has been performed for the first
time for 8 = 1.90 and B = 1.95 in Ref. [54].

The bare twisted-mass parameters u, and (g are related
to the renormalized strange and charm quark masses,

= amo’h =

Zp
Zs

= 7! (ug + %Ma) ,
with the renormalization constants Zp and Zg of the pseu-
doscalar and scalar quark densities.
For a more detailed description of the simulation setup see
Refs. [54,55].
The tmfT collaboration has adopted three parameter sets
for their finite-temperature studies from the zero-temperature

ensembles used by the ETMC collaboration (under the names
A60.24, B55.32 and D45.32 defined in Ref. [55]). In Ref.

(ms)g = Zp" (uo - Ma) (me)r

@ Springer
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Table 1 Properties of the three sets of finite-temperature ensembles
used in our study, among them the deconfinement cross-over tempera-
ture Tgecont (defined by the Polyakov loop susceptibility)

ETMC ens. (T =0) A60.24 B55.32 D45.32
tmfT ens. (T # 0) A370 B370 D370

B 1.90 1.95 2.10

a [fm] 0.0936 0.0823 0.0646

my [MeV] 364(15) 372(17) 369(15)
Tdecont [MeV] 202(3)(0) 201(6)(0) 193(13)(2)
N = Ny, range 4-14 10-14 4-20

[56] these ensembles have been calibrated with the help of
the baryon spectrum, and we adopt these results for the lattice
spacing. The set of B values is fixed (according to the fixed-
scale approach) and has been extended to include g = 1.90
(A), =195B)and g = 2.10 (D). Forexample, the T = 0
nomenclature “A60.24” indicates, besides the 8 value, a lat-
tice size 243 x 48 for zero temperature and a light twisted-
mass parameter ap; = 0.0060. The corresponding physi-
cal lattice spacings and pion masses m =, together with the
resulting deconfinement cross-over temperatures are listed in
Table 1. The tmfT nomenclature refers to (apart from the g
value) to the approximate pion mass only. The temperature
is varied by changing N;.

To compute the gluon correlation functions (5) and (6),
each generated configuration needs to be fixed to Landau
gauge. This corresponds to the following discretized local
condition:

4
VA=Y (Auc+ /2 = Au(x — 1/2)) =0 (14)
n=1

on the gauge fields defined from the link variables as

R 1
Ap,(x +u/2) = Z—(pr, -

iago U;M) |traceless . (15)

This condition may be fulfilled by iteratively applying
local gauge transformations g,

Ui ¥ U8, = 81U u8eins 82 € SUQ), (16)

in order to maximize the functional

Fulgl = 3 29 Tr (g1 Unugern). a7
RSy

We consider a configuration to have reached a (local)
extremum if the global deviation is less than

max Re Tr[V, A, V, AL ] < 1075, (18)
X

@ Springer

This procedure has been carried out by means of the cuLGT
library [57], which we have adapted for the use with lattice
configurations in the ILDG format.

Subsequently we transform the gauge fields (15) into
Fourier space, where the lattice momenta are defined as

ny, € (=Ny/2, N,/2]. (19)

They are related to physical momenta via

ﬂ) . (20)

2 .
= — S1n
qu(ng) P (Np,

2.2 Bayesian spectral reconstruction

The extraction of gluon spectral functions from simulated
correlation functions poses an inherently ill-defined problem.
Our task is to select a unique continuous function to repro-
duce a finite and noisy set of datapoints. In order to be able to
resolve the anticipated peaked features in the spectrum one
discretizes it along real-time frequencies w with O (1000)
bins, while as shown in Table 1 the number of available cor-
relator points ranges over N,, € [4...20]. Hence inverting
a discretized Eq. (9)

N,

D! = Z Aw Kiipy,
=1

i €[0,Nyl, No>Ng o (2D

via a naive y? fit of the p; parameters would yield an infinite
number of degenerate solutions.

In the present case of gluon spectra the severity of the
ill-posedness of the inverse problem is worsened by the non-
positivity of the gluon spectrum. Note that even if the sum
rule (10) is implemented in the reconstruction this additional
difficulty is not cured. A formal analysis of this issue is cur-
rently work in progress [59].

Just as in the positive-definite case, Bayes theorem can
provide us with a viable strategy to regularize the otherwise
ill-defined problem. It states that the probability of a test spec-
tral function p to be the correct spectrum, given measured
data and further, so-called prior information (/) is propor-
tional to the product of two terms

Plp|D, 1] o< P[D|p, I1P[p|I]. (22)

This expression follows from the multiplication theorem of
conditional probabilities and formally allows prior informa-
tion / to influence both terms on the right hand side. The
first P[D|p, I] = exp[— L] refers to the likelihood probabil-
ity, which in our case is related to the x? fitting functional.
The likelihood L measures the quadratic distance between
the correlator points corresponding to the test function p and
the simulated data D;
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Ng,

1
_ . Pyl . p
L= 2i§j l(Dl D!)C;;'(D; - DY), (23)

where C;; refers to the usual covariance matrix of the sim-
ulated D;’s. Prior information enters implicitly, as we will
only accept spectra for which L = N,,, which corresponds
to our prior knowledge that the correct spectrum, sampled
randomly with Gaussian noise, would on average lead to
such a value of the likelihood. Note that L by itself pos-
sesses N, — Ny, flat directions, which in the Bayesian
approach are regularized by introducing the prior probability
Plp|I] = explaS(w)].

This second term encodes further information we possess
about the spectrum, beyond the simulation data, which may
take the form of a smoothness condition, a sum rule or in
the case of hadronic spectra refer to positive-definiteness.
Prior information enters in two ways: on the one hand the
functional form of § itself encodes part of that informa-
tion, on the other hand S[m] conventionally depends on
a function m(w) called the default model. By definition
m corresponds to the correct spectrum in the absence of
data, i.e. it represents the unique extremum of S. Since
Eq. (10) may not be exact at finite lattice spacing we refrain
from strictly enforcing the sum rule in the following. As
we, however, expect that the area under the spectrum will
be close to zero and wish to use an otherwise unbiased
default model we choose the function m(w) to vanish iden-
tically.

Since for gluon spectra we may not assume positive-
definiteness, standard regulators, such as those of the MEM
Ssy [41] or the standard BR method [43]

Spr = /dw (1 C R [MD (24)
m(w) m(w)

are not applicable. While the Shannon Jaynes entropy of
the MEM has been generalized to treat non-positive-definite
spectra [42], which approach requires us to a priori choose a
decomposition of the spectrum in positive and negative com-
ponents. Since the information of where the spectrum starts to
become negative is among those we wish to learn from such
a reconstruction, we refrain from following this strategy. On
the other hand other regulators, such as quadratic ones have
been proposed [20]. Unfortunately we have found in previous
studies that these very strongly pull the final result towards
the default model, especially if only a relatively small num-
ber of correlator points are available. This may not allow the
information encoded in the simulation data to manifest itself
in a satisfactory manner.

Instead we will deploy here a recently developed regulator
SﬁR [14], which shares many of the advantageous analytic
properties of that used in the standard BR method

. 1p(@) — m()|
S&, = / da)( S T (25)
+log [W 4 1]) . (26)

Since now p and m can both take on the value zero, one uses
a different measure for deviation between the default model
and the spectrum r; = |p; — m;|/ h;. The function h;, absent
in the standard BR regulator, corresponds to an additional
default-model-like function, which encodes the confidence
we have in m;. SgR does not require us to choose a decom-
position a priori, since the role of m(w) is unchanged. Fur-
thermore it imprints the form of the default model relatively
weakly onto the end results, as its curvature in the region
where p differs significantly from m is smaller than in the
Ss or the quadratic prior (as discussed in [14]).

Both the choice of m and of & contribute to the systematic
uncertainties of the reconstructed spectrum. Thus their values
need to be varied to ascertain, which parts of the spectrum are
fixed predominantly by the correlator data. Note also that a
hyper-parameter « has been introduced in the definition of the
prior probability, taking into account that we may weight the
influence of data and prior information independently from
each other. The analytic form of SI%R allows us to integrate
« out in a straight-forward fashion, assuming full ignorance
about its values Pla] =1

P[p|D,I,m]ocP[D|,o,I]f daPlplm,alPla]. (27)
0

Once m(w) and h(w) are specified we have to carry out a
numerical search for the most probable Bayesian spectrum
according to

§P[p|D, 1]

—0, 28
5 (28)

p:pBayes

which, as laid out above, consists of a competition between
reproducing the simulation data and conforming to prior
information. Even though we do not restrict the space of
basis functions for this search, i.e. the optimization is per-
formedin N, > N, degrees of freedom, we have confirmed
that different starting points lead to the same extremum. The
underlying reason is that S§R fulfills the conditions required
in the proof of uniqueness of the Bayesian solution given
in [41].

For the reconstructions to be presented in Sect. 4 we
deploy the generalized BR method on a frequency grid w €
[1073, 100] GeV divided in N,, = 2000 bins. To ensure that
the convolution in (9) evaluated over such a relatively large
frequency interval does not suffer from numerical precision
losses, the computations are carried out using 512 bit arith-
metic. In order to further improve the stability of the numer-
ical optimization task, we deploy the following prescrip-
tion for the kernel: K (g4, ®) = 2ArcTan(w)w/ (qf + w?).

@ Springer
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This means that instead of p itself, we reconstruct the func-
tion p (w)/ArcTan(w). To plot and investigate the spectra we
then divide out the arctan term. This rewriting of Eq. (9)
enforces that the spectrum p(w) vanishes at w = 0. In addi-
tion by using the lattice momenta g4 in the kernel we take
into account that the UV region of the Matsubara frequencies
on the lattice is affected by the finite lattice spacing, making
the reconstruction algorithm converge more quickly.

Since the zero-area sum rule Eq. (10) is derived from the
RG running at asymptotically large frequencies not present
on a lattice, it is only estabilished in the continuum limit.
Thus we here refrain from using it to further constrain the
reconstruction. As the sum rule emerges in the continuum
limit, we, however, set our initial default model m (w) to zero,
while the confidence function A (w) is set to unity.

The robustness and reliability of the spectral reconstruc-
tion is ascertained in the following way. There exist two
intertwined sources of uncertainty in our approach: on the
one hand statistical uncertainty arises from the finite pre-
cision inherent in our lattice simulation correlators. On the
other hand, due to the fact that only a finite number of data-
points are available, we incur a systematic uncertainty from
the necessity to choose the default-model functions m () and
h(w). How strongly the end result suffers from either sta-
tistical or systematic uncertainty can be explicitly checked
by performing a Jackknife reweighting, where the spectral
reconstruction is performed multiple times on a subset of the
available simulation data for the former or by varying the
values of the default models for the latter.

In Sect. 4 we will deploy a ten-bin Jackknife. It shows
that the available signal to noise ratio in the lattice correla-
tors is sufficiently high for statistical uncertainty to play only
aminor role. Instead, as is probed by varying the value of the
constant default model between m = {—2, 0, 2} and varying
the confidence function 7 = {1, 2}, we find that systematic
uncertainty dominates the error budget which will be pre-
sented in the sections below as transparent error-bands on
the reconstructed spectra. Changing the default model by an
absolute value of two might at first appear as a rather small
change, but due to the relatively large range of frequencies up
to wmax = 100 GeV it represent a significant change in the
area covered by the function. It is the area under the default
model to which the final reconstruction result is susceptible,
so that if reconstructed features remain unchanged even after
changing the default-model area significantly, we can con-
sider them as robustly encoded in the underlying correlator
data.

We note that Bayesian approaches, such as our BR method
or the Maximum Entropy Method, provide for an additional
measure of robustness. This measure relies on the assump-
tion of a highly peaked posterior and the further assumption
that the posterior can be approximated by a Gaussian (see
e.g. [41]). Then the integrated curvature of the minimization

@ Springer

functional
QOlp, m, h] =L0g[1’[D|/0,1]/O daPlplm, a]] (29)

may serve as a measure of reliability

(8p2)) ~ — / dode’ (620 /8p%) ! / / doda'. (30)
1 1

In essence it describes how shallow the global extremum is,
which defines the most probable Bayesian spectrum. In prac-
tice we have found that it often underestimates the uncertainty
of the reconstruction when compared to the explicit variation
of the default model and the Jackknife analysis. Since we are
able to perform both Jackknifing and a variation of default
models we therefore refrain from using the curvature crite-
rion.

3 Correlation functions

This section is devoted to a presentation and discussion of
the computed gluon correlation functions in Landau gauge
on Ny = 2+ 1+ 1 tmfT lattices. All figures below that
show correlator data include statistical error estimates. Since
the statistics of the tmfT ensembles is relatively high and the
gluon propagator in imaginary frequencies does not show an
exponential falloff, its signal to noise ratio is good enough so
that our errorbars are mostly smaller than the point size used
for plotting.

At first sight the availability of several different lattice
spacings based on the three 7 = 0 ETMC ensembles invites
the attempt of a continuum extrapolation. The main purpose
of the T > 0 ensembles was the study of thermal bulk quan-
tities, such as the equation of state and a fixed-scale approach
that had been adapted, the present ensembles, however, do not
resolve the same temperatures with different lattice spacings.
This in turn requires an additional intermediate interpolation
in temperature and momenta for extrapolating the correla-
tors. We have tested its viability and found it to be insuffi-
cient, since the underlying temperature grid is too coarse.
Thus in the following we will concentrate mainly on the
D370 ensemble (Table 2), which is both closest to the con-
tinuum and spans the broadest temperature range. Selected
results from the other ensembles at different 8 values will be
considered where it provides additional qualitative insight
(Table 1).

We will connect to the current literature by carrying out
Gribov-Stingl fits to the momentum space correlators and
comparing with published results in both quenched QCD, as
well as with more recent Ny = 2 dynamical QCD simula-
tions. For future reference we also provide a visualization of
the zero Matsubara frequency correlators D (0, |q|%), which
in the literature have been used to benchmark functional com-
putations in both Yang-Mills and Ny = 2 QCD.
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Table 2 Grid sizes and temperatures in the D370 ensembles used for the computation of the correlation functions below. Npeys refers to the number

of available correlator measurements

D370 N 4 6 8 10 11 12 14 16 18 20

T MeV 762 508 381 305 277 254 218 191 170 152
Ny 32 32 32 32 32 32 32 32 40 48
Nmeas 310 400 120 410 420 380 790 610 590 280

In preparation of the reconstruction of spectral functions
via Bayesian inference we will consider the correlators at a
fixed spatial momentum D(q4, |q|) along the different avail-
able imaginary frequencies g4 on the lattice. In the contin-
uum, the finite extent of the Euclidean time axis leads to
equidistantly spaced Matsubara frequencies w, = 27 Tn, at
which the imaginary frequency correlator is routinely eval-
uated. In the presence of a finite lattice spacing the discrete
Fourier transform connecting Euclidean times and imaginary
frequencies leads to a artifacts close to the edge of the Bril-
louin zone, so that the physical momenta g4 are not any longer
spaced at the same distance. As we carry out the reconstruc-
tion using the kernel based on g4 we also plot the correlators
in these physical imaginary frequencies. Since temperature
scans are carried out using a fixed-scale prescription, the
maximum available imaginary frequency remains constant
and it is the spacing between values of g4 that grows with
increasing T .

3.1 Zero-Matsubara frequency correlators

Let us start with an inspection of the raw correlator data
obtained from the lattice, evaluated at vanishing Matsub-
ara frequencies. It has been found that both longitudinal and
transversal correlators may be described at low and interme-
diate momenta with a simple formula [15,27,29], attributed
to Gribov [16] and Stingl [17]. It reads

c(1+dq>")

where in the following the parameter n is set to unity, corre-
sponding to the ’quasi-particle’ scenario, as detailed below.
The asymptotic behavior of the correlators for large momenta
is known perturbatively and exhibits powers of logarithms
[40,46], which we here neglect. In turn this simple descrip-
tion is expected to fail eventually as we move to higher
momenta.

The individual parameters inform us about vital aspects
of the physics encoded in the correlator. Most easily this is
seen for b = 0 and d = 0, where the form is equivalent
to D?/ST (q) = (q2fr—1r2)2’ which encodes a pair of complex-
conjugate poles that may be associated with a stable quasi-
particle. The dynamically generated mass of such an exci-
tation is then related to the value of the parameter m = r.

D$3(q) = 31)

The presence of the parameter b # 0, the so-called Gribov—
Zwanziger term, introduces a modification to the pole struc-
ture, i.e. destabilizing the quasi-particle, while thed # 0 term
introduces the possibility for a genuine zero of the analyti-
cally continued propagator when the two terms in the numer-
ator cancel. Since here we deploy a fixed-scale approach,
the renormalization of the correlators remains unchanged
between different temperatures. Otherwise, since the corre-
lator renormalizes multiplicatively, the factor ¢ would expe-
rience direct contributions from changes in scale.

To determine the parameter values of Eq. (31) we fit
the unrenormalized longitudinal and transversal correlators
Dr;7(0,|q|) on the D370 ensembles in the range above
lg] ~ 0.6 GeV up to 6 GeV. Except for the highest in the lon-
gitudinal and the two highest temperatures in the transversal
sector, the fits show a clear preference for a vanishing b = 0.
The resulting best fit values are listed in Table 3, the data
and corresponding fit functions are plotted in Fig. 1. With
consistent x2/d.o. f. values smaller than unity we find that
the Gribov—Stingl form works well in the momentum regime
considered here. The fit continues to describe the longitudinal
data well even up to |g| ~ 10 GeV, while it seems to deviate
from the transversal correlator sizably above |g| ~ 8 GeV.
One possible reason may be an earlier emergence of the log-
arithmic corrections to the rational form in the transversal
sector.

Already by eye significant differences in the temperature
dependence of the infrared behavior of the longitudinal and
transversal correlator are visible in Fig. 1. The former shows
a much stronger change to smaller values with increasing
T compared to the latter, manifest also in the fitted r2 and
¢ values. Since the g4 = 0 correlator at vanishing spatial
momentum (in that order of limits) provides insight on the
inverse screening mass of the theory, screening in the longi-
tudinal (electric) sector, as expected, is more efficient than in
the transversal (magnetic) sector. We will come back to the
determination of the quasi-particle masses in the context of
Bayesian spectral reconstructions in the following sections.

Let us compare the fit values found here with those
obtained in previous studies using either Szymanzik
improved quenched QCD [29], or full QCD [27], with Ny =
2 twisted-mass flavors of light fermions (B12 dataset with
my = 398 MeV) in Fig. 2. We note that the lattice study
of Yang—Mills theory was also carried out in a fixed-scale
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Table 3 Best fit parameters and their uncertainty for the Gribov—Stingl fits, applied to the longitudinal (top five rows) and the transversal (bottom

five rows) correlator at § = 2.10

Stingl fits 7/ T¢ 3.95 2.63 1.98 1.58 1.44 1.32 1.13 0.99 0.88 0.79
Dy - d/a2 0.25(2) 0.30(2) 0.48(3) 0.68(4) 0.75(5) 0.82(6) 0.92(6) 0.96(7) 1.25(10) 1.36(9)
Dy —r2a?® 0.87(19) 0.60(9) 0.34(4) 0.23(3) 0.20(2) 0.17(2) 0.14(2) 0.12(2) 0.096(10) 0.086(7)
Dy - c/a2 1132 (82) 946(47) 642(28) 478(26) 436(24) 408(25) 366(22) 349(22) 281(18) 262(15)
Dy — ba? 0.88(2) 0 0 0 0 0 0 0 0
Dy - Xz/d.o.f. 0.78 0.74 0.75 0.83 0.85 0.84 0.86 0.86 0.90 0.91
Dr - d/a2 0.28(1) 0.35(2) 0.52(3) 0.68(5) 0.75(6) 0.80(8) 0.87(8) 0.91(9) 0.99(4) 0.85(7)
Dr - r2a® 0.21(2) 0.26(2) 0.19(2) 0.15(2) 0.13(2) 0.12(2) 0.11(2) 0.11(2) 0.11(3) 0.12(1)
Dr — c/a2 806(20) 698(23) 523(27) 427(26) 394(29) 374(27) 348(27) 336(30) 324(9) 357(23)
Dr — ba? 0.411(4) 0.12(2) 0 0 0 0 0 0 0
Dr — xz/d.o.f. 0.80 0.84 0.84 0.87 0.89 0.88 0.88 0.90 0.89 0.88
500 500y
" Longitudinal 8=2.10 Transversal $=2.10
Stingl Fits % Stingl Fits
§
50| T=0.152 - 0.762 GeV 50} o} T=0.152 - 0.762 GeV
Ry Ry ‘
& &
=) (=)
s s 7
S S
0.5} 0.5}
0 2 4 6 8 10 0 2 4 6 8 10

9] [GeV]

9] [GeV]

Fig. 1 The longitudinal (left) and transversal (right) gluon correlators at = 2.10 evaluated at vanishing imaginary frequency g4 = 0 but finite
spatial momenta |q| for different temperatures 7 = 152 ...762 MeV. The gray solid lines correspond to the results of the Gribov—Sting] fits
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Fig. 2 Comparison of the Stingl-fit parameters c/a?(top points), d /a>
(middle points) and r2a? (bottom points) obtained from quenched QCD
(gray shades), from Ny = 2 full QCD (light blue shades) and our
Ny =2+ 1+ 1 full QCD (red, yellow, green). Note that the results
from quenched QCD and N = 2+ 1 + 1 show qualitatively consistent
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behavior, while the short temperature range spanned by the Ny = 2
study at first sight shows opposite behavior. This difference is related
to the fact that the former two are carried out in a fixed-scale approach,
while the latter are carried out in a fixed box approach
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approach, while for Ny = 2 the temperature was changed by
varying the lattice spacing. Since all Gribov—Stingl fits were
performed on the unrenormalized correlators, we may expect
that similar trends only emerge within the same approach.
And indeed, what we find is that the results from quenched
QCD and our Ny = 2 + 1 + 1 lattices show a consis-
tent behavior. In the high-temperature phase d/a* decreases,
while r2a? and ¢/a? increase monotonously. While not plot-
ted as additional dataset, the behavior of the mass parameter
r is also consistent with the results obtained from quenched
QCD in [18].

The genuine phase transition present in SU(3) man-
ifests itself in a change of behavior in all longitudinal
fit parameters around T = T¢, while for Ny = 2 +
1 4+ 1 the cross-over does not appear to induce a sim-
ilar feature. On the other hand our Ny = 2 + 1 +
1 data stops shortly below the deconfinement cross-over
transition temperature and we may just not be able to
observe a similar change in the parameter behavior with-
out extending the ensembles to smaller temperatures. The
transversal sector shows less variation in the parameters,
as expected from a naive inspection by eye of the cor-
relators themselves. Neither the quenched data, nor our
Ny = 2+ 1+ 1 data shows significant changes around
T =T¢c.

For completeness we have also included the fit results
from a study based on Ny = 2 full QCD in Fig. 2 with
light blue shades. That study spanned only a small region
of temperatures around the phase transition and is based
on a fixed box approach. Their fits to the unrenormalized
correlators yield a very different behavior, essentially show-
ing opposite trends to those observed in both quenched and
our Ny = 2+ 1+ 1 study. The multiplicative renormal-
ization of the correlator itself will affect the constant c,
as a renormalization of the mass can affect r. A reanaly-
sis of the temperature dependence using Ny = 2 data and
appropriately renormalized correlators may thus be illumi-
nating.

As last item in this subsection we plot for completeness
in Fig. 3 the full spatial momentum dependence of the longi-
tudinal and transversal correlators at the different available
values of 8 = 2.10, 1.95, 1.90 (top, middle, bottom, respec-
tively). They illustrate the approach of the correlators to their
T = 0 behavior at large momenta such that for Iql> > T2
they take on the same values and at the highest momenta
shown are virtually indistinguishable.

3.2 Finite-Matsubara frequency correlators

We continue with an inspection of the finite Matsubara fre-
quency correlators, several representative ones we have plot-
ted in the panels of Fig. 4. The top row contains the longitudi-
nal correlators, while the bottom row those of the transversal

sector. In each panel there are N;/2 curves corresponding
to the resolved imaginary frequencies on the corresponding
lattices vs. spatial momentum. A clear ordering in imaginary
frequencies is present at all temperatures, with the values
at higher g4 being smaller than those at lower imaginary
frequencies. Only at g4 = 0 is the value at |g] — 0 well
defined, which is why only the top most data include this
point.

More important for us, however, is the temperature depen-
dence of the correlators along imaginary frequencies, as
exhibited at fixed spatial momentum, since it is from these
datapoints that we will eventually reconstruct the gluon spec-
tral functions. In Fig. 5 these correlators are shown, with the
top row containing the longitudinal ones and the bottom row
containing the transversal ones. The left column houses the
data for relatively small spatial momenta g ~ 0.6 GeV, while
the right column contains those for ¢ ~ 1.5 GeV. The tem-
perature range spans from 7 = 0.152 GeV (dark purple) to
T = 0.762 GeV (red).

The first observation to be made is that indeed at van-
ishing Matsubara frequency both longitudinal and transver-
sal correlators show clear distinguishable values at different
temperatures. For the former the g4 = 0 values are strictly
ordered by temperature, decreasing in value as 7 increases,
while for the latter the values first seem to rise below T¢
and then decrease above T¢. As expected from our previ-
ous inspection of the g4 = 0 correlators, temperature effects
in the transverse sector are milder than in the longitudinal
sector.

While not surprising, it is important to note that, for finite
imaginary frequencies, in particular above the first Matsub-
ara frequency w1 = 2z T, the datapoints all but collapse
onto a single curve, which represents essentially 7 = 0
physics. This phenomenon is even more pronounced at higher
momenta, where temperature effects are naturally suppressed
by the momentum scale. In anticipation of the extraction of
gluon spectral functions this is a stark reminder of the diffi-
culties involved. In essence we will attempt to extract from
two or maximally three datapoints, which are temperature
sensitive, the full in-medium modification of the gluon spec-
trum, a challenging proposition. To succeed, it then becomes
necessary to determine the minute changes in the datapoints
at higher g4 with very good precision. On the other hand a
significant improvement of the spectral reconstruction would
result if the regime between the zeroth and first Matsubara
frequency, where most of the temperature effects are hidden,
could be resolved (first attempts in this direction have been
reported in [58]).

At T = 0 the conceptual restriction of a finite spacing
of imaginary frequencies is non-existent and they may be
as finely resolved as computationally feasible. In addition at
T = 0 the Euclidean correlation functions naturally exhibit
an O(4) symmetry, which may be used to obtain the cor-

@ Springer



127 Page 10 of 21

Eur. Phys. J. C (2018) 78:127

500

Longitudinal 8=2.10
T=0.152 - 0.762 GeV

D.(0,5| %)

0 20 40 60 80 100

19| *[GeV?]
500

Longitudinal =1.95
T=0.171- 0.239 GeV

D,(0,|9 | 2)/a?

0 20 40 60 80 100

19| %[GeV?]

5001
Longitudinal 8=1.90

T=0.150 - 0.526 GeV

50

D.(0,|g| %) &

0.5

0 20 40 60 80 100
15| [GeV?]

500¢

Transversal =2.10

T=0.152 - 0.762 GeV

D7(0,|9 | %)/&

0 20 40 60 80 100
13 %(GeV?]
500

Transversal =1.95

T=0.171- 0.239 GeV
50

0.5¢
0 20 40 60 80 100
9 | *[GeV?]
500y
Transversal $=1.90
T=0.150 - 0.526 GeV
50
(oY
R
o
1<
s 9
~
Q
0.5t
0 20 40 60 80 100

3] %[GeV?]

Fig. 3 For completeness we show here the longitudinal (left) and transversal (right) gluon correlators at 8 = 2.10 (top), = 1.95 (middle) and
B = 1.90 (bottom) evaluated at vanishing imaginary frequency g4 = 0 but finite spatial momenta |q|? for different temperatures

relator values at finite imaginary frequencies by evaluating
the correlator at zero imaginary frequencies, while appro-
priately shifting the finite spatial momentum D(q4, |q|) ~

D(, ./ qf + |q|?). At finite temperature compactified imag-
inary time starts to play a special role and O(4) invariance
is not exact anymore. It may nevertheless provide a useful
approximation and using spline interpolations along spatial
momenta it has been verified in continuum computations.

@ Springer

The O(4) scaling assumption there applies with less than
10% error up to the first Matsubara frequency and with even
less error at the higher frequencies. In turn one may also
attempt to access the regime between the zeroth and first
Matsubara frequency, which promises improvements in the
spectral reconstruction. This experience in the continuum has
subsequently motivated the use of the O(4) ansatz in lattice
studies; see e.g. [20].



Eur. Phys. J. C (2018) 78:127

Page 11 of 21 127

500,
[ ]
L3 Longitudinal g=2.10
% T=0.152GeV
501 \ q4=0- 6.10GeV

%
=
g 5
3

0.5}

0 2 4 6 8 10
191 [GeV]
500,

Transversal $=2.10
T=0.152GeV
g4=0-6.10GeV

Dr(qa.|Gl)a

0 2 4 6 8 10
9] [GeV]

Fig. 4 The longitudinal (top row) and transversal (bottom row) gluon
propagators at B = 2.10 evaluated at both finite imaginary frequency
g4 and spatial momentum |q|. We show the |q| dependence at fixed g4

3.3 The O (4) scaling ansatz on the lattice

On the lattice the O(4) symmetry is already broken by the
finite lattice spacing and the finite box. Therefore we set out
here to investigate the validity of the O(4) scaling assump-
tion for the longitudinal (top row) and transversal (bottom
row) correlator in Fig. 6. In the left panels we set up a spline
interpolation D 1,1 (solid yellow line) of the correlator Dy, /7
for B = 2.10 at T = 254 MeV at vanishing imaginary fre-
quencies (topmost points) along spatial momenta |q|. The
orange and red curves then correspond to this interpola-

tion, evaluated according to BL/T O,/ qZ + |q|?) at the first
three finite available imaginary frequencies. We find that at
qs =~ 21T the O(4) ansatz works acceptably well, starting
from |q| ~ 1.5 GeV?. As expected from experience with
continuum computations the O (4) scaling does not work as
well for the transversal part at higher imaginary frequencies
and starts to deviate from the simulated data already at around
Iq] =3 GeV.
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for the lowest T = 0.152 GeV (left) and a high 7 = 0.381 GeV (right).
The color coding assigns darkest colors to the lowest value of g4

Different from the continuum, the finite lattice spacing
manifests itself in the breaking of rotational symmetry, which
affects the edge of the Brillouin zone most severely. It is
then exactly at high spatial momenta where we see devia-
tions from the O(4) ansatz appearing. In the right panels
we use Dy ;T to evaluate the correlator along imaginary fre-
quencies. We find that it provides a smooth curve, which
for the four lowest finite imaginary frequencies, available
on the lattice, lies quite close to the actual datapoints, while
it starts to deviate again towards the edge of the Brillouin
zone.

In conclusion, since for the spectral reconstruction very
precise correlator data is required and we find that systematic
uncertainties due to finite lattice spacing artifacts are manifest
in the application of the O(4) ansatz to finite-temperature
lattice gluon correlators, we do not deploy it further in this
study. Instead we will only use the actual computed correlator
values along discrete imaginary frequencies for the spectral
reconstructions in the next section.
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Fig. 5 The longitudinal (top row) and transversal (bottom row) gluon
propagators at 8 = 2.10 evaluated along imaginary frequencies for the
ten available temperatures among the ensembles of D370, i.e. T =
152...762 MeV. The left panels contains correlators at |q| ~ 0.6 GeV

4 Reconstructed spectral functions

We continue in this section by presenting the spectral func-
tions reconstructed from the correlation functions discussed
in the previous section via the generalized Bayesian BR
approach. One central aspect in the determination of spec-
tral functions from Euclidean data is to assess the unavoid-
able uncertainty in the end result, due to the inherently ill-
posed nature of the reconstruction process. Two kinds of
systematic errors are always present: those related to the
finite number of available datapoints and those related to
the finite precision of the lattice correlators. The latter is
assessed via a Jackknife resampling procedure, the former
via changing the underlying default model related input func-
tions m(w) and h(w), as discussed in Sect. 2.2. That is, all
figures depicting spectral functions in the following contain
error-bands, which denote the variation due to those two fac-
tors.
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while the right panel shows those at |q| & 1.5 GeV. Note that above the
first finite Matsubara frequency all data points essentially line up on the
same 7' = 0 curve

4.1 Low-temperature spectral functions

We start with the longitudinal (left) and transversal (right)
spectra at the lowest available temperature 7 = 0.152 GeV
plotted in Fig. 7 for different spatial momenta. Lighter colors
correspond to higher momenta. These reconstructions cor-
respond to the most robust ones, since the underlying cor-
relators are resolved with the largest number Ny, /2 = 10
of imaginary frequencies in our ensemble. At the lowest
momenta available, the spectrum exhibits a characteristic
peak—trough structure. A well defined lowest lying positive
peak is followed by a negative valley, which approaches the
x-axis from below. The amplitude of both structures dimin-
ishes as one increases momenta. Consistently the trough in
the transverse spectrum is more strongly pronounced than in
the longitudinal sector. Their position is clearly correlated
with spatial momentum, which we will study quantitatively
in the next section.
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Fig. 6 The longitudinal gluon propagators for § = 2.10 evaluated
at T = 254 MeV. (left) Shown are correlators vs. spatial momenta
at the first four available imaginary frequencies g4 = 0 — 4.31 GeV.
The orange curve represents a naive spline interpolation Dy /7 (lq))
of Dryr(gsa = 0,1q|). The dark orange and red curves correspond
to the interpolation evaluated using the assumption of O(4) invari-

ance: ﬁL/T(,/qZ + 1q]?). (Right) Use of the interpolation [)L/T(\ql)

Qualitatively the observed structures agree with expecta-
tions from continuum computations, which predict that the
gluon spectrum at large frequencies will be negative and
will asymptote to zero [40,46]. Due to the ill-posed nature
of the reconstruction task, the reconstructed spectra, how-
ever, show artificial oscillations around the x-axis with a
monotonously decreasing amplitude, which both precludes
both a sensible quantitative comparison to the asymptotic
form and to the continuum zero-area sum rule. We note
that close to the frequency origin the spectral function may
start out flat or even with a small negative slope, related to
a possible flattening off of the correlator close to g4 = 0
[59].

Even though we cannot perform a systematic comparison
of the reconstructions at different lattice spacing we plot the
outcome of the corresponding low-temperature reconstruc-
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in order to reproduce the finite imaginary frequency behavior of the
propagator (blue points). The solid curves show the O(4) evaluation
Dy /T(,/qf +1q|?). We can see that, while for small imaginary fre-
quencies the O(4) ansatz works quite well, it starts to degrade as one

approaches the boundary of the Brillouin zone due to breaking of rota-
tional symmetry on the lattice

tions in Fig. 8. We observe that the magnitude of the negative
contributions appear to show a mild dependence on the lat-
tice spacing. On coarser lattices, e.g. at § = 1.90, the trough
in the confined phase is less strongly pronounced than for
B = 2.10 (keeping in mind the slightly different tempera-
tures and momenta). This behavior of a sharpening in the
peak—trough structure is expected [23], since the continuum
T = 0 spectral function contains a pole at which the spec-
trum changes sign.

Before turning to the investigation of the temperature
dependence of the gluon spectral function we need to con-
sider another systematic error, which is present in the fixed-
scale approach and related to the way how temperature
is varied. The fact that at higher temperatures a smaller
number of datapoints in imaginary frequencies are present,
leads to a degradation of the spectral reconstruction. That
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Fig. 7 Reconstructed longitudinal (left) and transversal (right) gluon
spectra on the 8 = 2.10 (top) ensemble at the lowest available temper-
ature 7 = 0.152 GeV. The different curves denote a subset of spatial
momenta at which correlator data is available. The y-axis is cut off to
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Fig. 8 For completeness we show here the reconstructed longitudinal

(left) and transversal (right) gluon spectra on the 8 = 1.95 (top) and
B = 1.90 (bottom) ensembles at the lowest available temperatures. The
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showcase the existence of negative contributions. One can clearly see a
well defined lowest lying positive peak with a subsequent trough, which
dies out towards higher frequencies. Error-bands arise from varying the
default-model functions m and h
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different curves denote a subset of spatial momenta at which correlator
data is available, lighter colors denote larger momenta
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Fig. 9 Systematic uncertainties of the spectral reconstruction in a
fixed-scale approach for the longitudinal (left) and transversal (right)
sector at § = 2.10. We show the spectral functions extracted from the
correlator at the smallest available |q| and lowest T = 0.152 GeV, i.e.
the dataset with the largest number Ny, /2 = 10 of resolved imaginary
frequencies (dark blue). The lighter blue solid curves denote the results
from a sparsened dataset, using only every 2nd, 3rd or 4th imaginary

is, when we find changes in the peak—trough structure at
higher 7', we need to make sure that what we observe is
genuine in-medium physics and not simply a methods arti-
fact.

To this end we carry out the following crosscheck: We arti-
ficially reduce the input data (for a similar test in the context
of non-relativistic spectral functions see [11]). At the low-
est available temperature, i.e. the B = 2.10 ensemble with
Ny, = 20, we discard from the imaginary frequency correla-
tor every 2nd, 3rd or 4th datapoint and feed these thinned out
datasets into the reconstruction algorithm. This construction
corresponds to carrying out the reconstruction on the recon-
structed correlator (see also [60]), i.e. the correlator, which
ensues if the low-temperature spectrum was present in a sys-
tem at high temperatures.

In Fig. 9 we plot the reconstructed spectra based on the
thinned out correlators at the smallest spatial momentum
|q] = 0.4 GeV. The reconstructions are carried out for a
single choice of default model m = 1,h = 1, since we
are interested here simply in identifying possible system-
atic trends induced by the deterioration of the dataset. And
as expected, the lower the number of input datapoints, the
less structure the reconstructions contain, in particular the
strength of the negative trough is strongly dependent on the
Ny, used. On the other hand the position of the lowest lying
peak is quite robust in the transversal sector and only for
Ny, /2 = 3 deviates strongly from all other reconstructions.
In the longitudinal sector, reducing the underlying correla-
tor data points already leads to a trend of shifting the peak
position to lower frequencies when using half the original
number.

250
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T=0.152GeV g=0.399GeV

150 Every, 2™, 3, 41

200

100
50 \

-50

prld

- 1005 1 2 3 4 5
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frequency (dark to light colors). These thinned out correlators corre-
spond to the reconstructed correlator [60] at higher temperature. Clear
changes in the overall features of the reconstructed spectra are visible,
in particular the negative trough is much more weakly resolved. The
position of the first peak, however, remains relatively stable down to
Ny, /2 = 4, in particular in the transversal sector

Keeping these systematics in mind we can now proceed to
an investigation of the in-medium modification of the gluon
spectra.

4.2 Temperature dependence of the spectral functions

We continue by inspecting the outcome of the spectral recon-
structions, based on actual in-medium correlators, as shown
in Fig. 10. The left panel contains longitudinal, the right
panel the transversal ones. In the upper row reconstructions
are obtained at the lowest available spatial momentum g =
0.6 GeV on the § = 2.10 lattices, while in the bottom row we
show the results for intermediate g ~ 1.68 GeV. The temper-
ature range covered lies between 7 = 0.152...0.381 GeV
and the eight temperatures shown here correspond to those
at which the default-model dependence was mild enough for
a robust determination of the positive peak feature.

As can be expected from the discussion of the tempera-
ture dependence of the correlators, the longitudinal spectra
show significantly stronger changes with increasing temper-
ature than the transversal ones. At the same time the in-
medium modification (in absolute terms) at low momenta
appears as pronounced as at higher momenta. Qualitatively
the changes are nonetheless similar in both the longitudinal
and the transverse sectors. The lowest lying peak broadens,
moves to higher frequencies and diminishes in height. Still
at T = 0.381 GeV we find clear indications for the presence
of such a quasi-particle structure also in the longitudinal sec-
tor. For larger temperatures the statistical significance of the
results is insufficient and we have refrained from presenting
them. The observed behavior is consistent with an increase in
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Fig. 10 In-medium longitudinal (left) and transversal (right) gluon spectral functions at 8 = 2.10 at the lowest available spatial momentum
g ~ 0.6 GeV (top) and at intermediate ¢ &~ 1.68 GeV (bottom) evaluated in the temperature range 7 = 0.152...0.381 GeV

the mass of a gluon quasi-particle and thus signals an increase
in the strength of screening affecting the interactions medi-
ated by it. At the same time the depth of the negative trough
at low momenta appears to weaken. However, its width also
seems to broaden and its minimum shifts to higher frequen-
cies.

At higher momenta the trough is barely visible, even at
the lowest temperature, as already indicated by Fig. 7. If one
zooms in around the x-axis one would find that the system-
atic uncertainties make the result compatible with no nega-
tive trough present at all, even though the mean value of the
reconstructed spectra always shows a regime where it falls
below zero. We hence expect that with improved statistics
and an increased number of datapoints Ny, the trough would
eventually be recovered.

Our interest, however, lies mainly in determining the prop-
erties of the low lying positive peak, since e.g. its position
can be interpreted as representing the in-medium dispersion
relation wg /T(|q|) of a gluon quasi-particle, which in turn
may become part of a dynamical model of the quark—gluon
plasma. The peak width would inform us about the lifetime
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of such a quasi-particle excitation. However, due to the small
number of available correlator datapoints, the observed val-
ues of the width are still dominated by reconstruction uncer-
tainties.

Before embarking on a quantitative investigation of the
quasi-particle peak, we need to ascertain whether the changes
observed here are genuine in-medium effects. It is here that
we can utilize the reconstructions based on the sparsened
low-temperature datasets, as shown for the longitudinal (top
row) and transversal (bottom row) sector in Fig. 11.

In the left column we contrast the actual in-medium recon-
structions (solid colored lines) at 7 = 0.152 GeV, T =
0.305 GeV and T = 0.508 GeV with those from sparsened
low-temperature datasets at N,, = 20, 10, 5 (gray dashed).
What is important here is to observe that at 7 = 0.305 GeV
(green curve) the in-medium results show a weakened but
nevertheless present negative trough. It is shallower than
what can be explained simply by the degradation of the spec-
tral reconstruction itself, visible in the gray short dashed
curve. The T = 0.508 GeV result already carries quite large
error-bands, so that no significant difference regarding the
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Fig. 11 Comparison of the finite-temperature spectral reconstructions
to those based on sparsened low-temperature longitudinal (top row) and
transversal (bottom row) correlators at § = 2.10. In the left column we
show the reconstructions at the lowest 7 = 0.152 GeV, an interme-
diate 7 = 0.305 GeV and a high T = 0.508 GeV as colored solid
lines together with the reconstructions based on the sparsened data at
Ny, = 20,10, 5 as gray dashed lines. At T = 0.305 GeV we find that
the actual 7 > 0 reconstruction (green) shows a clear sign that the

negative trough compared to the sparsened data result can be
found.

In the right column of Fig. 11 we now turn to the changes
observed in the peak position, defined here naively via the
topmost point of the reconstructed spectrum. We already saw
that the effect of truncating the correlator is a shift to lower
frequencies, while the in-medium spectra show a shift to
higher frequencies. This difference is quantified here using
the colored points, corresponding to the peak positions in the
actual T > 0 reconstructions, and the red triangles, which
denote the position obtained in the sparsened reconstructions.

We conclude that both the observation of a diminishing
trough depth and the shift of the positive peak position to
higher frequencies with increasing temperature are genuine
in-medium effects, which go significantly beyond the uncer-
tainties introduced by the reduced number of datapoints.
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trough has weakened more strongly than what a degradation in recon-
struction resolution (gray small dashed line) alone results in. (Right)
Comparison of the actual finite-temperature values of the dominant
peak position w(L) /T(lqmm |) (circles) to the peak position reconstructed
from the sparsened low-temperature correlator (red triangles). We see
that the systematic error from the truncation pushes the values to lower
values, while the tendency observed in the actual 7 > 0 data is in the
opposite direction

4.3 In-medium gluon dispersion relation

Having inspected the behavior of the reconstructed spectra
qualitatively, we proceed to quantitatively determine position
of the first positive peak a)(z /T In the left panel of Fig. 12
we show the peak positions, again defined naively via its
topmost point, plotted against spatial momentum for those
eight temperatures at which the default-model dependence
was mild enough for a robust determination. Both the peak
position and the momenta are rescaled by the temperature,
which allows a straight-forward comparison of non-trivial
differences in the behavior of a)g Jrat different temperatures.
The errorbars arise from the variation of the results among
changing both m(w) and h(w) as described in Sect. 2.2.

We find that all curves approach the y-axis at a non-zero
value and that above |q|/T ~ 6 GeV all of them exhibit
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Fig. 12 Momentum dependence of the longitudinal (top row) and
transversal (bottom row) quasi-particle peak position at = 2.10. In
the left column we show a)g r for those eight temperatures at which
the default-model dependence was mild enough for a robust determi-
nation and we find that all of them take on a non-zero value for small
spatial momenta. In both the longitudinal and the transversal sectors
the reconstructions at the two lowest temperatures within the hadronic
phase seem to exhibit a larger intercept than the curves in the deconfined
phase. (Right) Fit of the lowest and highest temperature curves with the

an identical behavior within the relatively large systematic
errorbars. As the number of correlator points reduces with
increasing temperature, the size of the combined system-
atic and statistical errorbars increases concurrently. In turn
we are not able to distinguish differences among the peak
positions in the deconfined phase at low momenta. On the
other hand in the confined phase, i.e. for the lowest two
temperatures, the peak position seems to flatten off at a
value above that in the deconfined phase. This difference
is probed more quantitatively in the right panel of Fig. 12,
where the peak positions for 7 = 0.152 GeV< T, and
T = 0.381 GeV > T, are plotted together with a modi-
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ansatz a)(L) (la) = Ay/B?% + |q|?. The mass of the quasi-particle excita-
tion is defined as the value of the intercept m = AB. As comparison to
results in the literature we include here on the one hand the Debye mass
evaluated from the heavy-quark potential in Ny = 2 + 1 lattice QCD
as red solid line. On the other hand we show for the longitudinal sector
previous estimates of the electric screening mass obtained from Dyson—
Schwinger computations including Ny = 2 + 1 + 1 quark flavors as
gray dashed lines

fied free-theory fit, a)(L)/T(|q|) = A,/B? + |q|2. This simple
fit ansatz manages to retrace the values reasonably well and
leads to significantly different intercepts, i.e. quasi-particle
masses, between the lowest and highest temperature both in
the longitudinal sector,

mp/T|r=0.152Gev = 3.80 £ 0.25, (32)

mL/TlT:0_381 GeV — 297 + 016, (33)
and the transversal sector,

mT/T|T:0_152C‘eV = 368 Zl: 045, (34)

mT/T|T=0'381 GeV — 1.68 +0.16. (35)
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The difference in the in-medium masses between the longi-
tudinal and transversal sector at high temperature is qualita-
tively consistent with the expectations from weak coupling
considerations. In a perturbative setting the strong coupling
g is small and the electric scale of Debye screening ~ g7 is
expected to be well separated from the non-perturbative mag-
netic sector, ~ g2T. The corresponding magnetic in-medium
mass therefore will be smaller than its electric Debye coun-
terpart.

For comparison purposes we also display (red solid curve)
a recent lattice QCD determination of the Debye mass with
Ny =2+ 1 flavors of light HISQ quarks [13,61], which at
T = 0.381 GeV coincidentally agrees within errors with the
HTL value of m p evaluated for four massless flavors at the
scale u =27 T.Even at T = 0.381 GeV though, the Debye
mass result is consistently smaller than what is observed as
quasi-particle mass directly from the gluon spectra. In addi-
tion we have included for the longitudinal sector previous
estimates [33] for the electric screening mass computed in
a Dyson—Schwinger approach including Ny = 2 +1+1
quark flavors. What we find is that at low temperatures their
continuum values differ from our finite lattice spacing value
by around 13%, with the functional result lying below the lat-
tice one. At high temperatures the Dyson—Schwinger result
agrees very well with the HTL Debye mass estimate and thus
also lies below the gluon spectral function result.

5 Conclusion

We have presented the first computation of finite-temperature
gluon correlation and spectral functions in Landau gauge on
full QCD ensembles with Ny = 2 + 1+ 1 flavors of dynam-
ical quarks, generated by the tmfT collaboration and gauge
fixed using the cuLGT library on GPU’s. Based on these data
we both carried out a Gribov—Stingl fit analysis of the cor-
relators themselves and a Bayesian investigation of the cor-
responding gluon spectral functions. It is the first Bayesian
study in this context, which is independent of the assump-
tion of O(4) invariance, containing a systematic error bud-
get. Spectral function reconstructions were performed with
anovel Bayesian approach, which generalizes the recent BR
method to arbitrary, i.e. non-positive-definite functions.

The outcome of the Gribov—Stingl fits is collected in
Table 3 and the corresponding best fit curves plotted in Fig. 1.
As was expected from perturbative computations at high tem-
perature, the longitudinal correlators show a much stronger
dependence on temperature than the transversal ones. We
found that the temperature dependence of e.g. the quasi-
particle mass parameter r in the fits shows a monotonous
increase, which is qualitatively compatible with previous
results obtained in quenched QCD. Since previous studies
in Ny = 2 full QCD used a fixed box approach and did not

provide Gribov—Stingl fits on the renormalized propagators,
no conclusive comparison could be made.

We further found (see Fig. 5) that, for a fixed momentum,
atimaginary frequencies above the first Matsubara frequency
qs ~ 2T the correlator values lie already very close to
their 7' &~ 0 behavior, while at g4 = 0 significant differences
between the correlators are manifest. At g4 = 0 the cor-
relator will however suffer most severely from the inherent
finite extent of the Euclidean axis in standard lattice simula-
tions. We have checked (see Fig. 6) that while interpolating
the correlators using the assumption of O (4) scaling works
reasonably well at small g4, it degrades towards the bound-
aries of the Brillouin zone. The interpolation is found to work
better on the longitudinal correlators than on the transversal
ones but is globally not sufficiently precise to be deployed
for the determination of spectral functions.

Our low-temperature reconstructed spectral functions (see
Fig. 7) both in the longitudinal and transversal sector, show
clear signs of positivity violation at high frequencies. In gen-
eral we find one well defined positive peak structure at low
frequencies, followed by a negative trough at higher w. At
higher frequencies, the spectrum approaches the frequency
axis from below, in qualitative agreement to the continuum
asymptotic behavior. Due to the imperfections of the recon-
struction process at high frequencies, the spectra however
begin to artificially oscillate around the w-axis with a dimin-
ishing amplitude.

At higher temperatures (see Fig. 10) the spectral features
change such that the positive peak structure broadens, moves
to higher frequencies and shrinks, while the negative trough
becomes more and more shallow and also moves to higher
frequencies. In order to check whether these changes are
actual in-medium effects, we carried out a systematic cross-
check based on reconstructions performed on sparsened low-
temperature imaginary frequency datasets. It revealed (see
Figs. 9 and 11) that the observed modifications of the peak
and trough can indeed be attributed to in-medium physics.
That is, while the overall form of the reconstructed spectra
became more and more featureless, as the number of dat-
apoints was reduced, the position of the lowest lying peak
remained relatively stable down to N, /2 = 4, moving
slightly towards lower values. On the other hand the actual
T > 0 reconstructions showed a clear behavior of tending to
larger values of w% /T

Since a well pronounced positive peak at low frequencies
was identified in all reconstructed spectra, we use its tip as
a naive definition of a quasi-particle dispersion relation. The
corresponding values plotted against spatial momentum (see
Fig. 12) are compatible with a finite intercept at || = 0. Such
an intercept, determined from a modified free-theory fit, can
give a first rough estimate of the quasi-particle mass in the
longitudinal and transversal sector (see (33) and (35)). We
find that below T the values of this mass appear to be consis-
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tent with each other for longitudinal and transversal gluons,
while above the deconfinement transition a clear separation
of values emerges. This difference is qualitatively consistent
with the weak coupling expectation that the magnetic mass
should be parametrically smaller than the Debye mass, which
screens the electric fields. Comparing with previous results
on QCD screening properties, either from the Debye mass
extracted from the heavy-quark potential or a direct compu-
tation of the electric screening massina Ny =2+ 1+ 1
Dyson—Schwinger approach, shows values that are consis-
tently smaller than our lattice estimates, the difference being
around 13% at low temperatures and close to 28% at the
highest temperatures investigated.

Our findings are encouraging: it appears to be possible to
reconstruct characteristic features of gluon spectral functions
from Landau-gauge lattice QCD correlators with a relatively
small number of available frequency points, since the statis-
tics of the ensembles is high. The position of the lowest lying
peak structure is one example. To connect to the perturbative
high momentum regime, where the signal to noise ratio in
the correlators is still weak, will require increasing the statis-
tics further. The quasi-particle peak width on the other hand
demands simulations with a significantly larger number of
temporal lattice points, i.e. a smaller lattice spacing. Con-
necting our lattice results on gluon spectra to e.g. the PHSD
framework therefore needs to be postponed to future studies.
Performing the full continuum extrapolation on the correla-
tors and subsequent reconstructions has to be attempted in a
future study as the current ensembles are not tuned for this
purpose and thus feature a too coarse temperature resolution.

Already with the currently available data we may attempt
to use the reconstructed spectra in a self-consistent compu-
tation for transport coefficients in full QCD, which is work
in progress.

We are confident that with a further increase of the statis-
tics on the tmfT ensembles and subsequently on the com-
puted correlators the determination of the quasi-particle dis-
persion relation can be brought to a more robust quantitative
level, in particular that it will become possible to resolve
more clearly the temperature dependence of its intercept at
lql = 0.

One open problem left is to estimate the influence of the
number of light-quark species and of the light-quark mass on
the properties of the gluon spectral functions. Considering the
ongoing work on thermodynamics for Ny = 2 +1+1 flavors,
we will be able in the near future to investigate the case of
more realistic light-quark masses (pion masses of close to 200
MeV) for Ny = 2 +1+1flavors along the lines of the present
paper. For a sensible comparison with Ny = 2 simulations
one would have to return to the previous tmfT datasets and
carry out a careful reanalysis of the Gribov—Stingl fits taking
into account the renormalization of the quasi-particle masses
and widths.
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